
Distributed Genetic Algorithm
of Test Generation For Digital Circuits

Skobtsov Y.A., El-Khatib A.I., Ivanov D.E.

Abstract – The distributed genetic algorithms are considered for
problem of test generation. The different forms of parallelization of
genetic algorithms are investigated for test generation.

Keywords – genenic algorithms, distributed calculations, test
generation, fault simulation, digital circuits.

a) b) c)

Fig.1 Different realization of parallel GA
I .INTRODUCTION

Genetic algorithms (GA) are successfully used for the test

generation of digital circuits [1] (from 90th) along with the
deterministic structural methods. Experience shows that genetic
algorithms give the best results for the circuits, oriented to the
data processing, while the deterministic methods more
successfully work for sequential circuits with difficult control
logic. In this paper represented parallel GA, which allow
extending an effective application GA for this problem.

II. DISTRIBUTED GA.

Inherent GA "internal" parallelism and possibility of the

distributed calculations promote to development of parallel GA
(PGA). The first papers in this direction appeared in 60-th years,
but only in 80-th years, when accessible facilities of parallel
realization were developed, the PGA researches adopted
systematic mass character and practical orientation. The great
number of models and realizations are developed in this
direction, some of which are represented below [2].

Parallelism of GA gives the following advantages:
1) Search of alternative decisions of the same problem;
2) Parallel search from different points in decision space;
3) Good realization is assumed as islands or cellular structure;
4) Large efficiency of search even in the case of realization not

on parallel calculable structures;
5) Good compatibility with other evolutional and classic

procedures of search;
6) Substantial increase of speed execution on the multi-

possessor systems.
Further we shall consider the modern main methods of the

PGA realization. Most known is global parallelism which
represented on Fig.1.a).

This model is based on simple (classic) GA in which the
calculations are performed in parallel.

Skobtsov Y.A., El-Khatib A.I. – Donetsk National Technical
University, Artema Str., 58, Donetsk, 83000, UKRAINE, E-mail:
skobtsov@kita.dgtu.donetsk.ua
Ivanov D.E. – Institute of Applied Mathematics and Mechanics of NAS
of Ukraine, R. Luxemburg Str., 74, Donetsk, 83114, UKRAINE, E-
mail: ivanov@iamm.ac.donetsk.ua

This approach is faster, than classic GA, which can be
executed sequentially, and does not usually require balance
on the load as on different processors more frequent than
all the values of fitness-functions for different individuals
(strings) are calculated (having about equal computation
complexity). The exception makes the genetic
programming, where different individuals can strongly
differ on the complication (treelike or graph- structures).

This model often named "master-slave". Many
researchers use the pool of processors for the increase of
speed execution of algorithm. At the same time the
independent program passages of algorithm at different
processors are executed essentially quick than at one
processor. It must be noted, that in this case there is no co-
operation between different passes of algorithm. It is
extraordinarily simple method of implementation of
simultaneous work (if it is possible) and it can be very
useful. For example, it can be used for the decision of the
same task with different initial conditions. By virtue of the
probabilistic nature GA allow effectively using this
method. At the same time we have minimum program
changes, but advantages can be considerable.

In Fig.1.b) also represented an extraordinarily popular
"model of islands" (coarse grain), where great number of
sub algorithms simultaneously work in parallel, exchanging
in the search process by some individuals. This model
assumes direct realization on the computing systems with
MIMD- architecture. Thus every “island” corresponds to its
processor.

In cellular GA (fine grain), shown on Fig.1.c,
parallelism usually will be realized on the computer
systems with SIMD-architecture, where every processor
represents subpopulation (from one individual). Although
another papers are known, where authors use single
possessor computers and systems with MIMD-architecture.

III. GENETIC ALGORITHM OF TEST GENERATION

The purpose of automatic test generation is construction
of input sequences of binary sets, which check up any
physical defect possible in the process of production (or)

mailto:skobtsov@kita.dgtu.donetsk.ua
mailto:ivanov@iamm.ac.donetsk.ua

exploitations of logical circuits. However there is the enormous
number of possible potential physical defects. Some class of
faults, which simulate the real physical defects, is usually
examined therefore. Thus, fault is the model of (one or a few)
physical defects. In practice more frequent all is examined by
single stack-at constant faults, test generation for which usually
gives satisfactory results (fault coverage) for real faults in the
circuits. In the case of necessity (low fault coverage), test can be
generated for other types of faults, such as shorts, a transistor is
constantly opened (short), delays of propagation of signals, etc.
It is known, that the test generation is a NP-difficult task, which
means that in worst case it is solved by enumeration of all
possibilities [1]. Therefore, in spite of the fact, that the great
number of serial structural methods of test generation are
developed, which for many circuits give good results (high fault
coverage), the algorithm parallelizations for the tests generation
were made an attempt [3,4].

a) horizontal crossover

During the test generation for digital circuits with application
of GA, as an individual can be used a test sequence (Fig.2a).
Population consists of the fixed number of test sequences,

possibly, different length (Fig.2b).
For the chosen encoding of individuals and populations the

following problem oriented genetic operators can be used [1]:
1) Crossover. Two types of operation will be realized (Fig.3):

vertical and horizontal crossover which are executed accordingly
with probabilities and vP vh PP −= 1 .

2) Mutation. Three types of this operator accordingly are used
with probabilities , and :

1mP
2mP

3mP
– Delete of one input vector from the by random chosen

position. Application of this operation allows to reduce
the length of the generated test sequence in that case,
when a remote vector does not worsen test properties of
sequence;

– Addition of one input vector in random position, that also
allows to extend the search area of decisions;

– Random replacement of bits in a test sequence.
Because the purpose of test generation is design of input

sequence, in which maximally differ the values of signals in fault
and good circuits, the quality of test sequence (fitness-function)
can be estimated as measure of difference of values of signals in

fault and good circuits. In the simplest case the programs of
logical simulation of good circuits are used for this
purpose, allowing estimating the values of signals on two
neighboring (in time) test patterns. On the basis dates of
good simulation the following fitness-functions are
developed:

b) vertical crossover

Fig.3 Operations of the horizontal and vertical
crossing GA

a) individuals b) populations

Fig.2 Encoding Of individuals and population in GA

),(),() 2211 fvfcfvfcf ∗,(vh += (2.1)

where - and is number of changes of signals on the
outputs of logical gates and triggers accordingly ().

1f 2f

12 cc >>
Fitness function for the sequence s determined as the

weighed sum of fitness-functions of separate input patterns:

),(),
length

1

fvhLf i

i

i

i ∗= ∑
=

=

(sH (2.2)

where s is the analyzed sequence; - vector from the
examined sequence,

iv
I - position of vector in a sequence,

- given fault, f 10 << L .

If test generation with mentioned fitness function is not
success, then the fault simulation programs are used. Here fitness
functions are based on the count of signal difference in good and
fault circuits and have approximately the same kind as well as in
the previous case.

IV. PARALLEL GENETIC ALGORITHM OF TEST
GENERATION

In this paper for pararallelism of GA we use a model «master -

slave», because it requires the small changes in the existent
version of software realizing GA of test generations and gives
quite good results.

In this approach every processor has its own copy of
population. The cost of calculation of values of fitness-functions
(witch use the logical simulation) are evenly distributed on all
processors. For all processors the same list of faults is used.
Therefore for n individuals and P processors we take to every
processor the individuals. The values of fitness-functions
are calculated by the slave processor and are sent to one selected
processor (master), which collects all information and passes it
to all processors. Every processor has information about the
values of fitness-function for all individuals and can design next
generation on this basis.

nP /

So the processor - master executes central part (kernel) of test
generation, while the logical simulation (good and fault) of
digital circuits will be realized on processors – slaves. With point
of view of cost calculation the fault simulation is most critical.
Different methods of organization of the distributed fault
simulation, which are known, mainly based on breaking-up: 1)
circuits on sub circuits; 2) test sequence on a subsequence. We
will take combined approach combining these two methods.

On the first and second stages the generated input sequences
are distributed between working processors. On the first stage
every working processor is loaded by the generation of one
subsequence. For balance the list of undetected faults is broken
up on approximately identical subgroups.

At the end of each of three stages the points of
synchronization are placed. When a processor - master arrives at
these points, he passes to the wait mode, while all working
processors will not make off the tasks, that guarantees global
correctness of algorithm. Thus work between a processor-muster
and workers is distributed as follows.

Processor - master :
- Performs all input-output operations with an user and file

system: it reads circuit description and fault list, then, it
writes the generated input test sequence;

- Initially spans «slave» processes on available procedures;
- Distributes the copies (internal form) of circuits and fault

lists to every working processor;
- Organizes the process control of test generation: as soon

as input sequence has to be fault simulated, it sends the
proper message fop activating of working processors;
when working processors finish their work, processor-
master receives results and accordingly changes global
data structures (general fault list, values of fitness-
functions for individuals and, etc.).

A working processor keeps the local copy o of circuit (in internal
format) and fault list. Every «worker» takes an input sequence

from the «master» and determines the faults are detected by
this sequence, by the logical simulation and calculates the
values of fitness-function for individuals. It sends the got
results to the master and wait next job. As the population
size is much larger than the number of processors, good
balance in the load of processors is achieved. For every
working processor the change of local fault list with the
detected and undetected faults from other working
processors requires enough a lot of resources and it is
critical.

Final results (test input sequences and fault coverage) are
near to those, that is got on the single possessor computer
system with the use of a similar algorithm. Quality of
decision (fault coverage test) is not here lost and is in most
cases got better, and time of test generation grows short
substantially.

V. DISTRIBUTED FAULT SIMULATION

Described above distributed genetic algorithm of test
generation mainly is based on the distributed fault
simulation one. Now we will shortly describe also this
approach.

Distributed fault simulation is organized in similar way
and also is based on the «master-slave» approach. One
processor here is selected as master and residuary processor
– as slaves. Exist several approaches to perform distributed
fault simulation: partitioning of circuit [5] and partitioning
of fault list [6]. Our algorithm is based on the fault list
partitioning.

Data flow chart for this scheme of computational process
is showed on fig.4.

Every slave processors performs fault simulation on the
data received from the master: circuit description and short
fault list. The pseudocode of this process is given below.

slave_process_fault_simulation()
{
 search_of_master_process();
 if(master_was_found)
 {
 receive_circuit_description();
 receive_short_fault_list();
 parallel_fault_simulation()
 send_list_of_undetected_faults();
 }
}

Fig.4 Slave process algorithm

The kernel of this process is a procedure

«parallel_fault_simulation», which is a regular fault
simulator that used in one machine realization. In our case
we used home built PROOFS-based fault simulator,
described in [7]. Mark the main advantages of this
algorithm that makes it very successful: 1) dynamic fault-
list processing: detected fault is eliminated from fault list in
the same time it detected, no simulation performs for this
fault further; 2) fault sorting which allows include in one
group the faults that cause the same simulation events; 3)

the technique of functional fault injection.
Common data flow chart diagram that describes interaction

among master and slaves processes is shown on fig.5.
It is necessary to notice that master process performs two

types of exchange operation. File input/output needs to obtain
circuit description and test sequence to be simulated. In contrast
all data interchange among master and slave process is
performed via TCP/IP sockets. This fact enables to construct
calculation cluster on the common used computers. Authors used
as such cluster 100Mbit local intranet.

As can see from data flow chart diagram master processor
don’t performs any simulation but organizes the calculation:

- Reads the circuit description to be simulated and input
test sequence;

- Sends this description and test sequence for all client
processors;

- Receives from slaves fault simulation results and makes
common report.

Algorithm for master process for distributed simulation is
given below.

distributed_simulation(circuit,test)
{
 number_of_slaves = search_of_slaves();
 if(number_of_slaves != 0)
 {
 input_circuit_description();
 input_test();
 make_full_fault_list();
 partiting_the_fault_list(number_of_slaves);
 for(i=0 ; i< number_of_slaves ; i++)
 {
 send_to_client_i_circuit_description ();
 send_to_client_i_part_of_fault_list();
 send_to_client_i_test_sequence();
 }
 for(i=0 ; i< number_of_slaves ; i++)
 {
 receive_list_of_undetected_faults();
 }
 make_report();
 }
}

Fig.6 Master process algorithm for distributed simulation

Fig.5 Data flow diagram for distributed
fault simulation

Master process starts with search procedure of
calculation clients. Done this it partition full fault list into
several short one pro rata found clients. Further in cycle it
makes the same work with all clients: sends circuit
description in internal format; sends test sequence and
corresponding short fault list. After this master passed in
state of waiting data from clients. At the next step master
receives the results of fault simulation from each client and
makes general reports: fault coverage, common simulation
time, time of simulation on every clients.

Proposed algorithm for distributed fault simulation was
implemented on Windows platform into C++ Builder
environment. As a core algorithm for client processors was
brought slightly modified home-developed PROOFS-based
algorithm. The modification is concern only TCP/IP
sockets interaction with development environment: circuit
input, receiving/sending fault list, obtaining test input
sequence. Master process algorithm was implemented
anew. All experiments were passed on the 100 Mbit/sec
local intranet. As an input sequence was given randomly
generated sequences, which consist of 1000 patterns.

At first we study the speed-up of simulation process
depending on the number of the client processors. We give
these experimental data for one of the large ISCAS-89
circuit – s35938 (fig.7). Secondly, we obtain experimental
data for six largest circuits with eight clients (fig.8).

The distributed fault simulation algorithm constructed in
described way enable a high parallelization of simulation
process. But it is necessary to notice for both experiments it
is impossibly to achieve linear speed-up of simulation time.
This fact relates with the necessity for master make some
irredundant job for all client processors: sending circuit
description, input sequence and fault list.

CONCLUSIONS

In this paper a problem of distributed genetic test
generation and fault simulation is studied. The possible
way of organization of this process is described. Proposed
by authors for solving these tasks algorithms that based on
the scheme «master-slave» are described. Experimental
data for distributed simulation algorithm for large ISCAS-
89 circuits are given.

REFERENCES

1. Y.A.Skobtsov, V.Y.Skobtsov, D.E.Ivanov

Evolutionary approach to the test pattern generation for
the sequential circuits // Radioelectronics and
informatics.- 2003, №3.- pages .46-51.

2. Skobtsov Yu.A., El-Khatib A.I. Parallel genetic
algorithm // Proc. of Donetsk State Technical
University, Series «Computers and automatic»,
vol.90.- Donetsk, DSTU Press.- 2005.- pp.137-144

3. D.Krishnaswamy, M.Hsiao, V.Saxena, E.M.Rudnick,
J.P.Patel. Parallel genetic algorithms for simulation-
based sequential circuit test generation // IEEE VLSI

Design Conference, 1997.- pp.475-481.
4. F.Corno, P.Prinetto, M.Rebaudengo, M.Sonza Reorda,

E.Veiluva. Aportable ATPG tool for parallel and distributed
systems // Proc VLSI Test Symp 1996.-pp.29-34.

5. S. Patil, P. Banerjee and J. Patel, “Parallel test generation
for sequential circuits on general purpose multiprocessors”,
in Proceedings of the 28th ACM/IEEE Design Automation

Conference, (San Francisco, CA), June 1991.
6. T. Marcas, M. Royals and N. Kanopoulos, “On

distributed fault simulation”, IEEE Computer, vol. 7,
pp. 40-52, Jan. 1990.

7. Ivanov D.E., Skobtsov Yu.A. Parallel fault simulation
for sequential circuits // Artificial intelligence.-
Donetsk, DIAI Press.- 1991, №1.- pp.44-50.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

1 2 3 4 5 6 7 8

number of clients

sp
ee

d-
up

 o
f s

im
ul

at
io

n

Fig.7 Speed-up of fault simulation for s35938 benchmark circuit depending on the

number of the client processors

0,00
1,00
2,00
3,00
4,00
5,00
6,00
7,00
8,00

s9234 s13207 s15850 s35938 s38417 s38584

circuit

sp
ee

d-
up

 Fig.8 Speed-up of fault simulation for larges ISCAS-89 circuits with 8 clients
realization.

	of Test Generation For Digital Circuits
	I .Introduction
	II. Distributed GA.
	III. Genetic Algorithm of Test Generation
	Conclusions
	References

