ПРЕДВАРИТЕЛЬНАЯ ОЦЕНКА ОТНОШЕНИЯ СИГНАЛ-ШУМ ПРИНИМАЕМОГО СИГНАЛА

Иванов К.С., Алаев А.Н.

Розглянуто завдання оцінювання відношення сигнал-перешкода в приймальних пристроях систем передавання інформації. Запропонований один із варіантів розв'язання, заснований на оцінюванні відносної частоти появи аномальних помилок у прийнятому сигналі. Описані принципи і наведені співвідношення, що дозволяють стверджувати про існування однозначної відповідності між відношенням сигнал-перешкода та числом аномальних помилок в одинию часу.

Рассмотрена задача оценки отношения сигнал-шум в приемных устройствах систем передачи информации. Предложен вариант решения, основанный на оценке относительной частоты появления аномальных ошибок в принимаемом сигнале. Описаны принципы и выведены соотношения, позволяющие утверждать о существовании однозначного соответствия между отношением сигнал-шум и числом аномальных ошибок в единицу времени.

В системах передачи сообщений, системах спутниковой связи, системах спутникового телевидения, пассивной радиолокации, системах адаптивного приема актуальна задача предварительной оценки отношения сигнал-шум принимаемого сигнала.

Одним из возможных решений является метод, основанный на оценке относительной частоты появления аномальных ошибок в аддитивной смеси сигнала и шума.

Одним из первых явления порога и аномальных ошибок исследовал Стефан Райс [2]. Занимаясь изучением поведения системы ЧМ в пороговой области, он пришел к выводу, что вероятность появления аномальных ошибок зависит от отношения сигнал-шум. Для облегчения понимания процесса предположим, что несущая немодулирована. Ее можно представить как вращающийся вектор – фазор (рис. 1).

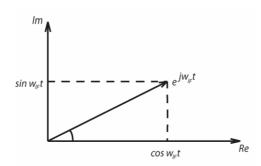


Рисунок 1 – Вектор сигнала

Частота сигнала есть просто скорость вращения, как показано на рис. 2.

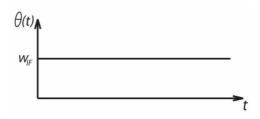


Рисунок 2 – Мгновенная частота

Вектор шума складывается с сигнальным вектором, как показано на рис. 3.

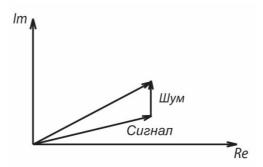


Рисунок 3 – векторы сигнала и шума

Поскольку сигнальный вектор вращается с постоянной скоростью, можно просто отображать лишь относительное вращение результирующего вектора относительно сигнального вектора. Это показано на рис. 4.

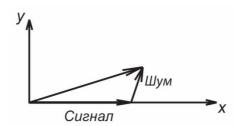


Рисунок 4 – Вращающаяся координатная система (несущая исключена)

Когда вектор шума мал, как показано на рис. 5 он вызывает незначительные флуктуации мгновенной частоты, как показано на рис. 6.

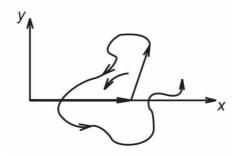


Рисунок 5 – Малый уровень шума (не наблюдаются траектории конца результирующего вектора, охватывающих начало координат)

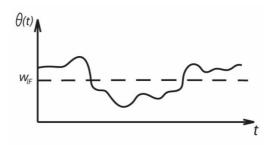


Рисунок 6 – Мгновенная частота

Если вектор шума велик, то результирующий вектор принимаемой смеси сигнала и шума описывает своим концом траекторию вокруг начала координат, как показано на рис. 7.

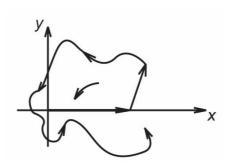


Рисунок 7 — Большой уровень шума (наблюдаются траектории конца результирующего вектора, охватывающие начало координат)

Это вызывает фазовую ошибку величиной 2π (перескок на один период или цикл). Если такое движение совершается быстро, то его можно приближенно считать скачком фазы, который ведет к появлению кратковременного импульса мгновенной частоты, как показано на рис. 8.

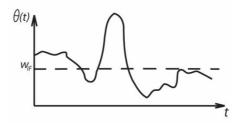


Рисунок 8 – Мгновенная частота

Это явление называют аномальной ошибкой. Колебание этого вида подается на вход фильтра нижних частот. Его можно рассматривать как сумму двух компонент – импульсной последовательности, обусловленной тем, что конец результирующего вектора описывает траектории вокруг начала координат, и флуктуационного шума, который можно исследовать методами линейного анализа. Компонента перескоков фазы обладает равномерным спектром с плотностью $(2\pi)^2 f_s$, где f_s — математическое ожидание числа перескоков в секунду (средняя интенсивность перескоков). Райс [2] вывел аналитическое выражение для этой величины, имеющее вид:

$$f_s = r \cdot \operatorname{erfc}\left(\left(\frac{S_N}{N}\right)_{IF}^{\frac{1}{2}}\right)$$
 (1)

В этом выражении $(S/N)_{IF}$ - отношение сигнал/шум на выходе фильтра Π Ч, *erfc* – дополнительная функция ошибок:

$$\operatorname{erfc} x = \mathbf{1} - \operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$
 (2)

r — радиус гирации фильтра:

$$r = \left(\frac{\int_{0}^{\infty} (f - f_{IF})^{2} H_{IF}(f) df}{\int_{0}^{\infty} 2H_{IF}(f + f_{IF}) df}\right)^{1/2}$$
(3)

В данном выражении H_{IF} — передаточная характеристика фильтра ПЧ, f_{IF} — ширина полосы пропускания фильтра (Δf), f — текущая частота.

Из соотношений видно, что число аномальных ошибок зависит от ширины спектра принимаемого сигнала, поэтому представляет интерес разработка метода и устройства инвариантного к ширине спектра.

Если представить аддитивную смесь сигнала и шума гауссовским процессом [3], считая, что спектр сигнала распределен равномерно в полосе Δf , то, как сказано в [1], будет справедливым соотношение числа экстремумов в единицу времени: где

 ρ — нормированная корреляционная функция стационарного случайного процесса;

$$\rho_{0}^{r} = \frac{d^{2}\rho(\tau)}{d\tau^{2}}\Big|_{\tau=0}; \qquad a = \sqrt{\frac{\rho_{0}^{(a)}}{\rho_{0}^{r}}}; \qquad \Gamma(x) = \int_{0}^{\infty} y^{x-1}e^{-y}dy, \qquad x > 0;$$

$$A_{n} = \sum_{m=0}^{n} \frac{\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)..\left(m - \frac{1}{2}\right)}{m!} (n - m + 1)b^{m}, \qquad n > 0; \qquad b = \frac{1}{2(3 - a^{2})}$$

Конкретизируя для случая представления корреляционной функции как монотонно убывающей вида:

$$\rho(\tau) = \frac{\sin(\pi \Delta f \tau)}{\pi \Delta f \tau} / \pi \Delta f \tau, \tag{5}$$

для которой

$$\rho_0^r = -1/3 (\pi \Delta f)^2$$
 $\alpha^2 = 9/5$

можно получить [1] следующее значение для среднего числа максимумов:

$$N_{max} = 0.6411\Delta f. \tag{6}$$

где Δf – полоса пропускания фильтра ПЧ.

Найдя отношение средней интенсивности перескоков фазы (числа аномальных ошибок) к среднему числу экстремумов и проведя преобразование можно получить прямую зависимость инвариантную к ширине спектра анализируемого сигнала.

Т.о. в методе существует однозначное соответствие между отношением С/Ш и числом ошибок в единицу времени, что может быть использовано в устройстве оценки отношения уровня сигнала к уровню помех в рассмотренных выше системах.

Литература

- [1] Тихонов В.И., Хименко В.И. Выбросы траекторий случайных процессов М.: Наука, 1987;
- [2] Трис Г. В. Теория обнаружения, оценок и модуляция М.: Сов. Радио, 1975;
- [3] Левин Б.Р. Теоретические основы статистической радиотехники. М.: Радио и связь, 1989.