UDC 681.518

D.E. IVANOV

Institute of Applied Mathematics and Mechanics NAS of Ukraine, Donetsk

PARALLEL FAULT SIMULATION ON MULTI-CORE PROCESSORS

In this paper we propose a fault simulation algorithm that utilizes all cores in multi-core processors. We adapt
for multi-core workstation our early proposed distributed fault simulation algorithm. Proposed algorithm uses
multi thread execution. The algorithm is based on the well-known «master-slave» approach in which one
thread is nominated as a master and controls the calculation on all the other cores of processor. To maximize
utilization of the cores a scheme with static fault list partitioning is used. The speed-up coefficient of the
simulation time obtained during machine experiments is up to 3.44 times on the quad core system.

Key words: digital circuit, sequential circuit, fault simulation, parallel simulation, multi-core processor,

execution thread.
1. Introduction

Fault simulation is one of the most computation-
intensive tasks in technical diagnostics. Main goal of
fault simulation is to determine the quality of the input
sequence. With the increase of the circuit’s size several
approaches were developed to speed up the simulation
time.

1) Event-driven simulation [1], that enables to simulate

only small part of the circuit in which activity is

performed contrary all circuit.

2) Parallel simulation where in each bit of the processor

word is simulated own copy of modified circuit [2-4];

this approach was of prime importance for fault

simulation that need a huge amount of processor time.

All of the abovementioned algorithms used the strategy

of parallel fault propagation. Also many optimizing

approaches are known that allow further decrease of
simulation time (for example dynamic fault
compressing).

But the fault simulation problem remains one of
the most important. One of the possible ways to speed-
up this process is generalization of the existing
algorithms to work on multi processor systems
(clusters) and multi-core workstations. So we have third
approach.

3) Distributed simulation. Here two main approaches

are possible:

- circuit fragmentation: each part of circuit is
modeled on its own processor in cluster [5]; here it
is necessary to construct synchronizing protocols
[6];

- fault list fragmentation [7-8]; it is used for fault
simulation. An algorithm of this type was reported
earlier by the author [9]. Experiments were done in
regular 100Mbit local intranet. The speed-up
coefficient was reported to be up to 7.92 for big
circuits on 8 PC in local network.

In this paper an attempt is made to modify our
previously developed algorithm to use on multi-core
workstation.

Our investigation has three stages. At first we run
the existing algorithm on calculation cluster. At the
second stage we run the same algorithm on quad-core
workstation. Further we eliminate redundant phase of
algorithm that carries out circuit data exchange among
the processors in cluster (circuit description, fault list,
input sequence) and again run it on quad-core
workstation. Then we compare the results obtained on
all the stages.

This paper has the following structure. In the first
section we underline actuality of problem. In the second
section an algorithm of distributed fault simulation for
the calculation cluster is described briefly as a
background. An adaptation of this algorithm for multi-
core processor systems is described in section 3. In
section 4 we describe evaluated experiments in the
different environments and compare obtained results. In
the section 5 we make the conclusions and outline
further development.

2. Distributed fault simulation.

The goal of our fault simulation algorithm is to
measure the quality of a given input sequence,
particularly fault coverage for single stuck-at faults. The
main idea of algorithm is to divide list of faults to be
simulated into several small lists. Complete fault list is
partitioned proportionally to the number of slave
processors. Then each of these small lists of faults is
simulated on own computer. Figure 1 shows the
interaction between master and slave computers. Figure
2 shows pseudo-code of master algorithm. On client’s
processors a home-built PROOFS-like fault simulation
algorithm [4] is implemented.

files
circuit description, report file I/O
test sequernce level
master
circuit description, TCP/IP sockets
short fault list <:| level
undetected faults
slave Nel slave NeN

Figure 1. Data flow diagram for distributed
fault simulation.

distributed_simulation(circuit,test)
{

number_of _slaves=

search_of _slaves();

if(number_of slaves = 0)

{
input_circuit_description();
input_test();
make_full_fault_list();
partitioning_fault_list(number_
of_slaves);
for(i=0; i<number_of slaves;i++)
{
send_to_client_i_data(Q);
by
for(i=0;i<number_of slaves;i++)
{
receive_list_of_undetected
_Taults(Q);
by
make_report();
¥
}

Figure 2. Master process algorithm for distributed
simulation

3. Modification for multi-core processors.

The algorithm described in previous section is
oriented on the cluster calculation environment. In this
system each processor has its own local memory and
complete data exchange is performed using
interconnection network and communication protocol
(in current case TCP/IP). Figure 2 underlines this aspect
by picking out the procedures of data exchange:
“send to client i data()”.

While adapting this algorithm for multi-core
system it is necessary to take into account that all cores
have common system memory. So the abovementioned
procedures can be eliminated and replaced by passing

only pointers to local data (circuit description, input
sequence, fault list). The procedure of looking for
clients can be eliminated as well.

Each client procedure is organized as a regular
calculation thread. Varying the number of client threads
we can estimate speed-up coefficient. It is expected that
the biggest coefficient of speed-up of the simulation
time should be achieved when we choose the number of
simulation threads equal to the number of processor
cores.

4. Experimental results.

We carried out three types of experiments.

Case 1. At first we run our algorithm on local
network with homogeneous computers. In first
experiment we use local network with 100Mbit/s speed
and Intel Celeron 2,0Ghz processors and 256Mbyte
system memory.

Case 2. Next we start the same algorithm on quad-
core PC. We use ordinary PC workstation with Intel
Core 2 Quad E6600 2,4Ghz CPU and 2Gbyte of system
memory. Notice that this quad-core CPU in fact
contains two dual-core processors that layout on the one
chip.

Case 3. Finally we test our algorithm on the same
quad-core PC with modifications described in previous
section (circuit description transfer was eliminated).

All approbation was performed on the ISCAS-89
circuits [10] with more than thousands logical gates. In
all cases we use previously random generated test
sequences with 1000 input vectors.

To compare speed-up coefficient of our algorithm
in mentioned three experimental environments we
choose medium-size circuit $9234ben. Figure 3 shows
speed-up of the simulation process in all our
experimental cases. We don’t report the simulation time
because workstations in case 1 and cases 2-3 are not
homogeneous. It is necessary note that we have
essential fall of performance in case 2, which is caused
by redundant data exchange on TCP/IP protocol. This
produced unnecessary CPU utilization. Situation is
improved in case 3 where this data exchange eliminated.
But the performance grows approximately only up to
case 1 level. Obviously the simulation threads create the
throng in the common cores cache.

Figure 4 shows the speed-up of the simulation time
depending on the number of thread of simulation in
cases 2 and 3. As is expected maximum acceleration
was achieved in cases with four simulation threads. It is
obvious that the utilization of CPU’s cores in this case is
maximal. This fact also confirms the system monitor
information. So further in case 3 we use for experiments
four simulation threads.

4
gs P
%2 e a———n
Etl n/-
0
1 2 3 4

Number of clients / simulation threads

—e— local netw ork
—m— quad-core processor w ith data exchange

quad-core processor without data exchange

Ficure 3. Sneed-un of the simulation time.

3,5

2,5

time

1,5 1

0,5

Speed-up of simulation

1 2 3 4 5 6 7 8

Number of simulation threads

—e— with data exchange —m— w ithout data exchange

Figure 4. Speed-up of the simulation time
depending on the simulation threads number.

Also in Table 1 we bring the speed-up coefficient
for different benchmark circuits in environment 3. The
speed-up coefficient is varying between 2.81 and 3.44
times.

Table 1.
Experimental data for ISCAS-89 circuits.
circuit time of time of speed-up,
simulation, sec., simulation, sec., times
1 thread 4 threads
59234 104 33 3.15
S13207 303 88 3.44
S15850 390 135 2.89
535932 886 315 2.81
S38417 2473 781 3.17

5. Conclusions

In this paper the problem of utilizing of all cores
performance in multi-core PC is discussed. We propose

an effective algorithm for fault simulation of digital
circuits on multi-core workstation. This algorithm
allows to speed-up the fault simulation time up to 3.44
times for large benchmark circuits. Also in further
investigation we expect that the chosen approach allow
effective scalability of algorithm with further increasing
of the number of processor’s cores.

References

[1] Breuer M.A., Friedman A.D. Diagnosis and
reliable design of digital systems.- Potomac Computer
Sc. Press, 1976.- 308p.

[2] Niermann T.M., Cheng W.-T., Patel J.H.
PROOFS: A Fast, Memory-Efficient Sequential Circuits
Fault Simulator // IEEE Trans. CAD. — 1992.— P.198-
207.

[3] Kung C.P., Lin C.S. HyHope: A Fast Fault
Simulator with Efficient Simulation of Hypertrophic
Faults // Proc. of International Test Conference. - 1994.
-P.714-718.

[4] Ivanov D.E., Skobtsov Yu.A, Parallel Fault
Simulation for sequential circuits // Artificial
Intelligence. — 1999. - Nel. — C.44-50.

[5] S. Ghost, “NODIFS: a novel, distributed
circuit partitioning based algorithm for fault simulation
of combinational an sequential digital design on loosely
coupled parallel processors”, tech. rep., LEMS,
Division of Engineering, Brown University, Providence,
RI, 1991.

[6] Ladyzhensky Yu.V., Popov Yu.V. A Program
system for synchronization protocol investigation under
distributed logical simulation // Proc. of Donetsk State
Technical. University, Series “Computers and
Automation”.- 2004.- Vol Ne74.- C.201-209.

[7] T. Marcas, M. Royals and N. Kanopoulos,
“On distributed fault simulation”, IEEE Computer, vol.
7, pp- 40-52, Jan. 1990.

[8] P.A. Duba, R.K. Roy, J A. Abraham and W .A.
Rogers, “Fault simulation in a distributed
environment”, in Proceedings of the 25th ACM/IEEE
Design Automation Conference, pp.686-691, June 1988.

[9] Skobtsov Y.A., El-Khatib, Ivanov D.E.
Distributed Fault Simulation and Genetic Test
Generation of Digital Circuits // Proceedings of IEEE
East-West Design&Test Workshop(EWDT’06).-2006:
Sochi.

[10] Brgles F., Bryan D., Kozminski K.
Combinational profiles of sequential benchmark circuits
/" International symposium of circuits and systems,
ISCAS-89. — 1989. — P.1929-1934.]

Iocmynuna 6 pedaxyuio 18.01.2009

Penen3eHT: 1-p TexH. HayK, Ipod. kadeapsl aBTOMAaTU3UPOBAHHBIX CHCTEM YIIPABICHUS
FO.A. Cko6mnoB, [lonenkuii HantmonaneHenii Texanueckuil YHUBEpCUTET, JJOHETIK.

MNAPAJIEJIBHE MOJIEJTFOBAHHSA HU®POBUX CXEM 3 IOIIKO)KEHHAMU
HA BATATOSJEPHUX CUCTEMAX
JI.E. Isanos

B cTaTTi NpONOHYETHCS ANTOPUTM MOJIETIOBAHHS LU(PPOBUX CXEM 3 HOIIKOPKEHHIMH, KU PO3paxoBaHO
Ha BUKODUCTaHHS B OOYMCIIIOBAJBHUX CUCTeMax 3 OaraTosfepHMMH mpouecopamu. JlaHuWil anroput™m €
ajanranielo AIsg 0araTOsJEPHUX CHUCTEM PO3MOIUICHOIO AalrOpPUTMY MOJEIIOBaHHA LU(POBUX CXeM 3
HOIIKO/DKEHHSIMH, KU OyJO 3ampolOHOBAaHO aBTOpaMu padime. JlaHWil anropuTM BHKOPHCTOBYE
0araTornoTOKOBe BUKOHAHHS. AJITOPUTM 0a3y€eThCsl Ha BXKE BIJOMOMY MiJXOJl “Xa3siH-NPAI[iBHUK”, TIPH SIKOMY
OJIMH BHMKOHABYMH TMOTIK IMPHU3HAYAETHCS TOJOBHUM Ta CIIJKY€ 3a PO3MOAUICHHAM OOYHCICHBb IO sIpax
npouecopy. s migBUIIEeHHS Koe]illieHTIB 3aBaHTaXEHHS s/iep IPOLECOpPY MH BHKOPUCTOBYEMO CXEMY 3
pPO30MBAaHHIM CIIMCKY HOIIKO/KEeHb. OOYMCITIOBaNIbHI EKCIICPUMEHTH, M0 OyJM IpOBEJEeHI, IT0Ka3yOTh
30UIbIICHHST KOS(ILIIEHTY ITPUCKOPEHHS MPOLECY MOJENIIOBAaHHA 10 3,44 pa3iB Ha CHCTEMax 3 YOTHUPHUSAEPHUM
HPOLIECOPOM.

KurouoBi ciioBa: mudposa cxema, MOCTIIOBHICTHA CXeMa, MOJEIIOBAHHS 3 ITOMIKOKEHHSIMH, TTIapaieIbHe
MOJEIIOBaHHsI, 0araTosaepHuUi IPOLECOpP, BUKOHABYMI MOTIK.

IHAPAJIVIEJIBHOE MOJEJIUPOBAHUE TU®POBBIX CXEM C
HEUCITPABHOCTSAMMU HA MHOT'OAJAEPHBIX CUCTEMAX

/.E. Heanoe

B crarbe mpemnaraercst anropuTM MOAENUPOBAHUS LHU(PPOBBIX CXEM C HEUCHPABHOCTSIMH, KOTOPBIH
paccuMTaH Ha UCIIOJIB30BaHHME Ha pabOYMX CTaHIMAX C MHOTOSIECPHBIMH IIpolieccopamu. JIaHHBIH alropuTMm
SBJISIETCSl afanTalnyeld Juis MHOTOSJEPHBIX CHCTEM paHee IPEJIOKEHHOTO aBTOPaMHU paclpeiei€HHOTo
NrOpUTMa MOJEIMPOBAaHHUS LU(PPOBBIX CXEM C HEUCIPABHOCTSAMHU. [Ipelaraemplii ajJroputM HCIHOJIb3YeET
MHOT'OIIOTOYHOE HCIIOJIHEHUE. AJITOPUTM OCHOBaH Ha paHee ONMCAHHOM MOAXOJE «XO3SMH-pabouuii», mpu
KOTOPOM OJIH MCIIOJIHUTEIIbHBIA MOTOK Ha3HA4aeTcsl B KaUYeCTBE OCHOBHOT'O M KOHTPOJIUPYET paclpeleiicHue
BBIYKMCIIEHUH IO siapaM mpoueccopa. [l MOBBIIEHUS 3arpy3KH BBIUYHCIMTENBHBIX SAEP IPOLECCOpPa MBI
UCIIONIB3yEM CXEMY MOJEIHMPOBaHMS C pa3OMEeHHeM CIHcKa HeucrnpaBHOcTed. I[IpoBeneHHBIE MalIMHHbBIE
SKCIEPUMEHTHI MOKA3BIBAlOT KOA(D(GUIIMEHT YCKOPEHHUS BPEMEHH Ipoliecca MOAeTrpoBanus 10 3,44 pa3 mus
CHCTEM C YEeTHIPEXSAACPHBIM MPOLIECCOPOM.

KnaloueBble caoBa: nmudpoBas cxema, IIOCIEHOBATECIBHOCTHAas CXEMa, MOJCIHPOBAHUE C
HEHCIIPAaBHOCTSIMH, NIapajljIeIbHOe MOAEIUPOBAHNE, MHOTOSIEPHBIN IPOLECCOP, BHIYUCIUTENBHBIH IIOTOK.

HNBanoB [Imutpuii EBrenbeBuY — KaHJ. TEXH. HAyK, JOUEHT, CTApIIMA HAYYHBIH COTPYIHHUK OTAeNa
TEOpUH yNpaBisAonmx cucteM MHcTUTyTa MpukiaaHoi maremMaTnku u Mexanuku HAH Yxkpaunsl, JloHeuk, e-
mail: ivanov@iamm.ac.donetsk.uaT, (8-068) 895-7415, (8-062) 311-67-95.

mailto:ivanov@iamm.ac.donetsk.ua

	1. Introduction
	2. Distributed fault simulation.
	3. Modification for multi-core processors.
	4. Experimental results.
	5. Conclusions
	References
	Поступила в редакцию 18.01.2009

