eaDonNTU, Donetsk >
Научные труды ДонНТУ >
Сборник научных трудов "Системный анализ и информационные технологии в науках о природе и обществе" >
№1(6)-2(7)'2014 >
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://ea.donntu.ru/handle/123456789/30712
|
Название: | Метод гармонического баланса и глобальный анализ динамических систем |
Другие названия: | Harmonic balance method and global analysis of dynamical systems |
Авторы: | Беловодский, Валерий Николаевич Смирнов, Александр Николаевич Belovodskiy, V.N. Smirnov, A.N. |
Ключевые слова: | метод гармонического баланса динамическая система глобальный анализ уравнение Дуффинга многогранник Ньютона интервальный метод бисекции harmonic balance method dynamical system global analysis Duffing equation |
Дата публикации: | 2014 |
Издатель: | ДонНТУ |
Библиографическое описание: | Беловодский В. Н. |
Аннотация: | One of the main problems in the global analysis of oscillatory systems is the finding of
all its periodic motions for given correlations of the parameters and priori considerations give
reason to believe that for systems of differential equations with polynomial nonlinearity the use of
the harmonic balance method (HBM) for this purpose seems to be very attractive. Indeed, the
HBM enables us to reduce the finding of stationary motions of such systems to the solving of
systems of polynomial equations, the number of solutions of which, presumably, can be set using
the theory of Newton polyhedra. And, then, with the help of the interval approaches or methods of
continuation, which are currently being developed within the framework of tropical geometry, you
can determine the whole set of solutions of polynomial equations and thus, the entire range of
motions of the dynamical system.
In this paper, this hypothesis is being tested for the differential equation with cubic nonlinearity
and harmonic exciting force. We consider two versions of HBM, – trigonometric one and complex
exponential form. On their basis for the differential equation with cubic nonlinearity the
construction of polynomial equations is fulfilled and in accordance with the theorem of Bernstein,
attempt to estimate the number of solutions of the obtained system has been undertaken. Then,
with use of interval bisection method solutions of the system of polynomial equations in a given
part of phase space are determined, comparative evaluation of the complexity of the considered
versions of HBM is conducted, advantages and disadvantages of the described approach are
marked. |
URI: | http://ea.donntu.org/handle/123456789/30712 |
Располагается в коллекциях: | №1(6)-2(7)'2014
|
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.
|