Hardware reduction in FPGA-based compositional microprogram control units
Barkalov A.A.
The University of Zielona Gora, Poland
A.Barkalov@iie.uz.zgora.pl
Titarenko L.A.
The University of Zielona Gora, Poland
L.Titarenko@iie.uz.zgora.pl
Miroshkin A.N.
Donetsk National Technical University, Ukraine
MiroshkinAN@gmail.com

Abstract
The new design method for compositional microprogram control units with code sharing is proposed. The method targets on reduction in the number of look-up table elements in the combinational part of control unit. Some additional control microinstructions containing codes of the classes of pseudoequivalent chains are used for operational linear chains modification. The proposed method is illustrated by an example. The research results for various graph-scheme of algorithms (GSA) are illustrated with the diagrams. Most desirable GSA characteristics for using proposed method were obtained.
Key words – compositional microprogram control unit, graph-scheme of algorithm, FPGA, logic design, LUT.
1. Introduction

A control unit (CU) is one of the important blocks of any digital system [1]. The problem of hardware amount reduction is an important problem connected with implementation of logic circuits of CUs [2]. Peculiarities of a control algorithm to be implemented as well as logic elements in use should be taken into account to solve this problem. In this article we propose a method of this problem solution in the case when a linear control algorithm is implemented using field-programmable gate arrays (FPGA). Peculiarity of FPGA is a very small amount of inputs in look–up table (LUT) elements (not more than 4-6) [3]. It leads to application of the functional decomposition, the number of levels in combinational part of CU increases and therefore, its cycle of time increases too. To decrease this negative effect, it is desirable to diminish the number of variables in logic functions to be implemented [6]. The second feature of modern FPGA is existence of embedded memory blocks (EMB), which can be used for implementing regular parts of a CU [3].
Compositional microprogram control units (CMCU) are widely used for implementation of linear GSAs [6]. Remind that in a linear algorithm there are more than 75% of operator vertices [6]. In case of CMCU, its addressing circuit is implemented using LUT elements, and its control memory is implemented using EMBs. In this article we propose to use the classes of pseudoequivalent operational linear chains (POLC) and the maximal encoding of the collections of microoperations for reduction of code sharing. A control algorithm to be interpreted is represented by a graph-scheme of algorithm (GSA) [7].
2. Analysis of CMCU with code sharing
Let a control algorithm to be interpreted be represented by a graph-scheme of algorithm (GSA) Г [7]. Let this GSA be characterized by the set of vertices
[image: image1.wmf]2

1

0

}

,

{

E

E

b

b

B

E

È

È

=

 and the set of arcs
[image: image2.wmf]E

, where
[image: image3.wmf]0

b

 is an initial vertex,
[image: image4.wmf]E

b

 is a final vertex,
[image: image5.wmf]1

E

 is a set of operator vertices, and
[image: image6.wmf]2

E

 is a set of conditional vertices. Each operator vertex
[image: image7.wmf]1

E

b

q

Î

 contains a collection of microoperations
[image: image8.wmf]Y

b

Y

q

Í

)

(

, where
[image: image9.wmf]}

...,

,

{

1

N

y

y

Y

=

 is a set of data-path microoperations. Each conditional vertex
[image: image10.wmf]2

E

b

q

Î

 contains some element
[image: image11.wmf]X

x

l

Î

, where
[image: image12.wmf]}

,...,

{

1

L

x

x

X

=

 is a set of logical conditions (input signals). A GSA
[image: image13.wmf]G

 is named a linear GSA [6] if the number of its operator vertices exceeds 75% of the total their number in the GSA.

Let the set
[image: image14.wmf]}

...,

,

{

1

G

C

a

a

=

 be constructed for GSA
[image: image15.wmf]Γ

, where
[image: image16.wmf]C

g

Î

a

 is an operational linear chain (OLC) [6]. Any component
[image: image17.wmf]i

g

b

 of OLC
[image: image18.wmf]C

g

Î

a

 belongs to the set
[image: image19.wmf]1

E

[image: image20.wmf])

...

,

1

(

g

F

i

,

=

. Each pair of adjacent components
[image: image21.wmf]i

g

b

,
[image: image22.wmf]1

+

i

g

b

 corresponds to the arc
[image: image23.wmf]E

b

b

gi

gi

>Î

<

+

1

,

, where
[image: image24.wmf]1

...

,

1

-

=

g

F

i

,

,
[image: image25.wmf]G

g

,

...

,

1

=

. Each OLC
[image: image26.wmf]C

g

Î

a

 has only one output
[image: image27.wmf]g

O

 and the arbitrary number of inputs. Formal definitions of OLC, its input and output can be found in [6]. Each vertex
[image: image28.wmf]1

E

b

q

Î

 corresponds to microinstruction
[image: image29.wmf]q

MI

 kept in the cell of control memory (CM) with address
[image: image30.wmf]q

A

. It is enough

[image: image31.wmf]é

ù

M

R

2

log

=

(1)

bits for microinstruction addressing, where
[image: image32.wmf]1

E

M

=

. Let each OLC
[image: image33.wmf]C

g

Î

a

 include
[image: image34.wmf]g

F

 components and
[image: image35.wmf])

...,

,

max(

G

F

F

Q

1

=

. Let each OLC
[image: image36.wmf]C

g

Î

a

 be encoded by binary code
[image: image37.wmf])

(

g

K

a

 having

[image: image38.wmf]é

ù

G

R

2

1

log

=

(2)

bits and variables
[image: image39.wmf]t

t

Î

r

 be used for such an encoding, where
[image: image40.wmf]1

R

=

t

. Let each component
[image: image41.wmf]1

E

b

q

Î

 be encoded by binary code
[image: image42.wmf])

(

q

b

K

 having

[image: image43.wmf]é

ù

Q

R

2

2

log

=

(3)

bits and variables
[image: image44.wmf]T

T

r

Î

 be used for this encoding, where
[image: image45.wmf]2

R

T

=

. The encoding of components is executed in such a manner that condition

[image: image46.wmf]1

1

+

=

+

)

(

)

(

gi

gi

b

K

b

K

(4)

takes place for each OLC
[image: image47.wmf]C

g

Î

a

[image: image48.wmf])

...

,

(

1

1

-

=

g

F

,

i

. If condition

[image: image49.wmf]R

R

R

=

+

2

1

(5)

takes place, then the model of CMCU with code sharing
[image: image50.wmf]1

U

 can be used for interpretation of GSA
[image: image51.wmf]Γ

 (Fig. 1).

[image: image52.jpg]—
Block of Start
Microinstruction Clock

Addressing

> R B Fetch

Fig. 1. Structural diagram of CMCU U1
In CMCU
[image: image53.wmf]1

U

, a block of microinstruction addressing (BMA) implements the system of input memory functions for counter CT and register RG:

[image: image54.wmf].

;

X)

,

(

X)

,

(

t

t

Y

=

Y

F

=

F

(6)
Let us point out that in the case of CMCU
[image: image55.wmf]1

U

 an address of microinstruction is represented as the following one:

[image: image56.wmf])

)*K(b

K(

α

)

A(b

q

g

q

=

,
(7)

where
[image: image57.wmf]q

b

 is a component of OLC
[image: image58.wmf]C

g

Î

a

 and “*” is a sign of concatenation. The CMCU
[image: image59.wmf]1

U

 operates in the following order.

If
[image: image60.wmf]1

=

Start

, then an initial address (all zeros) is loaded into RG and CT. In the same time a flip-flop TF is set up which causes
[image: image61.wmf]1

=

Fetch

, then microinstructions can be read out of control memory. Each cell of CM keeps microoperations
[image: image62.wmf]Y

y

n

Î

 and special variables
[image: image63.wmf]0

y

 and
[image: image64.wmf]E

y

. If
[image: image65.wmf]1

0

=

y

, then a current content of CT is incremented, otherwise both CT and RG are loaded from BMA. The first case corresponds to transition from any OLC component except of its output. The second case corresponds to transition from an OLC output. If
[image: image66.wmf]1

=

E

y

, then the flip-flop TF is reset, signal
[image: image67.wmf]0

=

Fetch

 and operation of CMCU is terminated. It corresponds to transition from the vertex
[image: image68.wmf]1

E

b

q

Î

, where
[image: image69.wmf]E

b

b

E

q

>Î

<

,

. Pulse Clock is used for timing of CMCU.

Let us point out that OLC
[image: image70.wmf]C

j

i

Î

a

a

,

 are pseudoequivalent OLC [6] if their outputs are connected with input of the same vertex of GSA
[image: image71.wmf]G

. The hardware amount in logic circuit of BMA can be decreased due to introduction of a special block for transforming the OLC codes into the codes of the classes of pseudoequivalent OLC named as a code transformer (TC) [6]. But the TC consumes some resources of the chip in use.

In this article we propose to use free cells of CM for this transformation. To reduce the number of EMB in the control memory, we propose to use the maximum encoding of collections of microoperations [2].
3. Main idea of proposed method
Let
[image: image72.wmf]C

C

Ì

1

 be a set of OLC such that their outputs are not connected with the vertex
[image: image73.wmf]E

b

. Let us find the partition
[image: image74.wmf]}

,...B

{B

Π

I

C

1

=

 of the set
[image: image75.wmf]1

C

 by the classes of POLC. Let us encode classes
[image: image76.wmf]C

i

B

P

Î

 by binary codes
[image: image77.wmf])

(

i

B

K

 having
[image: image78.wmf]B

R

 bits, where

[image: image79.wmf]é

ù

I

R

B

2

log

=

.
(8)

Let us use variables
[image: image80.wmf]V

v

r

Î

 for this encoding, where
[image: image81.wmf]B

R

V

=

.

In the process of CMCU synthesis, an initial GSA
[image: image82.wmf]Γ

 is transformed and additional variables
[image: image83.wmf]0

y

 and
[image: image84.wmf]E

y

 are introduced in its operational vertices. Thus, the initial set
[image: image85.wmf]Y

 is transformed in the set
[image: image86.wmf]}

,

{

E

C

y

y

Y

Y

0

È

=

. Let the set
[image: image87.wmf]C

Y

 includes
[image: image88.wmf]1

Q

 different collections of microoperations (CMO). Let us encode each collection
[image: image89.wmf]q

Y

 by a binary code
[image: image90.wmf])

(

q

Y

K

 having
[image: image91.wmf]Y

R

 bits, where

[image: image92.wmf]é

ù

1

2

Q

R

Y

log

=

.
(9)

Let us use variables
[image: image93.wmf]Z

z

r

Î

 for this encoding, where
[image: image94.wmf]Y

R

Z

=

. In this case the control memory includes two blocks [2], namely a block of micromemory (BMM) and a block of microoperations (BMO). The BMM generates functions

[image: image95.wmf])

,

(

t

T

Z

Z

=

,
(10)

and the BMO generates variables

[image: image96.wmf])

(

Z

Y

Y

C

C

=

.
(11)

In this article we propose to include the fields
[image: image97.wmf])

(

i

B

K

 and
[image: image98.wmf])

(

q

Y

K

 in the microinstruction format. These microinstructions include
[image: image99.wmf]I

R

 bits, where

[image: image100.wmf]Y

B

I

R

R

R

+

=

.
(12)

Both BMM and BMO are implemented using EMBs having
[image: image101.wmf]t

 outputs. Assume that each EMB includes
[image: image102.wmf]q

 words and

[image: image103.wmf])

,

max(

1

Q

M

q

³

.
(13)

The block BMM has
[image: image104.wmf]Y

R

 outputs and it is implemented using
[image: image105.wmf]1

n

 blocks EMB, where

[image: image106.wmf]ú

ú

ù

ê

ê

é

=

t

R

n

Y

1

.
(14)

In this case, there are
[image: image107.wmf]3

R

 free bits in the word of BMM, where

[image: image108.wmf]Y

R

t

n

R

-

=

1

3

.
(15)

These free bits can be used for keeping of some part
[image: image109.wmf]1

V

 of the code
[image: image110.wmf])

(

i

B

K

.

All bits of
[image: image111.wmf])

(

i

B

K

 are generated by the BMM if the following condition takes place:

[image: image112.wmf]B

R

R

³

3

.
(16)

Otherwise, the block of code transformer (BCT) is used to generate the rest of the bits,
[image: image113.wmf]4

R

, where

[image: image114.wmf]3

4

R

R

R

B

-

=

.
(17)

These bits form a part
[image: image115.wmf]2

V

 of the code
[image: image116.wmf])

(

i

B

K

. This approach leads to a CMCU
[image: image117.wmf]2

U

 (Fig. 2).

[image: image118.jpg]Block of
Microinstruction
Addressing

Block of
Micro-

)

Block of
Code

(BCT)

Transformer

Memory
(BMM)

V2

Block of
Micro-

Operation
(BMO)

Fig. 2. Srtuctural diagram of CMCU U2
In CMCU
[image: image119.wmf]2

U

, the block BMA implements functions

[image: image120.wmf])

,

(

X

V

F

=

F

,
(18)

[image: image121.wmf])

,

(

X

V

Y

=

Y

,
(19)

and the block BCT implements functions

[image: image122.wmf])

(

t

2

2

V

V

=

.
(20)

The following conditions take places:

[image: image123.wmf]V

V

V

=

È

2

1

,
(21)

[image: image124.wmf]Æ

=

Ç

2

1

V

V

.
(22)

Functions of other blocks have been already discussed. Let us point out that logic circuits of BMA, CT, RG and TF are implemented using LUT elements, whereas circuits of BMM and BMO using EMBs. Logic circuits of BCT can be implemented using either LUT elements or EMBs.

In this article the following synthesis method is proposed for the CMCU
[image: image125.wmf]2

U

:

1. Construction of sets
[image: image126.wmf]C

,
[image: image127.wmf]1

C

 and
[image: image128.wmf]C

Π

 for initial GSA
[image: image129.wmf]Γ

.

2. Encoding of OLCs, their components and classes.

3. Encoding of collections of microoperations
[image: image130.wmf]C

q

Y

Y

Í

.

4. Construction of control memory contents for blocks BMM and BMO.

5. Construction of CMCU transition table.

6. Construction of BCT table.

7. Logic synthesis of CMCU logic circuit.
4. Application of proposed method
Let a GSA
[image: image131.wmf]1

Γ

 be represented by the sets
[image: image132.wmf]}

,...,

{

8

1

a

a

=

C

, where
[image: image133.wmf]1

8

C

Ï

a

, and
[image: image134.wmf]}

,...

{

5

1

B

B

C

=

P

, where
[image: image135.wmf]}

{

1

1

a

=

B

,
[image: image136.wmf]}

,

{

3

2

2

a

a

=

B

,
[image: image137.wmf]}

,

{

5

4

3

a

a

=

B

,
[image: image138.wmf]}

{

6

4

a

=

B

 and
[image: image139.wmf]}

{

7

5

a

=

B

. Content of
[image: image140.wmf]i

a

 is:

[image: image141.wmf]>

=<

3

2

1

1

b

b

b

,

,

a

,

[image: image142.wmf]>

=<

7

6

5

4

2

,

,

,

b

b

b

b

a

,

[image: image143.wmf]>

=<

9

8

3

b

b

,

a

,

[image: image144.wmf]>

=<

12

11

10

4

,

,

b

b

b

a

,

[image: image145.wmf]>

=<

16

15

14

13

5

,

,

,

b

b

b

b

a

,

[image: image146.wmf]>

=<

19

18

17

6

,

,

b

b

b

a

,

[image: image147.wmf]>

=<

21

20

7

b

b

,

a

,

[image: image148.wmf]>

=<

24

23

22

8

b

b

b

,

,

a

. Therefore, we can get the following values and sets: the number of OLC
[image: image149.wmf]8

=

G

, for their encoding we use
[image: image150.wmf]3

1

=

R

 variables from the set
[image: image151.wmf]}

,

,

{

3

2

1

t

t

t

t

=

, maximum OLC length is
[image: image152.wmf]4

=

Q

 vertices, for their encoding
[image: image153.wmf]2

2

=

R

 variables from the set
[image: image154.wmf]}

,

{

2

1

T

T

T

=

 is enough, the number of operational vertices in the GSA
[image: image155.wmf]24

=

M

,
[image: image156.wmf]5

=

R

 bits are necessary for their encoding. Hence, condition (5) takes place and there is possibility to use the code sharing. It is enough
[image: image157.wmf]3

=

B

R

 variables for encoding of the classes
[image: image158.wmf]C

i

B

P

Î

. It means that
[image: image159.wmf]}

,

,

{

3

2

1

v

v

v

V

=

.

Let us encode OLC
[image: image160.wmf]C

g

Î

a

 and their components in the following way:
[image: image161.wmf]000

1

=

)

(

a

K

, …,
[image: image162.wmf]111

)

(

8

=

a

K

,
[image: image163.wmf]000

1

=

)

(

B

K

, …,
[image: image164.wmf]100

)

(

5

=

B

K

. To satisfy the condition (4), let the first component of each OLC
[image: image165.wmf]C

g

Î

a

 have code 00, the second 01, the third 10, and the fourth 11. It leads to microinstruction addresses
[image: image166.wmf])

(

q

b

A

 shown in Table 1.
Table 1

Microinstruction addresses for CMCU U2(Г1)
	Address
	000
	001
	010
	011
	100
	101
	110
	111

	00
	
[image: image167.wmf]1

b

	
[image: image168.wmf]4

b

	
[image: image169.wmf]8

b

	
[image: image170.wmf]10

b

	
[image: image171.wmf]13

b

	
[image: image172.wmf]17

b

	
[image: image173.wmf]20

b

	
[image: image174.wmf]22

b

	01
	
[image: image175.wmf]2

b

	
[image: image176.wmf]5

b

	
[image: image177.wmf]9

b

	
[image: image178.wmf]11

b

	
[image: image179.wmf]14

b

	
[image: image180.wmf]18

b

	
[image: image181.wmf]21

b

	
[image: image182.wmf]23

b

	10
	
[image: image183.wmf]3

b

	
[image: image184.wmf]6

b

	*
	
[image: image185.wmf]12

b

	
[image: image186.wmf]15

b

	
[image: image187.wmf]19

b

	*
	
[image: image188.wmf]24

b

	11
	*
	
[image: image189.wmf]7

b

	*
	*
	
[image: image190.wmf]16

b

	*
	*
	*

From Table 1 we can derive, for example, that
[image: image191.wmf]00101

5

=

)

(

b

A

,
[image: image192.wmf]10010

15

=

)

(

b

A

, and so on. Replacement of vertices by corresponding collections of microoperations in Table 1 results in the content of control memory (Table 2).

Obviously, collections of microoperations are taken from the GSA
[image: image193.wmf]1

Γ

, but we do not show it.
Table 2

Control memory content for CMCU U2(Г1)
	Address
	000
	001
	010
	011
	100
	101
	110
	111

	00
	
[image: image194.wmf]2

1

0

y

y

y

,

,

	
[image: image195.wmf]5

3

0

y

y

y

,

,

	
[image: image196.wmf]2

1

0

y

y

y

,

,

	
[image: image197.wmf]6

3

0

y

y

y

,

,

	
[image: image198.wmf]5

3

0

y

y

y

,

,

	
[image: image199.wmf]2

1

0

y

y

y

,

,

	
[image: image200.wmf]6

3

0

y

y

y

,

,

	
[image: image201.wmf]9

3

0

y

y

y

,

,

	01
	
[image: image202.wmf]9

3

0

y

y

y

,

,

	
[image: image203.wmf]9

3

0

y

y

y

,

,

	
[image: image204.wmf]7

1

y

y

,

	
[image: image205.wmf]9

3

0

y

y

y

,

,

	
[image: image206.wmf]9

3

0

y

y

y

,

,

	
[image: image207.wmf]5

3

0

y

y

y

,

,

	
[image: image208.wmf]8

y

	
[image: image209.wmf]6

3

0

y

y

y

,

,

	10
	
[image: image210.wmf]4

y

	
[image: image211.wmf]6

3

0

y

y

y

,

,

	*
	
[image: image212.wmf]8

y

	
[image: image213.wmf]2

1

0

y

y

y

,

,

	
[image: image214.wmf]4

y

	*
	
[image: image215.wmf]E

y

y

y

,

,

2

1

	11
	*
	
[image: image216.wmf]8

y

	*
	*
	
[image: image217.wmf]7

1

y

y

,

	*
	*
	*

As follows from Table 2, the control memory includes
[image: image218.wmf]8

1

=

Q

 collections of microoperations, namely:
[image: image219.wmf]}

,

,

{

2

1

0

1

y

y

y

Y

=

,
[image: image220.wmf]}

,

,

{

9

3

0

2

y

y

y

Y

=

,
[image: image221.wmf]}

{

4

3

y

Y

=

,
[image: image222.wmf]}

,

,

{

5

3

0

4

y

y

y

Y

=

,
[image: image223.wmf]}

,

,

{

6

3

0

5

y

y

y

Y

=

,
[image: image224.wmf]}

,

{

7

1

6

y

y

Y

=

,
[image: image225.wmf]}

{

8

7

y

Y

=

,
[image: image226.wmf]}

,

,

{

E

y

y

y

Y

2

1

8

=

. They can be encoded using
[image: image227.wmf]3

=

Y

R

 variables, therefore
[image: image228.wmf]}

,

,

{

3

2

1

z

z

z

Z

=

.

Let EMB in use have
[image: image229.wmf]2

=

t

 outputs, then number of used EMB
[image: image230.wmf]2

1

=

n

. Number of non-used bits
[image: image231.wmf]1

3

=

R

. It means that one bit of the code
[image: image232.wmf])

(

i

B

K

 can be generated by the block BMM. Let variables
[image: image233.wmf]V

v

r

Î

 be devided between
[image: image234.wmf]1

V

 and
[image: image235.wmf]2

V

 in the following way:
[image: image236.wmf]}

{

1

1

v

V

=

,
[image: image237.wmf]}

,

{

3

2

2

v

v

V

=

.

It is enough to replace the collections in Table 1 by their codes to specify the block BMM. Each output of OLC
[image: image238.wmf]i

g

B

Î

a

 is complemented by value of the first bit of code
[image: image239.wmf])

(

i

B

K

. In our example, the block BMM is represented by Table 3, and the variable
[image: image240.wmf]1

v

 is included in the output of OLC
[image: image241.wmf]7

a

.
Table 3

Content of block BMM for CMCU U2(Г1)
	Address
	000
	001
	010
	011
	100
	101
	110
	111

	00
	000
	001
	000
	011
	100
	000
	100
	001

	01
	001
	011
	101
[image: image242.wmf]
	100
	001
	011
	110
[image: image243.wmf]1

v

	100

	10
	010
[image: image244.wmf]
	100
	*
	110
[image: image245.wmf]
	000
	010
[image: image246.wmf]
	*
	111

	11
	*
	110
[image: image247.wmf]
	*
	*
	101
[image: image248.wmf]
	*
	*
	*

The block BMO is specified by a table with columns
[image: image249.wmf])

(

q

Y

K

,
[image: image250.wmf]q

Y

,
[image: image251.wmf]q

. This table is constructed in a trivial way (Table 4).
Table 4

Content of block BMO for CMCU U2(Г1)
	
[image: image252.wmf])

(

q

Y

K

	
[image: image253.wmf]q

Y

	
[image: image254.wmf]q

	
[image: image255.wmf])

(

q

Y

K

	
[image: image256.wmf]q

Y

	
[image: image257.wmf]q

	000
	
[image: image258.wmf]2

1

0

y

y

y

,

,

	1
	100
	
[image: image259.wmf]6

3

0

y

y

y

,

,

	5

	001
	
[image: image260.wmf]9

3

0

y

y

y

,

,

	2
	101
	
[image: image261.wmf]7

1

y

y

,

	6

	010
	
[image: image262.wmf]4

y

	3
	110
	
[image: image263.wmf]8

y

	7

	011
	
[image: image264.wmf]5

3

0

y

y

y

,

,

	4
	111
	
[image: image265.wmf]E

y

y

y

,

,

2

1

	8

To construct the table of transitions for CMCU
[image: image266.wmf]2

U

, it is necessary to construct the system of generalized formulae of transitions [6] for classes
[image: image267.wmf]C

i

B

P

Î

. Let the following system exist for our example:

[image: image268.wmf].

;

;

;

;

11

1

22

1

5

20

4

18

3

2

20

3

2

17

2

3

17

4

3

13

4

3

10

3

2

8

1

4

1

1

b

x

b

x

B

b

B

b

x

x

b

x

x

b

x

B

b

x

x

b

x

x

b

x

B

b

x

b

x

B

Ú

®

®

Ú

Ú

®

Ú

Ú

®

Ú

®

(23)

Such a system is the base for construction of CMCU transition table including the following columns:
[image: image269.wmf]i

B

,
[image: image270.wmf])

(

i

B

K

,
[image: image271.wmf]q

b

,
[image: image272.wmf])

(

q

b

A

,
[image: image273.wmf]h

X

,
[image: image274.wmf]h

F

,
[image: image275.wmf]h

Y

,
[image: image276.wmf]h

. The purpose of each column is clear from Table 5. The number of such a table rows
[image: image277.wmf]H

 is determined by the number of terms in system of generalized formulae of transitions. In our case we have
[image: image278.wmf]11

=

H

.
Table 5

Fragment of transitions table for CMCU U2(Г1)
	
[image: image279.wmf]i

B

	
[image: image280.wmf])

(

i

B

K

	
[image: image281.wmf]q

b

	
[image: image282.wmf])

(

q

b

A

	
[image: image283.wmf]h

X

	
[image: image284.wmf]h

F

	
[image: image285.wmf]h

Y

	
[image: image286.wmf]h

	
[image: image287.wmf]3

B

	010
	
[image: image288.wmf]17

b

	10100
	
[image: image289.wmf]2

x

	–
	
[image: image290.wmf]3

1

D

D

	6

	
	
	
[image: image291.wmf]20

b

	11000
	
[image: image292.wmf]3

2

x

x

	–
	
[image: image293.wmf]2

1

D

D

	7

	
	
	
[image: image294.wmf]18

b

	10101
	
[image: image295.wmf]3

2

x

x

	
[image: image296.wmf]5

D

	
[image: image297.wmf]3

1

D

D

	8

This fragment describes the transitions for class
[image: image298.wmf]3

B

, starting from the sixth term of system (23). The table of transitions is used to derive functions (18)-(19), having the following terms

[image: image299.wmf])

,...,

(

H

h

X

v

F

h

l

r

R

r

h

rh

B

1

1

=

×

÷

÷

ø

ö

ç

ç

è

æ

Ù

=

=

.
(24)

In system (24), the symbol
[image: image300.wmf]rh

l

 stands for value of the bit
[image: image301.wmf]r

 of code
[image: image302.wmf])

(

i

B

K

 from the line
[image: image303.wmf]h

 of the table:
[image: image304.wmf]}

,

{

1

0

Î

rh

l

,
[image: image305.wmf]r

r

v

v

=

0

,
[image: image306.wmf]r

r

v

v

=

1

[image: image307.wmf])

,..,

(

B

R

r

1

=

. For example, the following system can be derived from Table 5:

[image: image308.wmf]3

2

1

8

7

6

1

v

v

v

F

F

F

D

=

Ú

Ú

=

;

[image: image309.wmf]3

2

3

2

1

2

3

2

1

8

6

2

x

x

v

v

v

x

v

v

v

F

F

D

Ú

=

Ú

=

;

[image: image310.wmf]3

2

3

2

1

8

3

x

x

v

v

v

F

D

=

=

.

The table of BCT includes columns
[image: image311.wmf]g

a

,
[image: image312.wmf])

(

g

K

a

,
[image: image313.wmf]i

B

,
[image: image314.wmf])

(

i

B

K

,
[image: image315.wmf]2

g

V

. In our example, Table 6 represents the block BCT.
Table 6

Specification of block BCT for CMCU U2(Г1)
	
[image: image316.wmf]g

a

	
[image: image317.wmf])

(

g

K

a

	
[image: image318.wmf]i

B

	
[image: image319.wmf])

(

i

B

K

	
[image: image320.wmf]2

g

V

	
[image: image321.wmf]g

	
[image: image322.wmf]1

a

	000
	
[image: image323.wmf]1

B

	000
	–
	1

	
[image: image324.wmf]2

a

	001
	
[image: image325.wmf]2

B

	001
	
[image: image326.wmf]3

v

	2

	
[image: image327.wmf]3

a

	010
	
[image: image328.wmf]2

B

	001
	
[image: image329.wmf]3

v

	3

	
[image: image330.wmf]4

a

	011
	
[image: image331.wmf]3

B

	010
	
[image: image332.wmf]2

v

	4

	
[image: image333.wmf]5

a

	100
	
[image: image334.wmf]3

B

	010
	
[image: image335.wmf]2

v

	5

	
[image: image336.wmf]6

a

	101
	
[image: image337.wmf]4

B

	011
	
[image: image338.wmf]3

2

v

v

	6

	
[image: image339.wmf]7

a

	110
	
[image: image340.wmf]5

B

	100
	–
	7

	
[image: image341.wmf]8

a

	111
	
[image: image342.wmf]6

B

	–
	–
	8

Remind that the variable
[image: image343.wmf]1

v

 is generated by the block BMM. In the same time, there is no code
[image: image344.wmf])

(

6

B

K

 because
[image: image345.wmf]1

8

C

Ï

a

. Obviously, this table specifies blocks EMB. If the logic circuit of BCT is implemented using LUT elements, then Table 6 corresponds to Karnaugh maps for function
[image: image346.wmf]2

V

v

r

Î

. To optimize system (20), we should encode OLC
[image: image347.wmf]1

C

g

Î

a

 in the optimal way. The well-known method ESPRESSO [1], for example, can be used for such an encoding. We do not discuss this task in our article.

Implementation of the logic circuit of CMCU
[image: image348.wmf]2

U

 is reduced to implementation of systems (18)-(19) using LUT elements, and tables similar to Table 3, Table 4, and Table 6 using EMB. To solve this task, a designer can use either standard tools [8,9] or some known methods [3]. We do not discuss this step also.

Let us point out that the control memory of CMCU
[image: image349.wmf])

(

Γ

U

1

1

 includes 32*12=384 bits (if
[image: image350.wmf]2

=

t

), and CMCU transition table includes 17 lines. In the CMCU
[image: image351.wmf])

(

Γ

U

1

2

, the BMM includes 32*4=128 bits, the BMO requires 8*11=88 bits, and the BCT consumes 8*2=16 bits. Therefore, the control memory of CMCU
[image: image352.wmf])

(

Γ

U

1

2

 uses 232 bits of memory, and its transition table has
[image: image353.wmf]11

=

H

 lines. It means that the CMCU
[image: image354.wmf])

(

Γ

U

1

2

 requires 1.5 times less of the memory, and its block BMA includes 1.54 times less amount of terms.
5. Conclusion

In this article we propose the method oriented on hardware decrease in the logic circuit of CMCU. The method is based on including the field with code of class of pseudoequivalent OLC into the microinstruction format. The size of CMCU control memory is decreased too due to the maximal encoding of collections of microoperations. To decrease the number of LUT elements in the block of microinstruction addressing, the special code transformer is used. It transforms OLC codes into codes of their classes. This block can be absent if condition (16) takes place. In this case, the transformation is executed by CMCU block of micromemory.

But such an approach leads to the CMCU
[image: image355.wmf]2

U

 with less performance than this characteristic of CMCU with code sharing. Let us point out that reduction of the number of the LUT elements in logic circuit can result in decrease of its levels. It can compensate the negative effect of the memory splitting by two blocks. We made some examples of synthesis using the standard package WebPack. The results show that the number of LUT elements is decreased up to 30%, and the number of required memory blocks are decreased up to 50%. Comparison is given for CMCU
[image: image356.wmf]1

U

 and
[image: image357.wmf]2

U

. In the same time, the number of levels in logic circuit of CMCU
[image: image358.wmf]2

U

 is decreased up to 2-3. Let us remind, that the proposed method can be applied only for linear GSA, when condition (5) takes place.

The scientific novelty of proposed method is determined by use of the classes of pseudoequivalent OLC and free resources of EMB for decreasing the number of LUT elements in block of microinstruction addressing. Besides, application of encoding of collections of microoperations allows decrease for required memory resources. The practical significance of the method is determined by decrease for the number of LUT elements and EMB in CMCU logic circuit, It allows to design the circuits with less amount of hardware in comparison with known control units oriented on linear GSAs.

References
[1] De Micheli G. Synthesis and Optimization of Digital Circuits. – NY: McGraw-Hill, 1994. – 636 pp.

[2] Barkalov A.A., Wegrzyn M. Design of Control Units with Programmable Logic. – Zielona Gora: UZG Press, 2006. – 150 pp.

[3] Maxfield C. The Design Warrior’s Guide for FPGAs – Amsterdam: Elsevier, 2004. – 514 pp.

[4] Solovjev V.V. Digital circuit design with CPLD. – Moscow: Hot Line-Telecom, 2001. – 636 pp. (in Russian).
[5] Sasao T. Switching Theory for Logic Synthesis. – Boston: Kluwer Academic Publishers, 1999. – 432 pp.
[6] Barkalov A., Titarenko L. Logic Synthesis for Compositional Microprogram Control Units – Berlin : Springer, 2008. – 272 pp.

[7] Baranov S. Logic Synthesis for Control Automata – Boston: Kluwer Academic Publishers, 1994 – 312 pp.

[8] Stratix IV Device Handbook // http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf.
[9] Virtex-5 FPGA Data Sheet: DC and Switching Characteristics // http://www.xilinx.com/support/documentation/data_sheets/ds202.pdf.

_1297443388.unknown

_1297443817.unknown

_1297444194.unknown

_1300638888.unknown

_1300639016.unknown

_1300639037.unknown

_1300639058.unknown

_1301082736.unknown

_1301121501.unknown

_1302021477.unknown

_1301121543.unknown

_1301121173.unknown

_1300639100.unknown

_1301082679.unknown

_1300639073.unknown

_1300639090.unknown

_1300639044.unknown

_1300639053.unknown

_1300639040.unknown

_1300639022.unknown

_1300639033.unknown

_1300639019.unknown

_1300638979.unknown

_1300639009.unknown

_1300639013.unknown

_1300639006.unknown

_1300638895.unknown

_1300638900.unknown

_1300638891.unknown

_1300638777.unknown

_1300638850.unknown

_1300638880.unknown

_1300638884.unknown

_1300638876.unknown

_1300638842.unknown

_1300638847.unknown

_1300638838.unknown

_1297445320.unknown

_1297445409.unknown

_1297445432.unknown

_1297445469.unknown

_1297445488.unknown

_1300638740.unknown

_1297445482.unknown

_1297445437.unknown

_1297445421.unknown

_1297445424.unknown

_1297445413.unknown

_1297445340.unknown

_1297445348.unknown

_1297445396.unknown

_1297445404.unknown

_1297445345.unknown

_1297445323.unknown

_1297445335.unknown

_1297444244.unknown

_1297445307.unknown

_1297445314.unknown

_1297444222.unknown

_1297443887.unknown

_1297443979.unknown

_1297444041.unknown

_1297444057.unknown

_1297444109.unknown

_1297444126.unknown

_1297444140.unknown

_1297444142.unknown

_1297444146.unknown

_1297444129.unknown

_1297444119.unknown

_1297444097.unknown

_1297444105.unknown

_1297444090.unknown

_1297444048.unknown

_1297444053.unknown

_1297444045.unknown

_1297444010.unknown

_1297444030.unknown

_1297444033.unknown

_1297444016.unknown

_1297444020.unknown

_1297444013.unknown

_1297443992.unknown

_1297443997.unknown

_1297444000.unknown

_1297443989.unknown

_1297443944.unknown

_1297443965.unknown

_1297443971.unknown

_1297443975.unknown

_1297443968.unknown

_1297443950.unknown

_1297443957.unknown

_1297443961.unknown

_1297443954.unknown

_1297443947.unknown

_1297443903.unknown

_1297443922.unknown

_1297443929.unknown

_1297443936.unknown

_1297443939.unknown

_1297443933.unknown

_1297443926.unknown

_1297443906.unknown

_1297443896.unknown

_1297443900.unknown

_1297443893.unknown

_1297443858.unknown

_1297443873.unknown

_1297443880.unknown

_1297443883.unknown

_1297443876.unknown

_1297443867.unknown

_1297443870.unknown

_1297443864.unknown

_1297443833.unknown

_1297443848.unknown

_1297443855.unknown

_1297443838.unknown

_1297443826.unknown

_1297443830.unknown

_1297443823.unknown

_1297443820.unknown

_1297443646.unknown

_1297443743.unknown

_1297443786.unknown

_1297443805.unknown

_1297443810.unknown

_1297443814.unknown

_1297443812.unknown

_1297443807.unknown

_1297443793.unknown

_1297443796.unknown

_1297443799.unknown

_1297443790.unknown

_1297443756.unknown

_1297443766.unknown

_1297443783.unknown

_1297443779.unknown

_1297443762.unknown

_1297443750.unknown

_1297443753.unknown

_1297443746.unknown

_1297443706.unknown

_1297443725.unknown

_1297443736.unknown

_1297443740.unknown

_1297443733.unknown

_1297443716.unknown

_1297443721.unknown

_1297443710.unknown

_1297443679.unknown

_1297443688.unknown

_1297443691.unknown

_1297443693.unknown

_1297443685.unknown

_1297443656.unknown

_1297443667.unknown

_1297443673.unknown

_1297443676.unknown

_1297443670.unknown

_1297443663.unknown

_1297443652.unknown

_1297443540.unknown

_1297443599.unknown

_1297443618.unknown

_1297443637.unknown

_1297443643.unknown

_1297443631.unknown

_1297443609.unknown

_1297443614.unknown

_1297443604.unknown

_1297443558.unknown

_1297443572.unknown

_1297443591.unknown

_1297443568.unknown

_1297443549.unknown

_1297443554.unknown

_1297443550.unknown

_1297443545.unknown

_1297443507.unknown

_1297443523.unknown

_1297443531.unknown

_1297443535.unknown

_1297443527.unknown

_1297443514.unknown

_1297443520.unknown

_1297443510.unknown

_1297443447.unknown

_1297443480.unknown

_1297443495.unknown

_1297443491.unknown

_1297443473.unknown

_1297443456.unknown

_1297443415.unknown

_1297443429.unknown

_1297443393.unknown

_1297443018.unknown

_1297443158.unknown

_1297443296.unknown

_1297443345.unknown

_1297443373.unknown

_1297443380.unknown

_1297443384.unknown

_1297443376.unknown

_1297443359.unknown

_1297443366.unknown

_1297443369.unknown

_1297443363.unknown

_1297443352.unknown

_1297443355.unknown

_1297443348.unknown

_1297443326.unknown

_1297443333.unknown

_1297443337.unknown

_1297443341.unknown

_1297443330.unknown

_1297443309.unknown

_1297443319.unknown

_1297443322.unknown

_1297443313.unknown

_1297443302.unknown

_1297443305.unknown

_1297443229.unknown

_1297443250.unknown

_1297443269.unknown

_1297443276.unknown

_1297443260.unknown

_1297443243.unknown

_1297443247.unknown

_1297443236.unknown

_1297443214.unknown

_1297443224.unknown

_1297443226.unknown

_1297443217.unknown

_1297443174.unknown

_1297443207.unknown

_1297443169.unknown

_1297443171.unknown

_1297443166.unknown

_1297443077.unknown

_1297443112.unknown

_1297443136.unknown

_1297443144.unknown

_1297443147.unknown

_1297443141.unknown

_1297443126.unknown

_1297443130.unknown

_1297443122.unknown

_1297443123.unknown

_1297443119.unknown

_1297443093.unknown

_1297443099.unknown

_1297443106.unknown

_1297443096.unknown

_1297443084.unknown

_1297443089.unknown

_1297443081.unknown

_1297443040.unknown

_1297443064.unknown

_1297443073.unknown

_1297443075.unknown

_1297443071.unknown

_1297443058.unknown

_1297443060.unknown

_1297443043.unknown

_1297443022.unknown

_1297443024.unknown

_1297443025.unknown

_1297443023.unknown

_1297443020.unknown

_1297443021.unknown

_1297443019.unknown

_1297442743.unknown

_1297442835.unknown

_1297442884.unknown

_1297442898.unknown

_1297443014.unknown

_1297443016.unknown

_1297443017.unknown

_1297443015.unknown

_1297442906.unknown

_1297443012.unknown

_1297443013.unknown

_1297443010.unknown

_1297443011.unknown

_1297442910.unknown

_1297442901.unknown

_1297442891.unknown

_1297442895.unknown

_1297442888.unknown

_1297442857.unknown

_1297442871.unknown

_1297442878.unknown

_1297442865.unknown

_1297442843.unknown

_1297442853.unknown

_1297442840.unknown

_1297442791.unknown

_1297442820.unknown

_1297442829.unknown

_1297442832.unknown

_1297442825.unknown

_1297442804.unknown

_1297442812.unknown

_1297442816.unknown

_1297442799.unknown

_1297442769.unknown

_1297442777.unknown

_1297442786.unknown

_1297442774.unknown

_1297442760.unknown

_1297442765.unknown

_1297442750.unknown

_1297442622.unknown

_1297442666.unknown

_1297442727.unknown

_1297442735.unknown

_1297442740.unknown

_1297442731.unknown

_1297442694.unknown

_1297442699.unknown

_1297442675.unknown

_1297442638.unknown

_1297442650.unknown

_1297442658.unknown

_1297442642.unknown

_1297442631.unknown

_1297442634.unknown

_1297442628.unknown

_1297442587.unknown

_1297442605.unknown

_1297442615.unknown

_1297442619.unknown

_1297442612.unknown

_1297442601.unknown

_1297442603.unknown

_1297442593.unknown

_1297442516.unknown

_1297442572.unknown

_1297442579.unknown

_1297442584.unknown

_1297442532.unknown

_1297442527.unknown

_1297442507.unknown

_1297442511.unknown

_1269108874.unknown

_1294933783.unknown

_1297442497.unknown

_1294082829.unknown

_1269106090.unknown

