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Abstract 
 In the paper, an evolutionary approach to test 
generation for functional BIST is considered. The aim of 
the proposed scheme is to minimize the test data volume 
by allowing the device’s microprogram to test its logic, 
providing an observation structure to the system, and 
generating appropriate test data for the given 
architecture. Two methods of deriving a deterministic test 
set at functional level are suggested. The first method is 
based on the classical genetic algorithm with binary and 
arithmetic crossover and mutation operators. The second 
one uses genetic programming, where test is represented 
as a sequence of microoperations. In the latter case, we 
apply two-point crossover based on exchanging test 
subsequences and mutation implemented as random 
replacement of microoperations or operands. 
Experimental data of the program realization showing 
the efficiency of the proposed methods are presented. 

 

1. Introduction 

According to ITRS roadmap [1], the number of test 
patterns to test a chip will explode to a size that will 
seriously affect test application times and thus, 
menufacturing costs. The roadmap shows that as the 
number of transistors per chip trends towards 180 million 
per square cm by 2012, the number of test vectors 
required will increase to 10 billion [2]. This amount of 
test data will be prohibitive, and the time to execute the 
test will reach around 10 seconds, even on a 1 GHz tester, 
pushing test times up by a factor of 50! Therefore, it is 
important to incorporate more design-for-testability 
(DFT) structures to the chip silicon itself in order to share 
the load between the tester and the hardware under test. 

 
 Functional, or arithmetic BIST approaches [3, 4] have 
been introduced to provide for an efficient solution to 
DFT for Systems-on-Chip. The main idea is to reuse the 
system infrastructure to test the core and additionally 
allow decompression of the external test set.  However, 
the previous works on functional BIST have been mainly 
concentrated on decompression of a given set of test 
patterns [5, 6].  
 In current paper, we focus on automatic generation of 
tests for a system consisting of registers and 
combinational functional units. An evolutionary approach 
to test generation for functional BISTs is considered. Two 
methods of deriving a deterministic test set at functional 
level are suggested. The first method is based on the 
classical genetic algorithm with binary and arithmetic 
crossover and mutation operators. The second one uses 
genetic programming, where test is represented as a 
sequence of microoperations. In the latter case, we apply 
two-point crossover based on exchanging test 
subsequences and mutation implemented as random 
replacement of microoperations or operands. 

The paper proposes a new functional BIST scheme 
with very low area overhead. The aim of the proposed 
scheme is to minimize the test data volume by allowing 
the device’s microprogram to test its logic, providing a 
signature analyzer as an observation structure to the 
system. While system level, functional fault models are 
implemented in the experiments, fitness function based 
on logic level fault grading could be easily incorporated 
to the approach. 

The paper is organized as follows. Section 2 explains 
the new functional BIST sheme used. Section 3 presents 
the genetic algorithm for functional test generation. 
Section 4 introduces genetic programming for generating 
tests in a functional BIST framework. Finally, 
experimental results and conclusions are given. 
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Fig. 1. A functional BIST scheme 

 

2. The functional BIST scheme 
Consider the datapath for the multiplication. It consists 

of a register block for storing the operands-multipliers, 
intermediate results of multiplication, the operation 
result, and the cycles counter. All necessary 
microoperations are carried out in the Arithmetic and 
Logic Unit (ALU), which has the role of circuit under test 
(CUT) (Fig.1). The ALU has data inputs and outputs 
connected via buses to the register block. The control 
signals from the control unit serve as additional inputs for 
ALU, and few status signals of the ALU serve as 
additional output signals connected to the control unit 
(not shown in Fig. 1). 

During N cycles of the microprogram, ALU is 
exercised with N functional patterns, and the responses of 
ALU will be compressed in the signature analyzer which  
monitors the multiplication process. In the division 
process, we could use just K pairs of the operands A and 
B involved as the test for the ALU, and K quotients C = 
A·B as K responses to the test stimuli. However, in the 
FBIST scheme we will use all the K·N data words 
produced at the inputs of the ALU during the K·N cycles 
of the K multiplication operations as input stimuli to the 
ALU, and all the K·N data produced at the outputs of the 
ALU during the K·N cycles as the responses to stimuli. In 
such a way, we have got a multiplication effect of N 
times in the number of test patterns when moving the test 
access from the instruction level to the microinstruction 
level. 

Denote by L the number of bits in the data 
(multiplication operands), and by l the number of bits on 
the inputs of ALU. The reduction in the test data volume 
through the compression of test data in the FBIST is 
equal to 

L
NlR
2

= . 

For example (for the system used in the experiments), 
in the case of 32 bit words for the multiplier with 105 
inputs and 120 cycles the reduction in the volume of test 
data is 120·105/64 = 197. 

In this scheme the functional patterns produced 
directly at the inputs of ALU have similar role as 
pseudorandom test patterns in classical BIST schemes. 
Similarly to the pseudorandom test, the functional test 
patterns are not able to cover random-pattern-resistant 
faults, which limits the fault coverage that can be 
achieved with the pure functional BIST approach. 

Let us consider functional test generation for the 
multiplier. Suppose that the operands X, Y and the result 
Z are integer numbers for simplicity (additional 
information about the bitwidth of the operands may be 
introduced). We shall apply two approaches to this 
problem:  

1) a genetic algorithm (GA)-based method and  
2) a genetic programming (GP)-based procedure. 
 
 

3. GA for functional test generation 
 
Genetic Algorithms (GA) are search algorithms based on 
the formalized principles of natural selection [7]. A 
subset of search space points, called a population, is 
chosen. Each potential solution of the problem: individual 
is presented by a chromosome with some gene structure. 
In the simplest case, an individual can be represented by 
binary encoded string. This makes GA attractive for 
solving the problem of logic circuits test generation, 
where the solution is presented as a set of binary patterns 
or sequences of binary patterns.  

A fitness function is determined on the solution set and 
allows to estimate the closeness of each individual to the 
optimal solution: the ability to survive. The genetic 
search of solution consists of the simulation of such 
artificial population evolution. Creation of new 
individuals during the population evolution is based on 
the reproduction process simulation. In this case the 
individuals-solutions involved in reproduction process 
are called the parents, while the obtained individuals-
solutions are called the offsprings. In each generation a 
set of individuals-solutions is constructed using the parts 
of individuals-parents and adding new parts with “good 
properties”. Thus the GA effectively uses the information 
accumulated during evolution process. For solving any 
problem with genetic algorithm, first of all, we have to 
define:  

1) the form of individual representation – encoding;  
2) genetic operators – crossover and mutation;  
3) fitness function.  
Below we shall consider the definition of all GA 

components with the reference to the formulated 
problem. Here we use approach presented in [8]. 

1) A single test pattern consists of two integer 
numbers X and Y – the operands of multiplier. Therefore 
a decision is represented as two-component vector (X,Y). 
On the other hand, we will use binary strings – codes of 
the numerical vectors, as decision representation. 

2) Two types of genetic operators (crossover and 
mutation) are used – arithmetical and binary. 
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In accordance with arithmetical crossover for two 
parents ),( aa YX=A  and ),( bb YX=B , a new 

individual-offspring A~  is defined as follows  

ba XXX ⋅+⋅−= αα )1(~
, 

ba YYY ⋅+⋅−= αα )1(~
,  

where ]1;0[∈α . 
Since we consider integer operands of multiplier and 

the described numerical crossover can generate floating 
point numbers, then we have to round off the generated 
components of the vector )~,~(~ YX=A . 

Binary crossover is executed according to the classical 
scheme represented below in Fig. 2  

 
Figure 2: One-point binary crossover operator 

 
Each type of crossover is applied with its own 

probability c
bP  (binary) and c

nP  (numerical): 

1=+ c
n

c
b PP .  
For mutation operators we use also two variations: 

arithmetical and binary mutation. Arithmetical mutation 
for functional testing is implemented as follows. New 
individual ),( aa YX ′′=′A , a mutant, is obtained from old 
individual ),( aa YX=A  according to expressions   

aaa XXX ⋅∆±=′ , 

aaa YYY ⋅∆±=′  
where ∆  - is a small number. Obtained individual A’ 
must be rounded off. 

Binary mutation is implemented as a random bit 
inversion. Each type of mutation is applied with its own 

probability 
m

bP  (binary) and 
m

nP  (numerical): 
1<<+ c

n
c

b PP . 
3) At the preliminary stage the test pattern quality is 

evaluated in the following way. The number of inverted 
bits in the multiplication result is estimated for each bit 
inversion in the current test pattern. The experiments 
have shown that a test pattern, where any bit inversion 
will lead to at least one bit inversion in the multiplication 
result, can always be found. 

Our goal is now to generate test patterns such that the 
bit inversions of input operands produce maximum bit 
inversions in the multiplication result (it would be 
desirable to have all bit inversions). Thus we can define 
the matrix P of dimension ]2[ MN × , where 1=ijp , if  
i-th input bit inversion produces j-th output bit inversion. 
The matrix P is defined in the following way. First, all 
the matrix cells are zeros. Next, in the selected input 
pattern every bit is inverted. The matrix cells ijp  are 

defined in accordance to the produced bit inversions in 
the output pattern. Thus, the fitness function is defined as 

NM

p

h

N

i

M

j
ij

2
)(

2

1 1
∑∑
= ==A .  

 
4. Genetic programming based functional 
test generation 

 
GP-based approach to functional test generation is 
founded on the fact that multiplier can be represented not 
only at functional or structural levels, but at 
microprogrammed level too. In this case, multiplication 
procedure is described as microoperations sequence such 
as operand fetch, adding, shift etc. and test can be 
considered as a microoperations sequence. Under these 
conditions the methods of genetic programming can be 
effectively applied. 

The modern genetic programming is one of the basic 
evolutionary computations paradigms and uses for 
individual representation the following three main forms: 
1. Classic tree-like representation,  
2. Linear graph representation,  
3. Direct acyclic graph (DAG) representation [9].  

Classical GP uses tree-like individual representation, 
which was good adopted for Lisp-programs. However, 
for example, for microoperations sequences or C-
programs this form is not useful. For our purposes we 
offer to use second form – linear graph individual 
representation, because it is well applicable for 
representing individuals as microoperations sequence of 
variable length [10]. Note that all operations are executed 
on two operands – variables and constants, which form 
terminal symbols set. In this approach any operator is 
encoded with four-dimensional vector consisting of 
operation type and operands pointers.  

 
 
 

 
 
 
 
 
 
 
 
 

Fig.2. Microprograms crossover 
 
Such kind of individual representation allows effective 

implementation of program recombination and their 
interpretation. In this case the tournament selection and 
two-point crossover are used. Here, two points are 
selected and parents are exchanged with the segment 
between selected points (Fig.2). Mutation is implemented 
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as random replacement of operation type or operands 
values from given range.   
 
5. Experimental results 

 
The suggested algorithm was implemented in C++ 

language in the C++ Builder environment. The following 
main parameters of the GA-algorithm were empirically 
defined: values of crossover and mutation probabilities 

8.0=cP  and 01.0=mP , coefficients 5.0=α  and 
5.0=∆  for functional crossover and mutation 

respectively, and the number of individuals in population 
was 100. Under these conditions the dependence of test 
fitness-function (fault coverage) from generations number 
was investigated. The experimental data in Fig. 6 show 
that fitness-function value is stabilized quickly enough. 
Thus, the boundary value of GA generations number is 
chosen equal to 40. 

The results of the experiments to show the dependence 
of test fault coverage and test length on the operand bit 
capacity are shown in Fig.3. Average results of 10 
experiments are cited.  

  

In order to evaluate the actual structural level fault 
coverage that can be achieved by the proposed functional 
BIST scheme, a case study with a microprogrammed 
datapath of a 32-bit floating point divisor was carried out. 
The combinational part of the datapath contains three 32-
bit registers (dividend, divisor and quotient), a 5-bit 
counter, and a combinational ALU, which has 105 inputs, 
71 outputs consisting of 513 gates and 2382 stuck-at 
faults, respectively.  

Table 1 shows the experimental results obtained on 
that example. The experiments showed that seven 
operands were necessary to reach the maximum fault 
coverage of 89.8 per cent that could be achievable using 
the proposed BIST scheme. Higher fault coverage was 
not reachable because of a number of functionally 
untestable faults. A full-scan scheme would have covered 
those. This test of 7 operands takes 759 clock cycles to 
run. Since only the operands have to be saved to external 
or internal tester, the test compression rate achieved by 
the scheme is more than 100.  
Table 1. Stuck-at fault coverage for the FBIST scheme 

k operand1 operand2 result Nk N FC,
% 

1 0.7345 0.7659 0.9590 108 108 66.8 
2 0.6943 0.7234 0.9598 105 213 76.7 
3 0.4320 0.8569 0.5041 113 326 83.3 
4 0.1964 0.2098 0.9361 108 434 85.5 
5 0.4679 0.4987 0.9382 110 544 88.5 
6 0.4567 0.4678 0.9763 104 648 88.9 
7 0.9234 0.9546 0.9673 111 759 89.8 
… … … … … … 89.8 
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Fig.4. Dependence of fault coverage and test length from 
operand bit capacity. 

 

6. Conclusions and future work  
The main goal of the proposed method is to generate 

as short as possible functional test to reduce the amount 
of input data for embedded  functional BIST. The test 
generation for 32-bit multiplier with considered approach, 
shows that functional tests with 70% coverage relatively 
to primary input bits inversions were generated in a very 
low run time. We showed that the proposed functional 
BIST scheme allows to cover about 90 % of stuck at 
faults with a test data compression ratio of two orders of 
magnitude. 

While experimental results were carried out on 
sequential multiplier and division algorithms, the 
proposed approach is open and applicable to any 
sequential arithmetic algorithm. The final fault coverage 
of the BIST can be increased to 100% with the test point 
insertion by path tracing method [11]. 

 

Fig.3. Growth of fitness-function value
depending on number of generations  
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