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Abstract
The new design method for compositional microprogram control units with code sharing is proposed. The method targets on reduction in the number of look-up table elements in the combinational part of control unit. Some additional control microinstructions containing codes of the classes of pseudoequivalent chains are used for operational linear chains modification. The proposed method is illustrated by an example. The research results for various graph-scheme of algorithms (GSA) are illustrated with the diagrams. Most desirable GSA characteristics for using proposed method were obtained.
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1. Introduction

A control unit (CU) is one of the important blocks of any digital system [1]. The problem of hardware amount reduction is an important problem connected with implementation of logic circuits of CUs [2]. Peculiarities of a control algorithm to be implemented as well as logic elements in use should be taken into account to solve this problem. In this article we propose a method of this problem solution in the case when a linear control algorithm is implemented using field-programmable gate arrays (FPGA). Peculiarity of FPGA is a very small amount of inputs in look–up table (LUT) elements (not more than 4-6) [3]. It leads to application of the functional decomposition, the number of levels in combinational part of CU increases and therefore, its cycle of time increases too. To decrease this negative effect, it is desirable to diminish the number of variables in logic functions to be implemented [6]. The second feature of modern FPGA is existence of embedded memory blocks (EMB), which can be used for implementing regular parts of a CU [3].
Compositional microprogram control units (CMCU) are widely used for implementation of linear GSAs [6]. Remind that in a linear algorithm there are more than 75% of operator vertices [6]. In case of CMCU, its addressing circuit is implemented using LUT elements, and its control memory is implemented using EMBs. In this article we propose to use the classes of pseudoequivalent operational linear chains (POLC) and the maximal encoding of the collections of microoperations for reduction of code sharing. A control algorithm to be interpreted is represented by a graph-scheme of algorithm (GSA) [7].
2. Analysis of CMCU with code sharing
Let a control algorithm to be interpreted be represented by a graph-scheme of algorithm (GSA) Г [7]. Let this GSA be characterized by the set of vertices 
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 is a set of data-path microoperations. Each conditional vertex 
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 is a set of logical conditions (input signals). A GSA 
[image: image13.wmf]G

 is named a linear GSA [6] if the number of its operator vertices exceeds 75% of the total their number in the GSA.
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 is an operational linear chain (OLC) [6]. Any component 
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 and the arbitrary number of inputs. Formal definitions of OLC, its input and output can be found in [6]. Each vertex 
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bits for microinstruction addressing, where 
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bits and variables 
[image: image39.wmf]t

t

Î

r

 be used for such an encoding, where 
[image: image40.wmf]1

R

=

t

. Let each component 
[image: image41.wmf]1

E

b

q

Î

 be encoded by binary code 
[image: image42.wmf])

(

q

b

K

 having



[image: image43.wmf]é

ù

Q

R

2

2

log

=


(3)

bits and variables 
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takes place for each OLC 
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takes place, then the model of CMCU with code sharing 
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 can be used for interpretation of GSA 
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 (Fig. 1).
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Fig. 1. Structural diagram of CMCU U1
In CMCU 
[image: image53.wmf]1

U

, a block of microinstruction addressing (BMA) implements the system of input memory functions for counter CT and register RG:
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Let us point out that in the case of CMCU 
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[image: image56.wmf])

)*K(b

K(

α

)

A(b

q

g

q

=

,
(7)

where 
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 and “*” is a sign of concatenation. The CMCU 
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Let us point out that OLC 
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 are pseudoequivalent OLC [6] if their outputs are connected with input of the same vertex of GSA 
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. The hardware amount in logic circuit of BMA can be decreased due to introduction of a special block for transforming the OLC codes into the codes of the classes of pseudoequivalent OLC named as a code transformer (TC) [6]. But the TC consumes some resources of the chip in use.

In this article we propose to use free cells of CM for this transformation. To reduce the number of EMB in the control memory, we propose to use the maximum encoding of collections of microoperations [2].
3. Main idea of proposed method
Let 
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Let us use variables 
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In the process of CMCU synthesis, an initial GSA 
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Let us use variables 
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. In this case the control memory includes two blocks [2], namely a block of micromemory (BMM) and a block of microoperations (BMO). The BMM generates functions
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In this article we propose to include the fields 
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Both BMM and BMO are implemented using EMBs having 
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The block BMM has 
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In this case, there are 
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These free bits can be used for keeping of some part 
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Otherwise, the block of code transformer (BCT) is used to generate the rest of the bits, 
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These bits form a part 
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Fig. 2. Srtuctural diagram of CMCU U2
In CMCU 
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and the block BCT implements functions
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The following conditions take places:
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Functions of other blocks have been already discussed. Let us point out that logic circuits of BMA, CT, RG and TF are implemented using LUT elements, whereas circuits of BMM and BMO using EMBs. Logic circuits of BCT can be implemented using either LUT elements or EMBs.

In this article the following synthesis method is proposed for the CMCU 
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2. Encoding of OLCs, their components and classes.

3. Encoding of collections of microoperations 
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4. Construction of control memory contents for blocks BMM and BMO.

5. Construction of CMCU transition table.

6. Construction of BCT table.

7. Logic synthesis of CMCU logic circuit.
4. Application of proposed method
Let a GSA 
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. Therefore, we can get the following values and sets: the number of OLC 
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Let us encode OLC 
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Table 1

Microinstruction addresses for CMCU U2(Г1) 
	Address
	000
	001
	010
	011
	100
	101
	110
	111
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From Table 1 we can derive, for example, that 
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, and so on. Replacement of vertices by corresponding collections of microoperations in Table 1 results in the content of control memory (Table 2).

Obviously, collections of microoperations are taken from the GSA 
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Table 2

Control memory content for CMCU U2(Г1)
	Address
	000
	001
	010
	011
	100
	101
	110
	111
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As follows from Table 2, the control memory includes 
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. They can be encoded using 
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Let EMB in use have 
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 outputs, then number of used EMB 
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It is enough to replace the collections in Table 1 by their codes to specify the block BMM. Each output of OLC 
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 is complemented by value of the first bit of code 
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. In our example, the block BMM is represented by Table 3, and the variable 
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[image: image241.wmf]7

a

.
Table 3

Content of block BMM for CMCU U2(Г1)
	Address
	000
	001
	010
	011
	100
	101
	110
	111

	00
	000
	001
	000
	011
	100
	000
	100
	001

	01
	001
	011
	101
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The block BMO is specified by a table with columns 
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Table 4

Content of block BMO for CMCU U2(Г1)
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To construct the table of transitions for CMCU 
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, it is necessary to construct the system of generalized formulae of transitions [6] for classes 
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Such a system is the base for construction of CMCU transition table including the following columns: 
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 is determined by the number of terms in system of generalized formulae of transitions. In our case we have 
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Table 5

Fragment of transitions table for CMCU U2(Г1)
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This fragment describes the transitions for class 
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, starting from the sixth term of system (23). The table of transitions is used to derive functions (18)-(19), having the following terms
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In system (24), the symbol 
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The table of BCT includes columns 
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Table 6

Specification of block BCT for CMCU U2(Г1)
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Remind that the variable 
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 is generated by the block BMM. In the same time, there is no code 
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. Obviously, this table specifies blocks EMB. If the logic circuit of BCT is implemented using LUT elements, then Table 6 corresponds to Karnaugh maps for function 
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. To optimize system (20), we should encode OLC 
[image: image347.wmf]1

C

g

Î

a

 in the optimal way. The well-known method ESPRESSO [1], for example, can be used for such an encoding. We do not discuss this task in our article.

Implementation of the logic circuit of CMCU 
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 is reduced to implementation of systems (18)-(19) using LUT elements, and tables similar to Table 3, Table 4, and Table 6 using EMB. To solve this task, a designer can use either standard tools [8,9] or some known methods [3]. We do not discuss this step also.

Let us point out that the control memory of CMCU 
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 includes 32*12=384 bits (if 
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), and CMCU transition table includes 17 lines. In the CMCU 
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, the BMM includes 32*4=128 bits, the BMO requires 8*11=88 bits, and the BCT consumes 8*2=16 bits. Therefore, the control memory of CMCU 
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 uses 232 bits of memory, and its transition table has 
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 lines. It means that the CMCU 
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 requires 1.5 times less of the memory, and its block BMA includes 1.54 times less amount of terms.
5. Conclusion

In this article we propose the method oriented on hardware decrease in the logic circuit of CMCU. The method is based on including the field with code of class of pseudoequivalent OLC into the microinstruction format. The size of CMCU control memory is decreased too due to the maximal encoding of collections of microoperations. To decrease the number of LUT elements in the block of microinstruction addressing, the special code transformer is used. It transforms OLC codes into codes of their classes. This block can be absent if condition (16) takes place. In this case, the transformation is executed by CMCU block of  micromemory.

But such an approach leads to the CMCU  
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 with less performance than this characteristic of CMCU with code sharing. Let us point out that reduction of the number of the LUT elements in logic circuit can result in decrease of its levels. It can compensate the negative effect of the memory splitting by two blocks. We made some examples of synthesis using the standard package WebPack. The results show that the number of LUT elements is decreased up to 30%, and the number of required memory blocks are decreased up to 50%. Comparison is given for CMCU 
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 and 
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. In the same time, the number of levels in logic circuit of CMCU 
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 is decreased up to 2-3. Let us remind, that the proposed method can be applied only for linear GSA, when condition (5) takes place.

The scientific novelty of proposed method is determined by use of the classes of pseudoequivalent OLC and free resources of EMB for decreasing the number of LUT elements in block of microinstruction addressing. Besides, application of encoding of collections of microoperations allows decrease for required memory resources. The practical significance of the method is determined by decrease for the number of LUT elements and EMB in CMCU logic circuit, It allows to design the circuits with less amount of hardware in comparison with known control units oriented on linear GSAs.
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