УДК 539.2

Канд. физ.-мат. наук ЩЕРБАК Я. Я.(ДонНТУ)

РАСЩЕПЛЕНИЕ ВАЛЕНТНОЙ ЗОНЫ В ТВЕРДЫХ РАСТВОРАХ ПОЛУПРОВОДНИКОВ ИЗОЭЛЕКТРОННОГО ЗАМЕЩЕНИЯ

Твердые растворы полупроводников A^3B^5 и A^2B^6 находят широкое применение в технике, поскольку с изменением состава раствора многие их характеристики можно направленно изменять. К ним относятся ширина запрещенной зоны, проводимость, оптические, и другие свойства. Поскольку эти свойства определяются энергетическим спектром системы, актуальной является задача его изучения.

Теоретически роль примесей в образовании дополнительных «примесных» состояний энергетического спектра, а также «хвостов» зон обстоятельно изучена Лифшицем [1].

В ряде же случаев для объяснения экспериментально наблюдаемых свойств полупроводников и их растворов, недостаточно тех представлений об энергетическом спектре, которые следуют из этих работ. Так, в работе [2] особенности края поглощения в системе CdTe: Se, объясняют исходя из представлений о снятии вырождения валентной зоны при $\vec{k}=0$ (\vec{k} - волновой вектор) полем дефектов упаковки.

В работах [2,3] наблюдаемые аномалии в термоэлектрических и оптических свойствах растворов PbTe:SnTe, PbSe:PbS также объясняются исходя из модели двух валентных зон («тяжелых» и «легких» дырок), разделенных энергетическим зазором.

По результатам дополнительного поглощения, наблюдаемого в оптических спектрах, которое связывают с переходами между подзонами валентной зоны, была определена величина этого расщепления. Для растворов PbS: PbTe её значение лежит в интервале $0.1 \div 0.33$ Эв.

В работе [4] в предположении независимых зон без учёта затухания состояний было показано, что поправки к спектру подзон валентной зоны, связанные с введением изовалентных примесей, различны, т.е. возможно снятие вырождения состояний.

Более детально с учетом перенормировки спектра этот вопрос изучен в работе [5], где на основании полученных результатов был сделан вывод о расщеплении токовых состояний валентной зоны в таких растворах.

Представляет интерес оценить величину этого расщепления для различных полупроводниковых растворов и применить полученные результаты.

Из выражения для плотности состояний, полученного в работе [5], положив $\rho(x,\omega)$ равным нулю (x - концентрация примесных центров, ω - энергетический параметр) для энергетической границы токовых состояний подзоны валентной зоны с номером n (n =1;2, где 1 соответствует подзоне «тяжелых», 2 – подзоне «легких» дырок) получим

$$E^{n} = \text{Re } \Sigma_{n} - \frac{m_{n}^{3}U_{0}^{4}}{32 \pi^{4}} ((F_{n})'_{y})^{2}$$
(1),

где массовый оператор $\Sigma_n = U_0 F_n(x,G_n(x,\omega)U_0)$, U_0 - параметр, характеризующий примесный потенциал, $G_n(x,\omega)$ - функция Грина, m_n - эффективная масса дырки, $y=G_n U_0$.

Для оценки величины расщепления необходимо иметь явное выражение для массового оператора. В случае систем, для которых GU < 1 (условие отсутствия связанных состояний на примесном центре. Таких систем, как показано в работе [6], большинство) можно использовать разложение, предложенное в работе [7].

$$\Sigma_n = xU + x(1-x)UG_nU \tag{2}$$

Тогда $F_n = x + x(x-1)G_nU$ (3)

Используя (1), при указанных условиях для величины расщепления токовых состояний валентной зоны получим:

$$\Delta E = U_0^2 x (1 - x) \left[(G_1 - G_2) - x (1 - x) U_0^2 (\frac{1}{E_1^3} - \frac{1}{E_2^3}) \right], \tag{4}$$

где E_1 и E_2 - ширина подзоны тяжелых и легких дырок соответственно.

Принимая, что согласно [8] $G_n \approx \frac{2}{E_n}$ и учитывая тот факт, что в большинстве случаев $E_2 > E_1$, для ΔE получим выражение:

$$\Delta E \approx U_0^2 x (1-x) \frac{1}{E_1} (2-x(1-x)U_0^2 \frac{1}{E_1^2}),$$
 (5)

которое и используем для расчета.

Положим \mathcal{X} =0,5 (максимальное расщепление), значение параметра U_0 возьмем из [6], значения E_1 , из [9].

Результаты расчета величины Δ E (\mathcal{X} =0,5) для 27 систем приведены в пятой колонке таблицы. В шестой колонке для сравнения приведено значение величины спин-орбитального расщепления валентной зоны Δ_{so} , взятое из [10]. В седьмой колонке таблицы приведены значения абсолютной температуры, при которой $\Delta E = kT$

Для большинства из рассмотренных систем расщепление ΔE по порядку величины сравнимо с энергией ионизации акцепторной примеси. Этот факт нужно иметь в виду при постановке опытов по обнаружению такого расщепления.

Кроме того, из данных приведенных в 5 и 6 колонках таблицы видно, что в таких системах как ZnP:As, GaP:As, GaAs:Sb,ZnS:Se величина ΔE и Δ_{so} одного порядка, для большинства же представленных в таблице систем $\Delta E_c < \Delta_{so}$, что позволяет на опыте отделить эффекты, связанные с одним расщеплением от таковых, обусловленных вторым расщеплением.

Расщепление таковых состояний валентной зоны можно обнаружить как при изучении оптических спектров поглощения, так и спектров люминесценции таких систем.

В первом случае оно проявится в виде дополнительного поглощения вблизи края, обусловленного переходами между подзонами валентной зоны.

В случае фотолюминесценции при достаточно низких температурах ($kT < \Delta E_c$) расщепление приводит к изменению структуры краевой линии люминесценции.

Табл. 1. Расщепление токовых состояний валентной зоны в полупроводниковых твердых растворах

растворах							
№	Система	U_0	E_1	$U_0 G_1$	ΔE (Эв)	Δ_{so}	T (⁰ K)
	1	(Эв) 2	(Эв) 3	4	5	(Эв) 6	7
1	AlSb : Zn	0,41	2	0,41	0,042	0,4	500
2	AlSb: Ga	-0,6	2	-0,6	0,09	0,4	1000
3	AlP : Ga	0,16	2,2	0,5	0,006		70
4	GaSb: Al	0,32	1,7	0,36	0,03	0,47	350
5	GaSb: Zn	-0,57	1,8	-0,64	0,092	0,47	1000
6	GaP:Zn	0,14	2,63	0,11	0,005	0,1	60
7	GaAs : Zn	0,5	2,35	0,42	0,053	0,24	600
8	ZnP : Ga	-0,53	2,14	-0,5	0,066	0,14	700
9	<i>BP</i> : <i>Zn</i>	0,6	4	0,3	0,045		500
10	BAs : Zn	0,77	3	0,5	0,1		1150
11	ZnP: As	0,7	2,1	0,66	0,12	0,14	1400
12	ZnP:Sb	-0,56	2,1	-0,52	0,075	0,14	900
13	ZnSb: P	0,75	2	0,75	0,14	0,98	1600
14	ZnSb: As	0,42	1,42	0,59	0,062	0,98	700
15	ZnAs: P	-0,43	2	-0,46	0,05	0,43	600
16	GaP: As	0,61	2,63	0,46	0,07	0,1	900
17	GaP:Sb	-0,1	2,63	-0,07	0,002	0,1	30
18	GaAs: P	-0,65	2,35	-0,35	0,09	0,24	1000
19	GaAs : Sb	-0,7	2,35	-0,6	0,104	0,24	1200
20	CaTe: Zn	-0,14	1,6	-0,25	0,006		700
21	CaTe: S	-0,2	1,6	-0,25	0,0125	0,43	120
22	CaSe : Te	0,11	1	0,22	0,006		70
23	CaTe: Se	0,1	1,6	0,12	0,003	0,43	35
24	ZnS : Se	0,51	1,56	0,63	0,086	0,072	1000
25	ZnSe: S	-0,43	1,56	-0,56	0,065		700
26	ZnSe : Te	-0,34	1,56	-0,45	0,038		450
27	ZnTe:S	0,27	1,23	0,46	0,032	0,9	300

В работе [11], например, при изучении спектров фотолюминесценции твердого раствора $GaAs_{1-x}Sb_x$ ($x \le 0.05$) было обнаружено, что при

T< 10 0 K краевая линия представляет собой наложение двух линий, максимумы которых разделены энергетическим интервалом ≈ 0.013 Эв. С ростом температура

наблюдалось перераспределение энергии между этими линиями, а при $T \approx 135^0 \, \mathrm{K}$ длинноволновая полоса практически не наблюдалась. Указанные особенности спектров люминесценции в работе [11] не объясняются.

Расчет величин ΔE для системы GaAs: Sb~(x=0.05) по формуле (5) дает значение 0,012 Эв, которое близко к значению энергетического расстояния между максимумами в спектре люминесценции.

Наблюдаемое на опыте перераспределение энергии между двумя линиями в спектре с увеличением температуры также может быть объяснено расщеплением состояний валентной зоны. Действительно, с ростом температуры увеличивается вероятность перехода электронов из подзоны легких дырок в подзону тяжелых дырок.

Последняя становится заметной при $T \ge 20^0$, а при $T \ge 100^0$ К подавляющее число электронов из подзоны легких дырок переходит в состояния подзоны тяжелых дырок. Поэтому спектр люминесценции при $T \ge 100^0$ К будет определяться переходами в сравнительно пустую подзону легких дырок, т.е. будет состоять из одной коротковолновой полосы, что и наблюдалось экспериментально при $T=136^0$ К.

образом, все наблюдаемые на особенности Таким опыте спектра люминесценции системы GaAs: Sb, онжом объяснить исходя модели расщепленных подзон валентной зоны.

Библиографический список

- 1. **Лифшиц Н. М.** «О структуре энергетического спектра и квантовых неупорядоченных конденсированных систем»-УФН, 1964, т.83, вып,4. с. 617–663
- 2. **Tauber R. N. and Cadoff I. B**. «Termal and Optical Energy Gaps in Pb^{0,93}Sn^{0,07}Te» J.Appl.Phys., 1967, Vol.38, №9, p.p. 3714–3720.
- 3. **Орлецкий В. В., Сизов Ф. Ф., Лошкарев Г. В., Товстюк К. Д.** «Определение некоорых параметров зонной структуры твердого раствора $Pb^{0,82}Sn^{0,18}$ Te ».-ФТП, 1975, т.9, вып.2., с. 269–275.
- 4. **Браташевский Ю. А.** «Расчет энергии электронов в твердых растворах изовалентного замещения». В КН.: «Методы расчета энергетической структуры и физических свойств кристаллов». Киев.«Наукова думка»,1977, с. 132–136.
- 5. **Щербак Я. Я.** «Структура валентной зоны в изовалентных твердых растворах». Наукові праці Донецького національного технічного університету. Серия: «Гірничо-геологічна». Вип. 85., 2005 р, с. 62—66.
- 6. Захаров А. Ю., Щербак Я. Я. «Локальные уровни в твердых растворах». ФТП, 1979. т. 13, вып. 10, с. 1906—1911.
- 7. **Jonesawa F., Matsubara T.** "Note on electronic state of random lattice". Progr. Theor. Phys., 1963, c. 119–122.
- 8. **Губанов А. И.** «Квантово-электронная теория аморфных полупроводников»,- М.: Изд-во АН СССР, 1963, с. 119–122.
- 9. Физико-химические свойства полупроводниковых веществ /Справочник под редакцией А.В.Новоселовой/.- М. Наука, 1978. -340 с.
- 10. **Барановский П. Н., Клочков В. П., Потыкевич Н. В.** «Полупроводниковая электроника». Справочник. Киев. «Наукова думка». 1975, 704 с.
- 11. **Бирюлин Ю. Ф., Ичкитидзе Р. Р, Кригель В. Г.** «Температурная зависимость ширины запрещенной зоны нелегированного твердого раствора $GaAs_{I-x}Sb_x$ » (x≤0,05). ФТП, 1979, т.13, №11, с.2276-2281.

© Щербак Я. Я., 2006