Базаянц Г.В., д.т.н., Дариенко О.Л., Медведева М.Ю. АДИ ГВУЗ «ДонНТУ», г. Горловка

РЕГУЛИРОВАНИЕ РАСТВОРИМОСТИ ГАШЕНОЙ ИЗВЕСТИ В ВОДЕ

Исследована температурная зависимость активности ионов OH^- в перенасыщенном водном растворе гашеной извести. Предложены способы и оценены пределы регулирования ее растворимости.

Постановка проблемы

Известь является наиболее древним вяжущим материалом, используемым более 4000 лет. Строительную воздушную известь применяют в виде растворов для наземной кирпичной и каменной кладки, в штукатурных работах, для изготовления бетонов низких марок, плотных и ячеистых силикатных изделий, для получения смешанных вяжущих, а также в качестве добавки при получении специальных вяжущих материалов. Ее широкое применение в строительстве обусловлено способностью твердеть, превращаясь в прочное камневидное тело. В сахарной и целлюлозно-бумажной промышленности ее используют в виде так называемого известкового молока — перенасыщенного раствора, содержащего значительную долю нерастворившихся частиц, главным образом гидроксида кальция [1]. В таком же состоянии ее применяют в некоторых технологиях десульфуризации отходящих газов, в частности — дымовых газов угольных тепловых электростанций в качестве поглотительной жидкости ди- и триоксида серы [2].

Поскольку $Ca(OH)_2$ является малорастворимым в воде основанием, то во всех случаях использования известковой суспензии в промышленных технологиях и в теплоэнергетике соотношение растворенной его доли и нерастворренных частиц оказывается немаловажным фактором. Это объясняется тем, что растворенные молекулы $Ca(OH)_2$, будучи сильным электролитом, практически полностью диссоциируются в воде по уравнению:

$$Ca(OH)_2 = Ca^{2+} + 2OH^-$$
 (1)

и существуют в растворе в виде ионов, в то время как гораздо большая часть гидроксида кальция остается в молекулярной форме и является твердой фазой гетерогенной системы. Естественно, что твердо- и жидкофазное взаимодействие веществ с твердыми, жидкими или газообразными реагентами отличаются не только продуктами реакций, но и скоростью образования этих соединений, полнотой протекания химического взаимодействия и его границами. Именно поэтому исследование возможности регулирования доли растворенного Ca(OH)₂ в его перенасыщенном растворе представляет большой практический интерес.

Цель работы

Целью работы является количественная оценка влияния различных факторов на растворимость Ca(OH)₂ в воде и установление диапазона его растворимости.

Результаты исследований

На начальном этапе определили температурную зависимость растворимости $Ca(OH)_2$ в воде. Ее определяли по изменению активности ионов OH^- по мере увеличения температуры перенасыщенного раствора строительной извести (пушонки), изготовленной в виде высокодисперсного порошка. В качестве растворителя использовали дистиллированную воду.

Активность ионов OH^- в растворе контролировали рH-метром марки «Cheker» (пределы измерений рH 0–14, точность \pm 0,2 рH) при медленном нагревании раствора от 5 0 C до 53 0 C. Длительность выдержки при каждой фиксированной температуре составляла не менее 1,5 часов при достаточно интенсивном перемешивании.

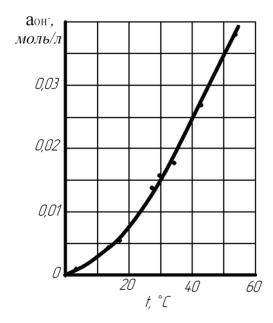
Величину активности ионов OH^- при каждой температуре определяли пересчетом значения pH раствора по формуле

$$a_{OH^{-}} = \frac{K_{w}}{a_{H_{3}O^{+}}}, MOЛЬ/Л,$$
 (2)

где K_w – ионное произведение воды при данной температуре.

Результаты эксперимента представлены в табл. 1, откуда видно, что с ростом температуры перенасыщенного раствора $Ca(OH)_2$ активность ионов OH^- существенно увеличивается, что указывает на возрастающую растворимость гашеной извести в воде.

Таблица 1 Экспериментальные данные и результаты расчета активности ионов OH^- в перенасыщенном растворе $Ca(OH)_2$ при различных температурах


Тампаратура	Ионное произ-		Активность ионов, моль/л		
Температура раствора, ⁰ С	ведение воды $K_w \cdot 10^{14} [3]$	рН раствора	$a_{H_3O^+} \cdot 10^{13}$	$a_{\scriptscriptstyle OH^-} \cdot 10^2$	
5	0,17	11,86	13,8	0,12	
14	0,43	11,93	11,7	0,37	
18	0,60	12,01	9,8	0,61	
27	1,17	12,03	9,2	1,27	
30	1,48	12,04	9,1	1,63	
34	1,95	11,97	10,7	1,82	
41	3,20	11,93	11,7	2,74	
53	6,70	11,75	17,8	3,76	

К сожалению, из-за конструктивных особенностей использованного pH-метра исследование растворимости $Ca(OH)_2$ при температурах выше 53 0C выполнить не удалось. Однако температурная зависимость активности ионов OH^- , представленная на рис.1, позволяет экстраполировать искомую характеристику и на более высокие температуры, поскольку, как нам представляется, нет каких-либо дополнительных факторов, способных нарушить установленную закономерность.

Математическая обработка результатов, представленных на рис. 1, позволила выразить зависимость активности ионов OH^- в перенасыщенном растворе $Ca(OH)_2$ в воде от температуры раствора в интервале от 25 0 C и выше в виде формулы:

$$a_{oh}^{-} = \frac{t}{1000} - 0.014, \text{ моль/л}$$
 (3)

где t – температура раствора, 0 С.

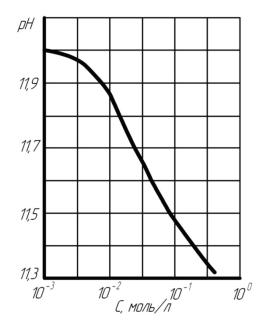


Рис. 1. Температурная зависимость активности ионов OH^- в перенасыщенном водном растворе $Ca(OH)_2$

Рис. 2. Влияние концентрации растворов (а)-(д) на рН перенасыщенного раствора гашеной извести на их основе

Анализ результатов, представленных в табл. 1, показывает, что изменение температуры известковой суспензии в воде позволяет в десятки раз повышать либо, напротив, снижать растворимость Ca(OH)₂. Учитывая, что повышение температуры на каждые 10 градусов в большинстве случаев приводит к ускорению гомогенных реакций в 2–4 раза (правило Вант-Гоффа), можно утверждать, что подобный прием является эффективным средством интенсификации химических процессов в перенасыщенных водных растворах гашеной извести.

Рассмотрим другие способы изменения растворимости Са(ОН)₂ в воде.

Известно, например, что растворимость малорастворимого электролита понижается при введении его в раствор какого-либо сильного электролита, содержащего одноименные с ним ионы [3]. Применительно к гашеной извести такими электролитами могут быть различные соли кальция, например его галогениды либо нитраты, содержащие ионы ${\rm Ca}^{2+}$. Заметим при этом, что подобным эффектом не обладают кислые соли кальция из-за их химического взаимодействия с растворяемой известью по реакциям типа

$$Ca(HCO_3)_2 + Ca(OH)_2 = 2CaCO_3 + 2H_2O$$
,

сопровождаемым их выпадением в осадок. Одноименными ионами могут быть не только катионы сильного растворимого электролита, но и его анионы. Примером такого типа электролитов являются сильные основания — NaOH, $Ba(OH)_2$ и другие, образующие в водных растворах ионы OH^- .

Прежде чем проанализировать влияние каждого типа перечисленных электролитов на растворимость $Ca(OH)_2$ в их растворах, отметим, что справочное значение произведения растворимости его в воде при стандартной температуре 25 0 C составляет 5,5·10⁻⁶ [4]. О степени ухудшения растворимости $Ca(OH)_2$ в растворах сильных электролитов, имеющих одноименные ионы Ca^{2+} либо OH^- , судили по снижению активности этих ионов при вводе гашеной извести в их содержащие растворы по сравнению с активностью этих же ионов в растворе извести в дистиллированной воде при температуре 25 0 C (рис. 1), равной $a_{oh}^- = 0,011$ моль / л.

Активность ионов ${\rm Ca}^{2^+}$ в этом же растворе при 25 $^0{\rm C}$ определили следующим образом. Если активности ионов ${\rm Ca}^{2^+}$ и OH^- выразить через их коэффициенты активности и молярные концентрации в виде

$$a_{Ca^{2+}} = f_{Ca^{2+}} \cdot [Ca^{2+}],$$
 моль/л; $a_{OH^{-}} = f_{OH^{-}} \cdot [OH^{-}],$ моль/л,

и разделить первое из этих выражений на второе, то получаем соотношение

$$\frac{a_{Ca^{2+}}}{a_{OH^{-}}} = \frac{f_{Ca^{2+}} \cdot \left[Ca^{2+} \right]}{f_{OH^{-}} \cdot \left[OH^{-} \right]},$$

откуда

$$a_{Ca^{2+}} = a_{OH^{-}} \cdot \frac{f_{Ca^{2+}} \cdot \left[Ca^{2+} \right]}{f_{OH^{-}} \cdot \left[OH^{-} \right]}.$$
 (4)

Из уравнения (1) видно, что если $[Ca^{2+}] = x$ *моль/л*, то $[OH^{-}] = 2x$ *моль/л*. Подставив эти значения в формулу (4) и сократив параметр x, получаем:

$$a_{Ca^{2+}} = \frac{1}{2} a_{OH^{-}} \cdot \frac{f_{Ca^{2+}}}{f_{OH^{-}}}.$$
 (5)

Для определения соотношения коэффициентов активности необходимо знать ионную силу раствора. Оценим ее, рассчитав молярную растворимость электролита $Ca(OH)_2$ в воде без учета ионной силы раствора по известной формуле

$$S = m + n \sqrt{\frac{\Pi P}{m^m \cdot n^n}}, MO \pi b / \pi, \tag{6}$$

где т и п – число катионов и анионов электролита в одной его молекуле;

ПР – произведение растворимости малорастворимого электролита.

С учетом того, что для $Ca(OH)_2$ m = 1 и n = 2, а справочное [4] значение ПР при 25 0 C составляет 5,5·10⁻⁶, получаем S = 0,011 *моль/л*. Это значит, что в насыщенном растворе $Ca(OH)_2$ концентрации ионов составляют $[Ca^{2+}]=0,011$ *моль/л* и $[OH^-]=0,022$ *моль/л*. По справочным таблицам [3] в интервале ионной силы 0,020-0,050 *моль/л* соотношение коэффициентов активности двух- и однозарядных ионов равно 0,6. Подставив это значение, а также величину $a_{OH^-}=0,011$ *моль/л* в формулу (5), получаем величину активности ионов Ca^{2+} в перенасыщенном растворе извести в воде при 25 0 C, равную $a_{Ca^{2+}}=0,003$ *моль/л*.

Таким образом, значение произведения растворимости исследованной гашеной извести, рассчитанное по формуле

$$a_{Ca^{2+}} \cdot a_{OH^{-}}^2 = \Pi P, \tag{7}$$

при 25 0 C составляет 3,6·10⁻⁷, что несколько ниже справочной величины для Ca(OH)₂. Это объясняется тем, что будучи строительным материалом, известь, кроме гидроксида кальция, составляющего его основную долю, содержит и значительно менее растворимый Mg(OH)₂, в то время как в справочной литературе характеризуется чистое вещество Ca(OH)₂.

Оценим степень снижения растворимости $Ca(OH)_2$ при вводе гашеной извести в растворы, содержащие одноименные ионы.

Вариант 1. Растворителем гашеной извести является один из следующих растворов соли $CaCl_2$: а) 0,15~M; б) 0,10~M; в) 0,05~M; г) 0,01~M; д) 0,001~M. Результаты расчета активности ионов Ca^{2^+} в этих исходных растворах до ввода извес-

Результаты расчета активности ионов Ca^{2+} в этих исходных растворах до ввода извести приведены в табл.2.

Таблица 2 Исходные данные и результаты расчета активности ионов ${\rm Ca}^{2+}$ в исходных растворах (a)-(д)

Раствор	Концентра <i>мо</i> л	ция ионов, пь/л	Ионная сила раствора,	Коэффициенты активности	Активность ионов Ca ²⁺ (i),
	Ca ²⁺	Cl ⁻	моль/л	ионов Ca ²⁺ [2]	моль/л
a	0,15	0,3	0,45	0,48	0,072
б	0,10	0,20	0,30	0,42	0,042
В	0,05	0,10	0,15	0,42	0,021
Γ	0,01	0,02	0,03	0,52	0,005
Д	0,001	0,002	0,003	0,72	0,0007

После ввода гашеной извести в каждый из растворов (а–д), содержащих ионы ${\rm Ca}^{2^+}$, активность ионов OH^- в них определится условием насыщения (7). При этом активность ионов ${\rm Ca}^{2^+}$ будет равна сумме активностей $a_{Ca^{2^+}({\rm i})}$ этих ионов в исходных растворах (а–д) и активности $a_{Ca^{2^+}}$ этих же ионов, образованных растворяемым основанием ${\rm Ca}({\rm OH})_2$ при его диссоциации. Поэтому расчетная формула имеет вид

$$a_{OH^{-}(i)} = \sqrt{\frac{\Pi P}{a_{Ca^{2+}(i)} + a_{Ca^{2+}}}}, MOЛЬ/Л.$$
 (8)

Результаты расчета по формуле (8) приведены в табл.3

Таблица 3 Результаты расчета активности ионов OH^- при введении гашеной извести в растворы (а–д)

	Актив	ности ионов,	Кратность снижения активно-	
Раствор	$a_{Ca^{2+}(i)}$	$a_{Ca^{2+}}$	$a_{OH^{-}(i)}$	сти ионов OH^- , $a_{OH^-}/a_{OH^-(i)}$
a	0,072	0,003	$2, 2 \cdot 10^{-3}$	5,0
б	0,042	0,003	$2,8\cdot 10^{-3}$	3,9
В	0,021	0,003	$3,9 \cdot 10^{-3}$	2,8
Γ	0,005	0,003	$6,7\cdot 10^{-3}$	1,6
Д	0,0007	0,003	$9,9 \cdot 10^{-3}$	1,1

Таким образом, при вводе негашеной извести в растворы солей типа $CaCl_2$, имеющих одноименные катионы, активность ионов OH^- снижается, причем тем сильнее, чем более концентрированным является солевой раствор. На это указывает и снижение величины pH

получаемого перенасыщенного раствора извести (рис. 2). При этом концентрация соли в растворе менее 0,001 *моль/л* практически не влияет на ухудшение растворимости $Ca(OH)_2$.

Вариант 2. Растворителем гашеной извести является один из следующих растворов NaOH: e) 0.15 M; ж) 0.10 M; з) 0.05 M; и) 0.01 M; к) 0.001 M.

Результаты расчета активности ионов OH^- в исходных растворах приведены в табл. 4.

Таблица 4 Исходные данные и результаты расчета активности ионов OH^- в исходных растворах (е–к)

Раствор	-	я ионов, <i>моль/л</i>	Ионная сила	Коэффициенты	Активность
	Na ⁺ OH ⁻		раствора, <i>моль/</i> л	активности ио- нов <i>ОН</i> ⁻	ионов $OH^{-}(i)$, моль/л
e	0,15	0,15	0,15	0,805	0,121
Ж	0,10	0,10	0,10	0,80	0,080
3	0,05	0,05	0,05	0,84	0,042
И	0,01	0,01	0,01	0,92	0,009
К	0,001	0,001	0,001	0,98	0,001

После ввода гашеной извести в каждый из растворов (e–к), содержащих одноименные ионы OH^- , активность ионов Ca^{2+} определяется условием насыщения (7). При этом активность ионов OH^- будет равна сумме активностей $a_{OH^-(i)}$ этих ионов в каждом из исходных растворов (e–к) и активности a_{OH^-} этих же ионов (рис. 1), образованных гашеной известью при ее диссоциации по уравнению (1). Поэтому расчетная формула имеет вид

$$a_{Ca^{2+}(i)} = \frac{\Pi P}{\left(a_{OH^{-}(i)} + a_{OH^{-}}\right)^{2}}, \text{моль} / \pi.$$
(9)

Результаты расчета по формуле (9) приведены в табл.5

Таким образом, при вводе гашеной извести в растворы щелочей активность ионов Ca^{2+} по сравнению с чистой водой в качестве растворителя снижается, причем тем сильнее, чем концентрированнее раствор щелочи.

Таблица 5 Результаты расчета активности ионов Ca^{2+} при вводе гашеной извести в растворы $(e-\kappa)$

Раствор	Акти	ивности ионов, м	Кратность снижения активно-	
	$a_{OH^{-}(i)}$	a_{OH^-}	$a_{Ca^{2+}(i)}$	сти ионов Ca^{2+} , $a_{Ca^{2+}}/a_{Ca^{2+}(i)}$
e	0,121	0,011	$5,57 \cdot 10^{-5}$	142,9
Ж	0,080	0,011	$1,17 \cdot 10^{-4}$	68,2
3	0,042	0,011	$3,45\cdot 10^{-4}$	15,8
И	0,009	0,011	$2,42 \cdot 10^{-3}$	3,3
К	0,001	0,011	$6,73 \cdot 10^{-3}$	1,2

Сравнивая варианты 1 и 2 между собой, нетрудно заметить, что фактор одноименности ионов OH^- (вариант 2) в значительно большей степени влияет на ухудшение растворимости гашеной извести, чем фактор одноименности ионов Ca^{2+} (вариант 1).

Известно также [3], что растворимость малорастворимого электролита повышается при введении его в раствор сильных электролитов, не имеющих одноименных ионов. Это явление, получившее название «солевой эффект», объясняется ростом ионной силы раствора, что приводит к уменьшению значений коэффициентов активности ионов растворяемого электролита в формуле для расчета его молярной растворимости

$$S = {}_{m+n}\sqrt{\frac{\Pi P}{(f_1 \cdot m)^m \cdot (f_2 \cdot n)^n}}.$$
 (10)

При этом «солевой эффект» электролитов разного типа при их равных концентрациях в растворах существенно отличается из-за различий в ионной силе их растворов. Применительно к гашеной извести покажем это на примере растворов NaCl, $BaCl_2$ и $AlCl_3$.

Пусть растворителем гашеной извести является один из следующих растворов солей NaCl (вариант 3), $BaCl_2$ (вариант 4) и $AlCl_3$ (вариант 5):

вариант 3	л) $0,5 M;$	м) 0,1 <i>М</i> ;	н) 0,01 <i>М</i> ;	o) 0,001 <i>M</i> ;
вариант 4	π) 0,16 M ;	p) 0,10 <i>M</i> ;	c) 0,01 <i>M</i> ;	т) 0,001 <i>М</i> ;
вариант 5	y) 0,08 <i>M</i> ;	ϕ) 0,05 <i>M</i> ;	x) 0,01 <i>M</i> ;	ц) 0,001 <i>М</i> .

Тогда растворимость извести по формуле (10) при 25 0 С, активность ионов OH^{-} в каждом из растворов (л–ц) и кратность увеличения растворимости по сравнению с растворимостью Ca(OH)₂ в воде оказываются равными значениям, приведенным в табл. 6 и 7.

Таблица 6 Результаты расчета растворимости извести по вариантам 3 и 4

Вариант			Коэффициенты активности		Растворимость, по оценочным форму- лам, <i>моль/л</i>		Кратность увеличения растворимости
		моль/л	f_1	f_2	(10)	(6)	ристворимости
3	Л	0,50	0,50	0,84	$6,3\cdot 10^{-3}$	$4,5\cdot 10^{-3}$	1,4
	M	0,10	0,44	0,81	$6,8 \cdot 10^{-3}$		1,5
	Н	0,01	0,60	0,92	$5,6\cdot 10^{-3}$		1,2
	О	0,001	0,78	0,98	$5,0\cdot 10^{-3}$		1,1
4	П	0,48	0,45	0,82	$6,6\cdot 10^{-3}$	$4,5\cdot 10^{-3}$	1,5
	p	0,30	0,42	0,81	$10, 2 \cdot 10^{-3}$		2,3
	С	0,03	0,52	0,88	$6,1\cdot 10^{-3}$		1,4
	Т	0,003	0,75	0,97	$5,1\cdot 10^{-3}$		1,1

Из приведенных данных видно, что вводом гашеной извести в растворы сильных электролитов, не содержащих одноименных ионов ${\rm Ca}^{2+}$ либо OH^- , в изученном интервале концентрации при температуре 25 $^0{\rm C}$ можно добиться некоторого увеличения ее растворимости, что может быть использовано для интенсификации процессов хемосорбции в различных технологиях газоочистки.

Результаты расчета растворимости извести по варианту 5

Вариант	Раствор	Ионная сила,	Коэффициенты активности		Растворин оценочны лам, <i>м</i>	м форму-	Кратность увеличения
		моль/л	f_1	f_2	(10)	(6)	растворимости
5	у	0,48	0,50	0,84	$6,3\cdot 10^{-3}$	$4,5\cdot 10^{-3}$	1,4
	ф	0,22	0,41	0,80	$7,0\cdot 10^{-3}$		1,6
	X	0,05	0,50	0,84	$6,3\cdot 10^{-3}$		1,4
	Ц	0,005	0,66	0,95	$5,3\cdot 10^{-3}$		1,2

Отметим, что возможны и другие способы повышения растворимости гашеной извести, основанные на осаждении ионов Ca^{2+} либо нейтрализации ионов OH^- противоионами, содержащимися в растворителе. Применение этих способов, однако, допустимо только в тех случаях, когда загрязнение образующейся известковой суспензии ионами посторонних химических веществ не ухудшает ее качества как сырьевого материала для изготовления конечной продукции.

Выводы

С повышением температуры воды растворимость в ней гашеной извести существенно возрастает. В интервале 25–53 0 С активность ионов OH^{-} в перенасыщенном растворе можно определить по эмпирической формуле $a_{OH^{-}} = (0,001 \cdot t - 0,014) \ (\text{моль/л})$. Растворимость извести можно регулировать в достаточно широких пределах сильными электролитами.

Список литературы

- 5. Энциклопедия неорганических материалов / под ред. И.М. Федорченко. Т.1. К.: Сов. энциклопедия, 1977.–640 с.
- 6. Мадоян А.А. Сероулавливание на ТЭС / А.А.Мадоян, Г.В. Базаянц. К.: Техніка, 1992. 160 с.
- 7. Меркушева С.А. Методика решения задач по аналитической химии / С.А. Меркушева. Мн.: Выш. шк., 1985. 223 с.
- 8. Гороновский И.Т. Краткий справочник по химии / И.Т. Гороновский, Ю.П. Назаренко, С.Ф. Некряч. К.: Наукова думка, 1987.–829 с.

Рецензент: к.т.н., доц. А.П. Карпинец, АДІ ДВНЗ «ДонНТУ».

Стаття надійшла до редакції 12.05.11 © Базаянц Г.В., Дариенко О.Л., Медведева М.Ю., 2011