К ОЦЕНКЕ ВОЗМОЖНОСТЕЙ ПРИМЕНЕНИЯ СИСТЕМЫ ТРН – АД ДЛЯ ПРИВОДА ШАХТНОГО КОНВЕЙЕРА

Остроухов И. О., студент; Борисенко В. Ф., доцент, к.т.н. (Донецкий национальный технический университет, г. Донецк, Украина)

Пуск конвейера в шахтных условиях, когда мощности приводного двигателя и питающего трансформатора соизмеримы, весьма затруднителен. К этому необходимо добавить и тот факт, что конвейер, как правило, загружен.

Проанализируем пуск системы с регулятором напряжения, имея в виду одно требование — ограничение пусковых токов двигателя BAO2-315M4 ($P_{2H}=250\kappa Bm$, $n_0=1500\sigma 6/muH$, $I_{1n}^*=6,5A,I_{1H}=246A$) на уровне $I_{1H},1,5I_{1H},2,5I_{1H}$. Действующая схема питания двигателя и через тиристорный

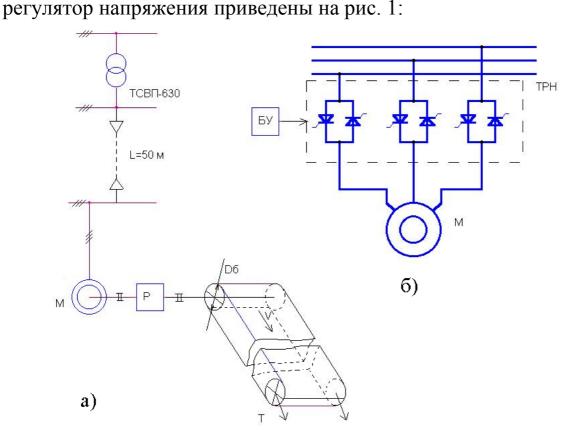


Рисунок 1 — Схема подключения двигателя к сети — а), к питанию от $TPH - \delta$).

"Автоматизація технологічних об'єктів та процесів. Пошук молодих" ДонНТУ-2003

В первом приближении рассмотрим пуск системы TPH-AД по статическим характеристикам при фиксированных углах регулирования, определяющих средние уровни пусковых токов. Для упрощения предварительных расчётов примем момент сопротивления постоянным $M_c = const$ при $\omega = var$.

Возможны несколько вариантов загрузки конвейера: полная загрузка, частичная $-Q_{noлная} > Q_{конв} > Q_{xoлocm} -$ загрузка, отсутствие нагрузки на конвейере $-Q_{xoл.xod}$ (отсутствие горной массы).

Рассмотрим последовательный пуск системы при $M_{\mathit{CMakc}} = 0.85 M_{\mathit{Hòвue}} = 1367 H \cdot \mathit{M}$

$$M_{\it Cчаст} = 0,5 M_{\it Смакс} = 683,8 H \cdot M$$

$$M_{\textit{Схол.хода}} \approx 0,2 M_{\textit{Смакс}} = 273,4 H \cdot M$$

Механические характеристики для этого случая приведены на рис.

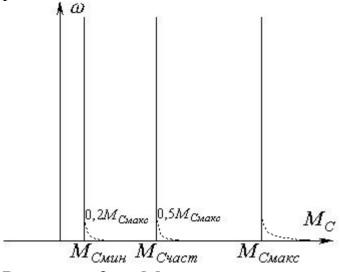


Рисунок 2.- Механические характеристики механизма при различных уровнях нагрузки конвейера (пунктиром показан реальный характер изменения M_c на начальном этапе разгона)

Предположим, что мы хотим ограничить токи в системе электроснабжения с помощью ТРН на уровне $I_{1\mu}$, 1,5 $I_{1\mu}$, 2,5 $I_{1\mu}$.

Перед расчётом переходных процессов в системе необходимо построить механические характеристики привода по системе ТРН – АД по условию ограничения среднего пускового тока на уровнях I_{1H} , 1,5 I_{1H} и 2,5 I_{1H} (рис.3):

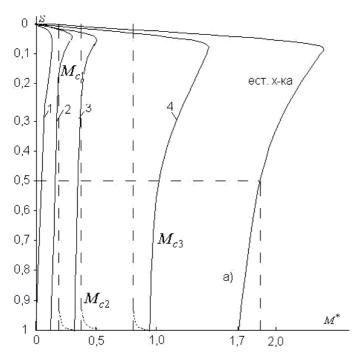


Рисунок 3 – Механические характеристики двигателя при различных уровнях токоограничения при пуске,

где
$$1-I_{\text{Low}} = I_{\text{low}}(U_1), 2-I_{\text{low}} = 1.5I_{\text{low}}(U_2), 3-I_{\text{low}} = 2.5I_{\text{low}}(U_3), 4-I_{\text{low}} = 4I_{\text{low}}(U_4).$$

Время пуска электромеханической системы конвейера может быть найдено из выражения:

$$t_p = rac{J_{\xi} \cdot \omega_{ycm}}{M_{\partial u H_{cp}}}$$
, где $M_{\partial u H_{cp}} pprox 0,25 M_{_H}$.

Искусственные механические характеристики двигателя построены с помощью соотношений:

$$M_{u1}=\frac{M_e}{27,68}; M_{u2}=\frac{M_e}{17,54}; M_{u3}=\frac{M_e}{4,41};$$
 в интервале скольжения $1\leq S\leq 0$. Мы нашли, что $t_p\approx 9c$. Если учесть падение напряжения в подводящем кабеле, то время разгона возрастёт на $(1,5-2,5)c$.

Время разгона может быть уточнено при графо — аналитическом построении переходного процесса. Анализируя механические характеристики двигателя при $I_{1cp} = I_{\scriptscriptstyle H}$, 1,5 $I_{1\scriptscriptstyle H}$, 2,5 $I_{1\scriptscriptstyle H}$, 4 $I_{1\scriptscriptstyle H}$, можно сделать вывод о том, что обязательный пуск конвейера будет иметь место при $I_{1cp} = 4I_{\scriptscriptstyle H}$. Эта величина мало отличается от I_{1n} , т.е. реальное токоограничение в системе не будет достигнуто.