
Distributed Fault Simulation and Genetic Test Generation of Digital Circuits

Skobtsov Y.A.1, El-Khatib A.I.1, Ivanov D.E.2
1Donetsk National Technical University,

2Institute of Applied Mathematics and Mechanics NAS of Ukraine
1skobtsov@kita.dgtu.donetsk.ua, 2ivanov@iamm.ac.donetsk.ua

Abstract

Fault simulation is on of the most highly compute-

intensive task in the technical diagnostics. One of the
ways to speed-up this process is a parallelization on
the calculation cluster. In this paper a distributed
algorithm for fault simulation of digital circuits is
presented. It is based on the well-known «master-
slave» approach in which one processor is nominating
as a master and rules all calculation on the all slave’s
processors. To reach the maximal utilization of the
processors in the cluster it is used schema with static
fault list partitioning.

1. Introduction

One of the central tasks of technical diagnostics – is

the problem of high-speed fault simulation of digital
circuits. This type of simulation is used for determine
the diagnostically properties of test sequences. In this
time there are several high-speed algorithms of this
fault simulation [1, 2, 3]. All these algorithms for
speed-up of process of simulation are used the strategy
of dynamical fault list compressing. In this case fault is
removed from fault-list in that simulation time in
which it was detected and no simulation will perform
for this fault on the residuary input patterns.

But the increase of the developed circuit’s size
keeps the task of fault simulation one of the most
actual. One of the possible ways to speed-up of this
process is generalization of the existing algorithms to
work on the multi processor systems (clusters). This
idea can be implemented in two principal different
ways. The first one is consist in the assignment one of
the processors as a server, which controls the fault list.
This processor (named further also as master) sends for
other processors (named slaves) some part of fault list
and receives the results of the simulation. The goal of
the slave processor is to receive circuit description in
some format, also receive fault list, which send by
master, and send the simulation results back to the
master. This type of algorithms of distributed
simulation is proposed in [4, 5], which allows to speed
up the fault simulation up to six times on the eight-

processors cluster. It is necessary to note that for small
circuits the speeding-up is near the one.

It is also was made attempt to construct the
distributed algorithms of simulation for clusters with
common memory. In these algorithms the simulation is
performed by cutting the circuit on the part [6, 7]. But
proposed algorithms do not allow the uniform busy of
processors in the cluster. Also it is know the papers in
which the dependence of interconnection effectiveness
is studied of data transmission among the master and
slave processors basing on the circuit description [8].

The algorithm that proposed in this paper is based
on the fault list partitioning principle and on the
delegation for one processor the master functions. As
an interchange base it is used TCP/IP protocol. This
fact allows include in the calculation cluster the
computers, which base on the same or different
calculation platforms, for example Windows and Unix.
Thus the algorithm of distributed simulation is divided
into two independent algorithms. A first algorithm is
works on the main processor, named master, and
realizes common management function and file input-
output. The second algorithm directly executes the
fault simulation and works on several processors,
which are accessible in the cluster. Each slave
processor executes simulation only on some part of full
list of faults. Master processor performs the
partitioning of full list of faults before the simulation
starts.

This paper has the next structure. In the
introduction the actuality is substantiate. In the second
section we shortly describe an algorithm of parallel
fault simulation that developed by authors early. This
algorithm is used on the slaves’ processors with
minimum changes. In the third section we describe the
algorithm of distributed fault simulation for
multiprocessor calculation system with distributed
memory. In the fourth section we describe the
calculation experiments and corresponding
experimental data and make some remarks about the
effectiveness of using of proposed algorithm while
working with huge digital circuits. In the next part op
paper we describe the way in which distributed genetic
test generation algorithm may be built. In the next
section we make the conclusions and outline the

mailto:skobtsov@kita.dgtu.donetsk.ua
mailto:ivanov@iamm.ac.donetsk.ua

further development.

2. Parallel Fault Simulation.

On the each element of the cluster, that is used for
simulation as a slave, is realized the parallel fault
simulation algorithm with dynamical fault list
compression [3]. It shows good experimental
characteristic (time of simulation) while working with
ISCAS-89 benchmark set [9]. This algorithm was
slightly changed in parts which works with input of
circuit description, fault list and test sequence. In new
version this input is realized not via file I/O but by
socket technology, allowing loading the necessary data
via local or global networks built on TCP/IP protocol.
Also it is necessary to notice that this allows construct
the calculation cluster for given algorithm on the
computers that works on the operating systems of
different type.

Figure 2. Data flow diagram for distributed
fault simulation

Now we shortly describe the algorithm of slave
processor. It is destination for fault simulation of single
constant (const0 and const1) faults for combinational
and sequential synchronous digital circuits. For
simulation it is used 3-valued alphabet E3={0,1,u}.
Parallel by faults simulation is performed in
corresponding with algorithm, which pseudo-code is
given on Fig.1.

fault_simulation(circuit,test,fault_list)
{
 while (still_have_input_patterns)
 {
 change_input_pattern();
 simulation_of_fault-free_circuit();
 while(got_faults_for_input_pattern)
 {
 make_fault_group();
 restote_values_for_flip-flops()
 fault_injection_on_primary
 _inputs();
 simulation_of_faulty_circuit_on
 _single_pattern();
 fault_injection_on_primary
 _outputs();
 check_faults_testability();
 store_values_of_flip-flops();
 }
 }
 save_undetected_faults();
}

Figure 1. Parallel fault simulation algorithm.

Mark the several key features of this algorithm that
essential influence on speed of fault simulation:
- dynamical fault list compression: in this algorithm

the fault is removed from fault list at the same
modeling time it was detect; in further no
simulation for this fault is performed;

- static fault ordering: in this algorithm an

preliminary sorting of faults “from primary output
in depth” is used, that allows include in the same
group the faults that cause the same events in fault
simulation;

- functional fault injection: this allows to avoid of
unnecessary checks for fault injection for all ports
of gates; for gates with fault(s) in this modeling
time the sham fault gate is constructed that permits
executes the fault injection check only for this type
of gates;

- fault flip-flop state saving: for each input pattern
we store flip-flop state only in that case if it’s
different from the same flip-flop state for fault-free
circuit.

3. Distributed Fault Simulation

The algorithm of distributed parallel fault
simulation is belongs to the class of algorithms, which
for speed-up the simulation process partitioning full
fault list into several small lists. The master makes
only supervising functions: loads the circuit
description, sends this description and corresponding
short list of faults for each slave processors, receives
the results of simulation from slaves and makes
common report.

Each of available clients executes parallel fault
simulation on the received data and returns list of
undetected faults to master. Now we describe in detail
work both master and slave algorithms.

Data flow diagram that describes interconnection
among master processor and slaves one is shown on
Fig.2. Data transmission in this algorithm is organized
in two levels. Master processor for bringing circuits
description, full fault list and input sequence uses file
input/output. In contrast all data exchange among
master and slaves processors is performed with TCP/IP
sockets technology. In realization of the proposed
algorithm as an interconnection environment was used
100Mbit local network.

The pseudo-code of master algorithm is given on
Fig.3. Server starts work from loading circuit
description, full list of faults and input test sequence.
These procedures are using file I/O. After this socket-
master starts and it search via socket for available
slaves. If this done successfully then full fault list is
partitioned proportionally by number of slave
processors. Further for each found slave performs next
operations. The description of circuit, part of full list of
faults and full test sequence are sent to the slave(s).
After this master process is turn into waiting state.
Next, master receives list of undetected faults and
makes complete simulation report: quality of test
sequence, simulation time on each slave processors,
time for data exchange with every slaves and full time
of simulation.

slave_process_fault_simulation()
{
 search_of_master_process();
 if(master_was_found)
 {
 receive_circuit_description();
 receive_short_fault_list();
 parallel_fault_simulation()
 send_list_of_undetected_faults();
 }
}

Figure 3. Slave process algorithm

The pseudocode of slave process is given at fig.4.
After process start the search of master process takes
place. If server is found then client go to data waiting
phase. From server client receives the following data:
the circuit description, the brief fault list and input
sequence. After receiving the necessary data the fault
simulation is fulfilled for necessary fault subset. This
process is implemented in function
“parallel_fault_simulation()”. Note that this process is
executed accordingly algorithm that is represented in
section II. After fault simulation finishing the slave
transmits to master the following data: list of
undetected faults, work time and information exchange
time. After done this client go the waiting phase and
ready to receiving the new data for fault simulation.

distributed_simulation(circuit,test)
{
 number_of_slaves = search_of_slaves();
 if(number_of_slaves != 0)
 {
 input_circuit_description();
 input_test();
 make_full_fault_list();
 partitioning_fault_list(number_
 of_slaves);
 for(i=0;i<number_of_slaves;i++)
 {

 send_to_client_i_circuit
 _description ();
 send_to_client_i_part_
 of_fault_list();
 send_to_client_i_test_sequence();
 }
 for(i=0;i<number_of_slaves;i++)
 {
 receive_list_of_undetected
 _faults();
 }
 make_report();
 }
}
Figure 4. Master process algorithm for distributed

simulation

4. Realization and Experimental Data

The proposed algorithm of distributed fault
simulation is implemented in C++ Builder software
environment using blocking socket technology. This
technology assumes that calculation process in points
of information exchange must be stopped until the
transmitting side sends the necessary data.

The server process program listing is about of 1300
statements C++ and based on algorithm from [3] with
insignificant modification. In particular the file input-
output of circuit description is changed to network
exchange with using of blocking socket technology.
The report transfer to computer cluster is implemented
with using the same technology.

For test operation it used the computer cluster
based on local network 100Mbit/sec of the usual
educational class. The cluster components have
following characteristics: Intel Celeron Processor
2000Mhz, 256MB RAM, operational system Windows
XP.

For the purpose of research for the effective
application of the proposed algorithm during computer
experiment the following time characteristics were
evaluated: the total time of the simulation process, the
number of events during the fault and fault-free, and
the total events number.

For comparison we choose the characteristics of
algorithm described in [3] on the personal computer
with corresponding configuration.

The experimental data for medium-size circuit
S9234 are given in table 1. This circuit has the
following characteristics: input number –19, output
number –22, D-trigger number – 228, invertors number
- 3570, the other types gate number –2027, the total
element number – 5866.

In table 1 the computer speeding-up of
multiprocessor realization is shown in brackets in
comparison with single-processor realization. The
analysis shows that event number during fault
simulation practically does not increase (factor ≈1). It

says about zero-redundant fault simulation in proposed
algorithm. On the other hand the event number during
good simulation increases with factor near processors
number from 1.0 to 7.92 with processor-client rise
from 1 to 8. It is due to need of good simulation at all
processor-clients. The total events number was
increased unessential: factor practically does not
change from 1.00 to 1.02 with increasing processors
number from 1 to 8. It is explained by fact that event
number during good simulation is less 1% of total
events number.

At Fig.5 the speed-up of simulation is represented
with processor number increasing from 1 to 8 for
S9234 circuit.

The shown experimental data validate the
effectiveness of proposed method for simulation
parallelization. However the completely linear rise of
speeding-up is unachievable. The basic obstacle is
need of multiplex sending of circuit description and
redundant good simulation at each client processor.

5. Distributed GA.

Inherent GA "internal" parallelism and possibility

of the distributed calculations promote to development
of parallel GA (PGA). The first papers in this direction
appeared in 60-th years, but only in 80-th years, when
accessible facilities of parallel realization were
developed, the PGA researches adopted systematic
mass character and practical orientation. The great
number of models and realizations are developed in
this direction, some of which are represented below
[2].

Parallelism of GA gives the following advantages:
1) Search of alternative decisions of the same

problem;
2) Parallel search from different points in decision

space;
3) Good realization is assumed as islands or cellular

structure;
4) Large efficiency of search even in the case of

realization not on parallel calculation structures;
5) Good compatibility with other evolutional and

classic procedures of search;
6) Substantial increase of speed execution on the

multi-possessor systems.
Further we shall consider the modern main methods

of the PGA realization. Most known is global
parallelism, which represented on Fig.1.a).

This model is based on simple (classic) GA in
which the calculations are performed in parallel.

This approach is faster, than classic GA, which can
be executed sequentially, and does not usually require
balance on the load as on different processors more
frequent than all the values of fitness-functions for
different individuals (strings) are calculated (having
about equal computation complexity). The exception
makes the genetic programming, where different
individuals can strongly differ on the complication
(treelike or graph- structures).

This model often named "master-slave". Many
researchers use the pool of processors for the
increasing of speed of algorithm execution. At the
same time the independent program passages of
algorithm at different processors are executed
essentially quick than at one processor. It must be
noted, that in this case there is no co-operation between
different passes of algorithm. It is extraordinarily
simple method of implementation of simultaneous
work (if it is possible) and it can be very useful. For
example, it can be used for the solving of the same task
with different initial conditions. By virtue of the
probabilistic nature GA allows effectively using this
method. At the same time we have minimum program
changes, but advantages can be considerable.

In Fig.7.b) also represented an extraordinarily
popular "model of islands" (coarse grain), where great
number of sub algorithms simultaneously work in

Table 1. Experimental data for circuit S9234.ben
multy-processor realization

(number of processors) Description

single-processor
realization 1 2 3 4 6 8

test length 1000 1000
fault simulation time,
sec. 330 336

(0,98)
194
(1,7)

138
(2,39)

107
(3,08)

86
(3,83)

79
(4,17)

number of events, mill. 441,51 440,05
(1,00)

441,81
(1,00)

443,21
(1,00)

443,78
(1.01)

447,79
(1,01)

449,93
(1,02)

number of events of
fault-free simulation,
mill.

0,48 0,48
(1,00)

0,95
(1,98)

1,42
(2,96)

1,90
(3,96)

2,85
(5,93)

3,80
(7,92)

number of events of
fault simulation,
mill.

441,03 439,58
(1,00)

440,86
(1,00)

441,79
(1,00)

441,88
(1,00)

444,94
(1,01)

446,13
(1,01)

parallel, exchanging in the search process by some
individuals. This model assumes direct realization on
the computing systems with MIMD architecture. Thus
every “island” corresponds to its processor.

In cellular GA (fine grain), shown on Fig.7.c,
parallelism usually will be realized on the computer
systems with SIMD architecture, where every
processor represents subpopulation (from one
individual). Although another papers are known, where
authors use single possessor computers and systems
with MIMD-architecture.

6. Parallel Genetic Algorithm of Test
Generation

In this paper for pararallelism of GA we use a

model «master - slave», because it requires the small
changes in the existent version of software realizing
GA of test generations and gives quite good results.

In this approach every processor has its own copy
of population. The cost of calculation of values of
fitness-functions (witch use the logical simulation) is
evenly distributed on all processors. For all processors
the same list of faults is used. Therefore for n
individuals and P processors we take to every
processor the individuals. The values of fitness-
functions are calculated by the slave processor and are
sent to one selected processor (master), which collects
all information and passes it to all processors. Every
processor has information about the values of fitness-
function for all individuals and can design next
generation on this basis.

nP /

So the processor-master executes central part
(kernel) of test generation, while the logical simulation
(good and fault) of digital circuits will be realized on
processors–slaves. With point of view of cost
calculation the fault simulation is most critical.
Different methods of organization of the distributed
fault simulation, which are known, mainly based on
breaking-up: 1) circuits on sub circuits; 2) test
sequence on a subsequence. We will take combined
approach combining these two methods.

On the first and second stages the generated input
sequences are distributed between working processors.
On the first stage every working processor is loaded by
the generation of one subsequence. For balance the list
of undetected faults is broken up on approximately

identical subgroups.
At the end of each of three stages the points of

synchronization are placed. When a processor - master
arrives at these points, he passes to the wait mode,
while all working processors will not make off the
tasks, that guarantees global correctness of algorithm.
Thus work between a processor-master and workers is
distributed as follows.

a) b) c)

Figure 7. Different realization of parallel
GA

Processor-master:
- Performs all input-output operations with an

user and file system: it reads circuit description
and fault list, then, it writes the generated input
test sequence;

- Initially spans «slave» processes on available
procedures;

- Distributes the copies (in internal form) of
circuits and fault lists to every working
processor;

- Organizes the control process of test generation:
as soon as input sequence has to be fault
simulated, it sends the proper message fop
activating of working processors; when working
processors finish their work, processor-master
receives results and accordingly changes global
data structures (general fault list, values of
fitness-functions for individuals and, etc.).

A working processor keeps the local copy of circuit
(in internal format) and fault list. Every «worker» takes
an input sequence from the «master» and by the logical
simulation determines the faults, which are detected by
this sequence; also it calculates the values of fitness-
function for individuals. It sends the got results to the
master and wait next job. Because the population size
is much larger than the number of processors, good
balance in the load of processors is achieved. For every
working processor the change of local fault list with
the detected and undetected faults from other working
processors requires enough a lot of resources and it is
critical.

Final results (test input sequences and fault
coverage) are near to those, which are got on the single
possessor computer system with the use of a similar
algorithm. Quality of problem solution (fault coverage
of test sequence) is not here lost and in most cases got
better, and time of test generation grows short
substantially.

CONCLUSIONS

In this paper a problem of distributed genetic test

generation and fault simulation is studied. The possible
way of organization of this process is described.
Proposed by authors for solving these tasks algorithms
that based on the scheme «master-slave» are described.

7. References

1. Niermann T.M., Cheng W.-T., Patel J.H. PROOFS: A

Fast, Memory-Efficient Sequential Circuits Fault
Simulator // IEEE Trans. CAD. – 1992.– P.198-207.

2. Kung C.P., Lin C.S. HyHope: A Fast Fault Simulator
with Efficient Simulation of Hypertrophic Faults // Proc.
of International Test Conference. - 1994. - P.714-718.

3. Ivanov D.E., Skobtsov Yu.A., Parallel Fault Simulation
for sequential circuits // Artificial Intelligence. – 1999. -
№1. – С.44-50.

4. P.A. Duba, R.K. Roy, J.A. Abraham and W.A. Rogers,
“Fault simulation in a distributed environment”, in
Proceedings of the 25th ACM/IEEE Design Automation
Conference, pp.686-691, June 1988.

5. T. Marcas, M. Royals and N. Kanopoulos, “On
distributed fault simulation”, IEEE Computer, vol. 7, pp.
40-52, Jan. 1990.

6. S. Patil, P. Banerjee and J. Patel, “Parallel test
generation for sequential circuits on general purpose

multiprocessors”, in Proceedings of the 28th
ACM/IEEE Design Automation Conference, (San
Francisco, CA), June 1991.

7. S. Ghost, “NODIFS: a novel, distributed circuit
partitioning based algorithm for fault simulation of
combinational an sequential digital design on loosely
coupled parallel processors”, tech. rep., LEMS, Division
of Engineering, Brown University, Providence, RI,
1991.

8. Ladyzhensky Yu.V., Popov Yu.V. A Program system
for synchronization protocol investigation under
distributed logical simulation // Proc. of Donetsk State
Technical. University, Series “Computers and
Automation”.- 2004.- Vol №74.- С.201-209.

9. Brgles F., Bryan D., Kozminski K. Combinational
profiles of sequential benchmark circuits // International
symposium of circuits and systems, ISCAS-89. – 1989.
– P.1929-1934.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

1 2 3 4 5 6 7 8

number of clients

sp
ee

d-
up

 o
f s

im
ul

at
io

n

Figure 5. Speed-up of fault simulation for s35938 benchmark

circuit depending on the number of the client processors

0,00
1,00
2,00
3,00
4,00
5,00
6,00
7,00
8,00

s9234 s13207 s15850 s35938 s38417 s38584

circuit

sp
ee

d-
up

Figure 6. Speed-up of fault simulation for larges ISCAS-89
circuits with 8 clients realization.

	Distributed Fault Simulation and Genetic Test Generation of
	Abstract
	1. Introduction
	2. Parallel Fault Simulation.
	3. Distributed Fault Simulation
	4. Realization and Experimental Data
	5. Distributed GA.
	6. Parallel Genetic Algorithm of Test Generation

	Conclusions
	7. References

