

Evolutionary Approach to Test Generation for Functional BIST

Y.A.Skobtsov1, D.E.Ivanov2, V.Y.Skobtsov2, R.Ubar3, J.Raik3

1Donetsk National Technical University, Artema Str. 58, 83000 Donetsk, Ukraine,
skobtsov@kita.dongu.donetsk.ua

2Institute of Applied Mathematics and Mechanics of NAS of Ukraine, R.Luxemburg Str. 74, 83114 Donetsk, Ukraine
{ivanov | skobtsov}@iamm.ac.donetsk.ua

3Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia
{raiub | jaan}@pld.ttu.ee

Abstract
 In the paper, an evolutionary approach to test
generation for functional BIST is considered. The aim of
the proposed scheme is to minimize the test data volume
by allowing the device’s microprogram to test its logic,
providing an observation structure to the system, and
generating appropriate test data for the given
architecture. Two methods of deriving a deterministic test
set at functional level are suggested. The first method is
based on the classical genetic algorithm with binary and
arithmetic crossover and mutation operators. The second
one uses genetic programming, where test is represented
as a sequence of microoperations. In the latter case, we
apply two-point crossover based on exchanging test
subsequences and mutation implemented as random
replacement of microoperations or operands.
Experimental data of the program realization showing
the efficiency of the proposed methods are presented.

1. Introduction

According to ITRS roadmap [1], the number of test
patterns to test a chip will explode to a size that will
seriously affect test application times and thus,
menufacturing costs. The roadmap shows that as the
number of transistors per chip trends towards 180 million
per square cm by 2012, the number of test vectors
required will increase to 10 billion [2]. This amount of
test data will be prohibitive, and the time to execute the
test will reach around 10 seconds, even on a 1 GHz tester,
pushing test times up by a factor of 50! Therefore, it is
important to incorporate more design-for-testability
(DFT) structures to the chip silicon itself in order to share
the load between the tester and the hardware under test.

 Functional, or arithmetic BIST approaches [3, 4] have
been introduced to provide for an efficient solution to
DFT for Systems-on-Chip. The main idea is to reuse the
system infrastructure to test the core and additionally
allow decompression of the external test set. However,
the previous works on functional BIST have been mainly
concentrated on decompression of a given set of test
patterns [5, 6].
 In current paper, we focus on automatic generation of
tests for a system consisting of registers and
combinational functional units. An evolutionary approach
to test generation for functional BISTs is considered. Two
methods of deriving a deterministic test set at functional
level are suggested. The first method is based on the
classical genetic algorithm with binary and arithmetic
crossover and mutation operators. The second one uses
genetic programming, where test is represented as a
sequence of microoperations. In the latter case, we apply
two-point crossover based on exchanging test
subsequences and mutation implemented as random
replacement of microoperations or operands.

The paper proposes a new functional BIST scheme
with very low area overhead. The aim of the proposed
scheme is to minimize the test data volume by allowing
the device’s microprogram to test its logic, providing a
signature analyzer as an observation structure to the
system. While system level, functional fault models are
implemented in the experiments, fitness function based
on logic level fault grading could be easily incorporated
to the approach.

The paper is organized as follows. Section 2 explains
the new functional BIST sheme used. Section 3 presents
the genetic algorithm for functional test generation.
Section 4 introduces genetic programming for generating
tests in a functional BIST framework. Finally,
experimental results and conclusions are given.

151

Fig. 1. A functional BIST scheme

2. The functional BIST scheme
Consider the datapath for the multiplication. It consists

of a register block for storing the operands-multipliers,
intermediate results of multiplication, the operation
result, and the cycles counter. All necessary
microoperations are carried out in the Arithmetic and
Logic Unit (ALU), which has the role of circuit under test
(CUT) (Fig.1). The ALU has data inputs and outputs
connected via buses to the register block. The control
signals from the control unit serve as additional inputs for
ALU, and few status signals of the ALU serve as
additional output signals connected to the control unit
(not shown in Fig. 1).

During N cycles of the microprogram, ALU is
exercised with N functional patterns, and the responses of
ALU will be compressed in the signature analyzer which
monitors the multiplication process. In the division
process, we could use just K pairs of the operands A and
B involved as the test for the ALU, and K quotients C =
A·B as K responses to the test stimuli. However, in the
FBIST scheme we will use all the K·N data words
produced at the inputs of the ALU during the K·N cycles
of the K multiplication operations as input stimuli to the
ALU, and all the K·N data produced at the outputs of the
ALU during the K·N cycles as the responses to stimuli. In
such a way, we have got a multiplication effect of N
times in the number of test patterns when moving the test
access from the instruction level to the microinstruction
level.

Denote by L the number of bits in the data
(multiplication operands), and by l the number of bits on
the inputs of ALU. The reduction in the test data volume
through the compression of test data in the FBIST is
equal to

L
NlR
2

= .

For example (for the system used in the experiments),
in the case of 32 bit words for the multiplier with 105
inputs and 120 cycles the reduction in the volume of test
data is 120·105/64 = 197.

In this scheme the functional patterns produced
directly at the inputs of ALU have similar role as
pseudorandom test patterns in classical BIST schemes.
Similarly to the pseudorandom test, the functional test
patterns are not able to cover random-pattern-resistant
faults, which limits the fault coverage that can be
achieved with the pure functional BIST approach.

Let us consider functional test generation for the
multiplier. Suppose that the operands X, Y and the result
Z are integer numbers for simplicity (additional
information about the bitwidth of the operands may be
introduced). We shall apply two approaches to this
problem:

1) a genetic algorithm (GA)-based method and
2) a genetic programming (GP)-based procedure.

3. GA for functional test generation

Genetic Algorithms (GA) are search algorithms based on
the formalized principles of natural selection [7]. A
subset of search space points, called a population, is
chosen. Each potential solution of the problem: individual
is presented by a chromosome with some gene structure.
In the simplest case, an individual can be represented by
binary encoded string. This makes GA attractive for
solving the problem of logic circuits test generation,
where the solution is presented as a set of binary patterns
or sequences of binary patterns.

A fitness function is determined on the solution set and
allows to estimate the closeness of each individual to the
optimal solution: the ability to survive. The genetic
search of solution consists of the simulation of such
artificial population evolution. Creation of new
individuals during the population evolution is based on
the reproduction process simulation. In this case the
individuals-solutions involved in reproduction process
are called the parents, while the obtained individuals-
solutions are called the offsprings. In each generation a
set of individuals-solutions is constructed using the parts
of individuals-parents and adding new parts with “good
properties”. Thus the GA effectively uses the information
accumulated during evolution process. For solving any
problem with genetic algorithm, first of all, we have to
define:

1) the form of individual representation – encoding;
2) genetic operators – crossover and mutation;
3) fitness function.
Below we shall consider the definition of all GA

components with the reference to the formulated
problem. Here we use approach presented in [8].

1) A single test pattern consists of two integer
numbers X and Y – the operands of multiplier. Therefore
a decision is represented as two-component vector (X,Y).
On the other hand, we will use binary strings – codes of
the numerical vectors, as decision representation.

2) Two types of genetic operators (crossover and
mutation) are used – arithmetical and binary.

Register
block ALU

Signature analyser

Functional
test

Data
K

N cycles
K*N

K*N >> K

Fault
simulator

Fault
coverage

Register
block ALU

Signature analyser

Functional
test

Data
K

N cycles
K*N

K*N >> K

Fault
simulator

Fault
coverage

152

In accordance with arithmetical crossover for two
parents),(aa YX=A and),(bb YX=B , a new

individual-offspring A~ is defined as follows

ba XXX ⋅+⋅−= αα)1(~
,

ba YYY ⋅+⋅−= αα)1(~
,

where]1;0[∈α .
Since we consider integer operands of multiplier and

the described numerical crossover can generate floating
point numbers, then we have to round off the generated
components of the vector)~,~(~ YX=A .

Binary crossover is executed according to the classical
scheme represented below in Fig. 2

Figure 2: One-point binary crossover operator

Each type of crossover is applied with its own

probability c
bP (binary) and c

nP (numerical):

1=+ c
n

c
b PP .
For mutation operators we use also two variations:

arithmetical and binary mutation. Arithmetical mutation
for functional testing is implemented as follows. New
individual),(aa YX ′′=′A , a mutant, is obtained from old
individual),(aa YX=A according to expressions

aaa XXX ⋅∆±=′ ,

aaa YYY ⋅∆±=′
where ∆ - is a small number. Obtained individual A’
must be rounded off.

Binary mutation is implemented as a random bit
inversion. Each type of mutation is applied with its own

probability
m

bP (binary) and
m

nP (numerical):
1<<+ c

n
c

b PP .
3) At the preliminary stage the test pattern quality is

evaluated in the following way. The number of inverted
bits in the multiplication result is estimated for each bit
inversion in the current test pattern. The experiments
have shown that a test pattern, where any bit inversion
will lead to at least one bit inversion in the multiplication
result, can always be found.

Our goal is now to generate test patterns such that the
bit inversions of input operands produce maximum bit
inversions in the multiplication result (it would be
desirable to have all bit inversions). Thus we can define
the matrix P of dimension]2[MN × , where 1=ijp , if
i-th input bit inversion produces j-th output bit inversion.
The matrix P is defined in the following way. First, all
the matrix cells are zeros. Next, in the selected input
pattern every bit is inverted. The matrix cells ijp are

defined in accordance to the produced bit inversions in
the output pattern. Thus, the fitness function is defined as

NM

p

h

N

i

M

j
ij

2
)(

2

1 1
∑∑
= ==A .

4. Genetic programming based functional
test generation

GP-based approach to functional test generation is
founded on the fact that multiplier can be represented not
only at functional or structural levels, but at
microprogrammed level too. In this case, multiplication
procedure is described as microoperations sequence such
as operand fetch, adding, shift etc. and test can be
considered as a microoperations sequence. Under these
conditions the methods of genetic programming can be
effectively applied.

The modern genetic programming is one of the basic
evolutionary computations paradigms and uses for
individual representation the following three main forms:
1. Classic tree-like representation,
2. Linear graph representation,
3. Direct acyclic graph (DAG) representation [9].

Classical GP uses tree-like individual representation,
which was good adopted for Lisp-programs. However,
for example, for microoperations sequences or C-
programs this form is not useful. For our purposes we
offer to use second form – linear graph individual
representation, because it is well applicable for
representing individuals as microoperations sequence of
variable length [10]. Note that all operations are executed
on two operands – variables and constants, which form
terminal symbols set. In this approach any operator is
encoded with four-dimensional vector consisting of
operation type and operands pointers.

Fig.2. Microprograms crossover

Such kind of individual representation allows effective

implementation of program recombination and their
interpretation. In this case the tournament selection and
two-point crossover are used. Here, two points are
selected and parents are exchanged with the segment
between selected points (Fig.2). Mutation is implemented

153

as random replacement of operation type or operands
values from given range.

5. Experimental results

The suggested algorithm was implemented in C++

language in the C++ Builder environment. The following
main parameters of the GA-algorithm were empirically
defined: values of crossover and mutation probabilities

8.0=cP and 01.0=mP , coefficients 5.0=α and
5.0=∆ for functional crossover and mutation

respectively, and the number of individuals in population
was 100. Under these conditions the dependence of test
fitness-function (fault coverage) from generations number
was investigated. The experimental data in Fig. 6 show
that fitness-function value is stabilized quickly enough.
Thus, the boundary value of GA generations number is
chosen equal to 40.

The results of the experiments to show the dependence
of test fault coverage and test length on the operand bit
capacity are shown in Fig.3. Average results of 10
experiments are cited.

In order to evaluate the actual structural level fault
coverage that can be achieved by the proposed functional
BIST scheme, a case study with a microprogrammed
datapath of a 32-bit floating point divisor was carried out.
The combinational part of the datapath contains three 32-
bit registers (dividend, divisor and quotient), a 5-bit
counter, and a combinational ALU, which has 105 inputs,
71 outputs consisting of 513 gates and 2382 stuck-at
faults, respectively.

Table 1 shows the experimental results obtained on
that example. The experiments showed that seven
operands were necessary to reach the maximum fault
coverage of 89.8 per cent that could be achievable using
the proposed BIST scheme. Higher fault coverage was
not reachable because of a number of functionally
untestable faults. A full-scan scheme would have covered
those. This test of 7 operands takes 759 clock cycles to
run. Since only the operands have to be saved to external
or internal tester, the test compression rate achieved by
the scheme is more than 100.
Table 1. Stuck-at fault coverage for the FBIST scheme

k operand1 operand2 result Nk N FC,
%

1 0.7345 0.7659 0.9590 108 108 66.8
2 0.6943 0.7234 0.9598 105 213 76.7
3 0.4320 0.8569 0.5041 113 326 83.3
4 0.1964 0.2098 0.9361 108 434 85.5
5 0.4679 0.4987 0.9382 110 544 88.5
6 0.4567 0.4678 0.9763 104 648 88.9
7 0.9234 0.9546 0.9673 111 759 89.8
… … … … … … 89.8

0,66
0,67
0,68
0,69
0,7
0,71
0,72

8 16 24 32

Operand bit capacity

Fa
ul

t c
ov

er
ag

e

a)

0
2
4
6
8
10

8 16 24 32

Operand bit capacity

Te
st

 le
ng

th

b)

Fig.4. Dependence of fault coverage and test length from
operand bit capacity.

6. Conclusions and future work
The main goal of the proposed method is to generate

as short as possible functional test to reduce the amount
of input data for embedded functional BIST. The test
generation for 32-bit multiplier with considered approach,
shows that functional tests with 70% coverage relatively
to primary input bits inversions were generated in a very
low run time. We showed that the proposed functional
BIST scheme allows to cover about 90 % of stuck at
faults with a test data compression ratio of two orders of
magnitude.

While experimental results were carried out on
sequential multiplier and division algorithms, the
proposed approach is open and applicable to any
sequential arithmetic algorithm. The final fault coverage
of the BIST can be increased to 100% with the test point
insertion by path tracing method [11].

Fig.3. Growth of fitness-function value
depending on number of generations

0
0,2
0,4
0,6
0,8

1 10 19 28 37 46 55 64 73 82 91 100

Generation

Fi
tn

es
s

154

Acknowledgements. This work has been supported by
EU V Framework projects REASON and EVIKINGS, as
well as by Technology Development Center ELIKO and
Estonian Science Foundation grants 5649, 5910 and
5637.

References
[1] The International Technology Roadmap for

Semiconductors, 2001 edition. International
Sematech, Austin, Texas, 2001.

[2] R. Leckie. The Test Technology Roadmap.
Semiconductor Fabtech – 8th edition, pp. 309-314.

[3] J. Rajski, J. Tyszer, Arithmetic Built-in Self-test for
Embedded Systems, Pearson Professional Education,
Nov. 1997, p. 256.

[4] R. Dorsch, H.-J. Wunderlich. Accumulator based
deterministic BIST, In Proc. Int. Test Conf., 18-23
Oct. 1998, pp. 412 – 421.

[5] R. Dorsch, H.-J. Wunderlich. Reusing scan chains
for test pattern decompression, In Proc. Int. Test
Conf., May 29 - Jun. 1, 2001, pp. 124 – 132.

[6] O. Novak, J. Nosek. Test pattern decompression
using a scan chain, Proc. IEEE International
Symposium on Defect and Fault Tolerance in VLSI
Systems, 24-26 Oct. 2001, pp. 110 – 115.

[7] D.E. Goldberg, Genetic Algorithms in Search,
Optimization & Machine Learning. Addison-Wesley
Publishing Company, Inc., 1989.

[8] Y.A. Skobtsov, D.E. Ivanov, V.Y.Skobtsov, R. Ubar
"Evolutionary approach to the functional test
generation for digital circuits". In Proc. Of the 9th
Biennial Baltic Electronics Conference, 2004, pp.
229-232.

[9] W. Banzhaf, P. Nordin, R. E. Keller, and F. D.
Francone. “Genetic Programming: An Introduction.”
Morgan Kaufmann, Inc., San Francisco, USA, 1998.

[10] W. Kantschik, W. Banzhaf, "Linear-Graph GP -- A
new GP Structure", EuroGP2002: 4 tn European
Conference on Genetic Programming, 2002, pp. 83-
92.

[11] N.A. Touba, E.J. McCluskey, "Test point insertion
based on path tracing". In Proc. of IEEE VLSI Test
Symposium, 1996, pp.2-8.

155

