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INTRODUCTION

Since the problem of establishing the relationship
between the macroscopic properties of matter and its
microscopic parameters is far from being resolved, it
has not lost its relevance, having both applied and the�
oretical importance. In our paper [1], using the Gibbs
method, several equilibrium thermodynamic proper�
ties were considered for the systems with the simplest
pair interaction potentials, including repulsive ones.
This work presents a further development of the stud�
ies of single�component systems with the aim of find�
ing realistic potentials within the statistical approach
[2]. In studying the thermodynamics of the system, it
is desirable to obtain a theoretically sound equation of
state in a closed form suitable for further applications.
Obtaining such an equation within the approach
under consideration has definite important restric�
tions when choosing the model interaction potential:
this potential must be thermodynamically stable (non�
catastrophic in terms of Ruelle [3]). In addition, the
form of the potential must be similar to that for other
realistic potentials, while its Fourier image must be
simple enough to perform a straightforward analytical
integration without any approximations. Since the
procedure of the integration is exact, its impact should
be excluded from the reasons which might cause devi�
ations in the results of the calculation from the exper�
imental data.

THE POTENTIAL OF INTERACTION
AND EQUATION OF STATE

Among all model potentials satisfying the afore�
mentioned restrictions, the most attractive one seems
to have the form

(1)

At a certain choice of parameters a, A, B this potential
has a potential well and it is characterized by repulsion
at small separations and attraction at large separations.
On the whole, potential (1) has a short�range charac�
ter and its repulsion is not very strong. The Fourier
image of this potential is given by

(2)

where A > 0, B ≥ 0, a > 0, w = A/a2, d = 1 – ε, ε =
B/Aa2.

Function (1) satisfies these restrictions under the
condition

(3)
Since the Fourier image is positive provided (3), this

guarantees that the thermodynamic limit exists [4].
Apart from the above�mentioned features, an

important property of the potential (1) is that it has the
analytical dependences of basic characteristics on the
constituting parameters. So, the corresponding points
of the zero, minimum, and the depth of the potential
well are given by

(4)

(5)

In [1, 2] the theoretical prerequisites which lie at
the foundation of our next calculations are given. As
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was shown in these works, the configuration integral of
the system of N particles occupying the volume V and
interacting through the central pair potential 
(with the Fourier image ) is transformed to the
Laplace integral. The obtained integral was then cal�
culated using the saddle�point method and Gaussian
approximation. The resulting Helmholtz free energy is
given by

(6)

where  is the inverse temperature, kB is the
Boltzmann constant, Ω is the definition range of the

function   is the free energy of

an ideal gas,  is the de Broglie ther�
mal wavelength, h is the Planck constant, and m0 is the
particle mass. As we can see from (6), among other
forcing conditions applied to the form of the potential
used, the condition of the Fourier decomposability is
of great significance, since it restricts the class of the
model potentials that can be studied within approxi�
mation (6). Since in this paper we use the basics of
classical statistical mechanics, this also leads to
restrictions on the range of applicability of the free
energy approximation. Therefore, the calculations
that are performed within the approach [1] in the
range of very high temperatures, where the particle
ionization occurs, cannot provide adequate results. In
addition, one can expect that the proposed approach
will be inconsistent in the range of high pressures,
where the impact of many�particle forces on the prop�
erties of matter is significant. As a general rule, we can
note an increasing agreement between the theory and
experiment with increasing temperature and decreas�
ing agreement otherwise. This rule is clearly illustrated
by the calculations of the isobar specific heat using the
model potentials [1].

It should be noted that at large k the asymptotics of
the integrand function in (6) is  ≈

  and the corresponding integral

converges if  i.e., the degree exponent of
k must be no less than 3/2. The Fourier image (2) nat�
urally satisfies this condition.

Using (2), integration in (6) is performed in a
spherical coordinate system. The resulting expression
for the free energy takes the form

(7)
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where   
Then the corresponding equation of state is given by

(8)

where  –  – 

 and the functions
  =  are related

with the derivatives of  with respect to n.
One of the ways of finding parameters in Eq. (1) that

are used in further calculations of the properties of the
substance is based on determination of the critical state

(9)

Hereafter the subscript ‘c’ marks the values corre�
sponding to the critical point. In the case of Eq. (8),
system (9) can be represented in the form

(10)

where nc, Tc are the experimental values of the critical
density of particles and temperature,

The functions

   

 

are correspondingly determined by the second and
third derivatives of  with respect to n.

The system of equations (9) is nonlinear and has an
exact analytical solution in the case of several poten�
tials of the simplest form [1]. However, in the case of
potential (1), obtaining an exact solution is impossi�
ble, while the numerical solution of (10) is consider�
ably simpler when it reduces to a single equation with
respect to the dimensionless variable 

Dividing the first equation in (10) by the second
one, we obtain

(11)

The functions    in (11) are
precisely identical to the functions in (11). The pres�
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solution xc on ε. It should be noted that at ε = 0(B = 0)
potential (1) reduces to the Yukawa potential, whereas
Eq. (11) reduces in this limit case to the linear equa�
tion with the solution xc = 2 [1].

The appearance of the phase transition in the sys�
tem with repulsive interaction in approximation (6) is
associated with the fact that Eq. (6) represents the
result of summation from the contributions of all ring
diagrams in the group expansion which describe the
particle interaction with two neighboring particles [5].

Equation (11) was solved numerically. However,
taking into account the asymptotics of xc at ε → 0 and
ε → 1, one can construct approximate expressions for
xc with various accuracy. For example, the uncertainty
of the formula

(12)

with respect to the exact numerical results does not
exceed 1.8 % in the range [0, 1]. As can be shown ana�
lytically, at ε = 1 , Eq. (11) has no solutions
and the phase transition does not occur.

The calculation of parameters in Eq. (1) is per�
formed according to the following scheme:

the root xc of Eq. (11) is found for the value
 which sets in according to the experimental

data;

using , the value  is
determined;

using the value of the screening parameter a, which
is expressed through the first (or second) equation of

(10), the values  and  are consecu�
tively calculated.

One can find the analytical relationships between
the parameters  of potential (1) and the mac�
roscopic characteristics of the system at the critical
point. In doing this we need the value that is expressed
from the first equation of (10):

(13)

where  since .

Substituting (13) in Eq. (4) for R0 and Rm, we obtain

Using (13) we find the product 
substitute it in (5), and note that the depth of the
potential well at a given ε is proportional to the critical
temperature Tc
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Following Ulenbeck [6], “for all substances the
value of this minimum is equal to  by the order of
magnitude (more exactly it is close to )” Figure
1 compares the numerically calculated dependence

 with the corresponding function obtained with
the help of the approximate analytical expression (12)
for  As we see, both curves are indistinguishable
on the scale used.

In the considered model, the absolute value of the
numerical coefficient at  does not exceed the

value  which is reached at

The obtained parameters of the interaction poten�
tial allows one to rewrite the equation of state in the
reduced variables   

(15)

where   is obtained from 
when substituting 

Substituting in (15) the ratio  being expressed
from (13) yields

(16)

The isotherms that are plotted at τ < 1 using Eq.
(16) have an S�shaped form that indicates the first kind
of phase transition. Since Eq. (16) contains the root xc

of Eq. (11) depending on  the equation of
state has a dimensionless combination of parameters
in Eq. (1). It must be noted that the set of parameters
A, a, B that determine the given value ε is not unique.
In other words, the set of potentials with different sets
A, a, B corresponds to the chosen value of ε. This fact
can be interpreted as the manifestation of the law of
corresponding states in the system with potential (1) at
the single point ε, since the states in the model systems
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with the same value of ε will be described by the same
equation of state.

As follows from Eq. (16), the compressibility factor
Zc is a function of only the single parameter ε
( ) at the critical point and it is determined
by the formula

(17)

where  is the value of the function  at

Figure 2 shows the dependence of Zc on ε at the
critical point.

As follows from the analysis of the dependence
, which is shown in Fig. 1, two different values ε1,

ε2 correspond to each value . There�
fore, two potentials of type (1) exist at the fixed tem�
perature Tc, and their minima coincide, as follows
from (14). If, in addition, the critical densities  and

 will be equal, the corresponding critical pressures
will be different. This follows from the simple depen�
dence  since  and  ≠

 At the same time, the points of the zero
and minima of the potentials will be different. In addi�
tion, given that ,  the equality

 is not excluded.

THERMODYNAMIC PROPERTIES
OF CESIUM VAPORS

According to the data of [7], the compressibility
factor Zc for alkaline metals changes at the critical
point from  to  Fol�
lowing [8], parameter Zc lies in the limits

 for Li, and in the limits 0.25 ±
0.02 for Cs. As we can see from Fig. 2, the experimen�
tal values of Zc prove to be in the interval of the calcu�
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lated values (using Eq. (17)) from 

at ε → 1 to  ≈ 0.268 at ε = 0. Therefore,
our attempt to calculate several thermodynamic char�
acteristics of alkaline metals within the proposed sta�
tistical method seems to be helpful. For definiteness,
we will consider Cs with the critical parameters Tc =
2050 K, Pc = 11.7 MPa, ρc = 430 ρc kg/m3 (nc = 1.948 ×
1027 m–3), and Zc = 0.212 from the reference book [9],
which contains quite extensive experimental informa�
tion. The numerical solution to Eq. (17) at Zc(Cs) =
0.212 yields ε ≈ 0.956 (xc ≈ 26.027). According to the
aforementioned algorithm, the corresponding values
of the parameters which enter Eq. (1) are a = 1.179 ×
109 m–1, A = 5.258 × 10–28 J m, B = 6.991 × 10–10 J/m.

Making use of Eqs. (7), (8), and the known ther�
modynamic relations, it is easy to find the expressions
for the entropy, heat capacity, the velocity of sound,
and other experimentally observed parameters. The
problem of finding the temperature dependences of
these values can be solved when determining the den�
sity of the substance. In the state corresponding to the
one�phase region, , and , the den�
sity ω is obtained from the numerical solution to the
equation 

The specific entropy, heat capacity, and the velocity
of sound are computed and compared with experi�
mental data for the cesium vapor (at a constant pres�
sure) in [9]. The specific value X is related to the molar
value XM by the relationship  The molar
mass of Cs is M = 0.1329 kg/mol. Bearing in mind that

 the molar entropy is then given by

(18)
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perature dependence of specific entropy at a constant
pressure P = 6 × 105 Pa.

The molar isobar heat capacity is given by

(19)

where

 

NA is the Avogadro constant, and  corresponds
to  being expressed in reduced variables.

Figure 4 shows the calculated values of the specific
isobar heat capacity obtained using Eq. (19) at P = 6 ×
105 Pa.

Comparing the dependences  and 
in Fig. 3 shows that the absolute uncertainty for all the
calculated points is nearly equal:

 ≈ 48 J/(kg K); i.e., each
curve can be obtained from another one when shifting
along the vertical axis by the value ΔS. We therefore

could expect that the dependences  and

 will also be analogous, since the heat capac�
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ity is determined by the derivative  However,
as we can see from Fig. 4, the behavior of the corre�
sponding dependences at T > 2000 K is qualitatively dif�
ferent. It should be noted that the calculated depen�
dences of the isochoric capacity obtained by different
authors [10] show both the dependences  which
have a minimum on the temperature axis and those that
monotonically decrease with increasing temperature.

Provided that the derivatives  
and CV are given, one can obtain the velocity of the
sound that is given by the formula [11]

(20)

where  is the derivative with respect

to the specific volume  ρ being the density of
the substance. Figure 5 shows the temperature depen�
dence of the sound velocity.

It is worth noting that Eqs. (18)–(20) do not
directly include parameters of the interaction poten�
tial. The entropy, heat capacity, and velocity of sound
depend only on the dimensionless combination

 of these parameters, which is a character�
istic feature of the model three�parameter interaction
potential (1). Other thermodynamic functions, such
as, in particular, the internal energy and enthalpy, also
have this feature within the range of validity of the sta�
tistical approach [1, 2, 12].

Calculations of the thermodynamic properties of
cesium vapor on the line of saturation were carried out
according to formulas (18)–(20). In this case, how�
ever, both the vapor and the liquid densities ω1 , ω2 are
determined from the conditions of equality of the
pressures and chemical potentials
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where

is the chemical potential of the system and  and
 coincide with the functions  in the

reduced variables. System (21) does not explicitly con�
tain any of the critical parameters or the parameters of
the interaction potential, since the corresponding
equations depend only on the dimensionless combina�
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provided that ε = const depends only on τ, as is condi�
tioned by the law of corresponding states. The numer�
ical solution of (21) and experimental data [13] are
compared in Fig. 6.

In Figs. 7–10 the dependences of entropy, isobar
heat capacity, sound velocity, and compressibility fac�
tor  on temperature are shown. The
experimental data were taken from [14]. Since the
measurement data [14] are given with a temperature
step of 100 K, while the values for Cp and for the sound
velocity u at T =1900 K are not presented, the experi�
mental curves in Figs. 8 and 9 are somewhat shorter
than the calculated ones.
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Fig. 8. Temperature dependence of the velocity of sound
Cp on the line of saturation: 1, experiment [14]; 2, calcula�
tion, Eq. (19).

600

360

240

120

0
190017001600150014001300

1

2

1800

u, m/s

T, K

480

Fig. 9. Dependence of the sound velocity on temperature
on the line of saturation; 1, experiment [14], 2, calcula�
tion, Eq. (20).
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CONCLUSIONS

Using the Gaussian approximation for the free
energy, it is established that in the system with the model
three�parameter interaction potential the law of corre�
sponding states is fulfilled provided that the parameters
of the potential are combined into a single dimension�
less parameter ε which takes a constant value.

Consideration of the thermodynamic properties of
cesium vapor within the united approach provides a rel�
atively simple analytical description of various thermo�
dynamic parameters. The numerical calculations of
these parameters, which are performed using the
obtained formulas, show both qualitative and quantita�
tive (in some cases) agreement with the experimental
data. To increase the accuracy of the calculations, the
use of oscillating potentials seems to be more effective.

As far as concerns the behavior of  at T >
2000 K, a possible reason for the qualitative discrep�
ancy between the calculated and experimental data is
likely related to the appearance of additional degrees
of freedom owing to the dissociation of clusters with
an increase in temperature. Another possible reason
may be related to the contribution of an electron sub�
system in . One may expect that adequate results
for the heat capacity can be obtained if the calcula�
tions will be performed using a configuration integral
for multicomponent systems. In conclusion, we want

( )PC T

( )PC T

to underline that, when calculating the thermody�
namic properties, information about the parameters of
the interaction potentials is not necessary. The prob�
lem is solved when finding the value of ε correspond�
ing to the compressibility factor Zc, which is deter�
mined using the coordinates of one experimental
point, the critical point of cesium.
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Fig. 10. Dependence of the compressibility factor Z on
temperature on the line of saturation: 1, experiment [14];
2, calculation according to the formula Z = PV/RT.




