К.т.н. Столярова Н.А., Айрапетян К.В.

Автомобильно-дорожный институт ГВУЗ "ДонНТУ", Украина

УТИЛИЗАЦИЯ ПЛЕНОЧНЫХ ПОЛИМЕРНЫХ ОТХОДОВ

В настоящее время доля пластиковых отходов в общем объеме твердых бытовых и промышленных отходов составляет порядка 15% и постоянно повышается [1]. Эти отходы в естественных условиях разрушаются лишь в течении 80-100 лет, накапливаясь в окружающей среде. Сжигание или захоронение таких отходов, с экологической точки зрения, чрезвычайно вредно из-за попадания в атмосферу, в воду и почву токсичных веществ — диоксинов. Пленочные полимерные отходы продолжают сохранять исходные технологические свойства, что превращает их в ценный вид.

Принцип рециклинга широко распространен во всем мире [2]. В процессе рециклинга первичный продукт по окончании срока службы перерабатывается, как правило, в другой продукт с менее жесткими техническими характеристиками. Например, в автомобилестроении, где отработанные пластмассовые детали узлов и агрегатов перерабатываются в пластмассовые изделия для отделки автомобиля.

По своему химическому составу полимерные отходы это поливинилхлорид, полистирол, полиэтилентерефталат, полипропилен и полиэтилен. Доля полиэтилена высокого и низкого давления в общем объеме составляет более 70%.

В своей основной массе полимерные отходы -это промышленные отходы производства, использованная пластиковая тара и упаковка продуктов и промтоваров, бытовые полимерные изделия и полимерное техническое оборудование.

Современные технологии позволяют переработать более половины образующихся полимерных отходов. При этом экономится ценное первичное сырье и энергия. Для переработки полиэтиленовых отходов в гранулы нужно в пять с лишним раз меньше энергии, чем для переработки первичного сырья.

В Украине внедрение технологий по переработке полимерных отходов началось совсем недавно. Одним из предприятий, занимающихся переработкой полимерных отходов, является ОАО "Промсвязь" (г. Харьков).

Рассмотрим утилизацию пленочных полимерных отходов с использованием технологии ЛПВПП-СВ10 и покажем экономическую целесообразность ее использования [3].

Комплекс переработки пленки ЛПВПП-СВ10 предназначен для переработки пленочных полимерных отходов, таких как: технологические отходы пленочного производства в виде обрезков или некондиционной пленки; пленочная упаковка продуктов питания; пленочная упаковка промышленных товаров; изношенная сельскохозяйственная пленка, мешки из-под удобрений; техническая упаковочная пленка.

Принцип действия: полимерные отходы загружаются в аппарат измельчения и предварительной отмывки, затем в виде сечки (размером 25-40 мм) подаются в разделительную ванну, где отделяется абразивная грязь и инородные включения. Далее пленка-сечка подается транспортером и шнековым питателем в аппарат непрерывной отмывки, где пленка полностью отмывается от пыли, грязи и посредством приемного устройства и пневмотранспорта попадает в бункер-накопитель, откуда выгружается в агломераторы. При необходимости сточные воды из аппарата непрерывной отмывки и

разделительной ванны поступают в отстойник и возвращаются в технологический цикл. Пневмотранспорт обеспечен рукавными фильтрами, что исключает загрязнение окружающей среды. Линия механизирована и управляется с пульта.

Перерабатываемый материал: полимерные пленочные отходы соответствующие ТУ 63-032-1-89. Возможна переработка пленочных отходов с долей загрязнения до 15%. Рекомендуемая массовая доля загрязнений не более 7,0%, влажность не более 2,0%. Стоимость оборудования составляет 150000 \$.

Технические характеристики аппарата ЛПВПП-СВ10: производительность 80 - 100/ч; установленная мощность, не более $65 \, \text{кВт}$; общая потребляемая электрическая мощность $50 \, \text{кВт}$; объемный расход воды, не более $0,45 \, \text{м}^3/\text{ч}$; габаритные размеры, не более: длина - $12530 \, \text{мм}$, ширина - $6000 \, \text{мм}$, высота - $4850 \, \text{мм}$; масса - $2800 \, \text{кг}$. Таблица 1 - Линия ЛПВПП-СВ10 по переработке пленочных полимерных

отходов

n	Б	TC	TT	Ъ			
Затратная статья	Ед. изм.	Количество	Цена за ед.,	Всего, у.е.			
				-			
			y.e.				
А. Затраты по энергоносителям							
1. Электроэнергия	кВт	716,9	0,04	28,68			

2. Вода	M^3	8,56	0,3	2,57			
Б. Оплата труда							
3. Переборка ручная	ставка	1	30	30			
4. Обслуживание линии	ставка	1	20	20			
5. Подсобные рабочие	ставка	1	4,0	4,0			
Итого				85,25			

Итак, утилизация пленочных полимерных отходов необходима не только с экологической точки зрения, но и в то же время выгодна экономически.

Литература:

- 1. Зубик С.В. Техноекологія. Джерела забруднення і захист навколишнього середовища: Навч. посібник. Льві в, 2007. с. 400
 - 2. http://waste.ru
 - 3. http://promsvyaz.ru сайт ОАО "Промсвязь"