ИТЕРАЦИОННЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧИ РАСПРЕДЕЛЕНИЯ РЕАКЦИЙ ПО ОПОРНЫМ ТОЧКАМ ШЕСТИНОГОГО ШАГАЮЩЕГО АППАРАТА «КАТАРИНА»

Иванова О.Ю., студентка, Рафиков Г.Ш. доцент, к.т.н.

(Донецкий национальний технический университет, г.Донецк, Украина)

Разработка алгоритмов управления движением автоматического шестиногого шагающего аппарата «Катарина» в сложных условиях бездорожья тесно связана с поиском методов решения задачи распределения реакций по опорным точкам.

Целью данной работы служит поиск решения распределения реакций по опорным точкам с минимальными временными и вычислительными затратами

В данной работе предложен приблеженный метод решения задачи распределения реакций, который был смоделирован с AutoCAD 2000 встроенного языкаVBA помощью В Использование многогранных углов вместо конусов трения позволяет приблизится к точному распределению реакций путем увеличения числа граней многогранника, апроксимирующего конус трения. Но этот метод повышения точности сопряжен с существенными затратами счета и памяти ЭВМ. В данной работе итерационный метод, позволяющий предлагается достаточно точное решение задачи распределения реакций по аппарата, точкам опоры шагающего ограничиваясь трехгранником в качестве апроксиматора конуса трения [2].

Для реализации заданного движения необходимо, чтобы реакции в опорных точках \overline{N}_i удовлетворяли системе уравнений кинетостатики

$$\sum_{i} \overline{N}_{i} = \overline{N}; \sum_{i} \overline{r}_{i} \times \overline{N}_{i} = \overline{M} , \qquad (1)$$

при имеющихся ограничениях

$$(\overline{\mathcal{G}}_{i}\overline{N}_{i}) \geq 0,$$

$$|\overline{N}_{i} - \overline{\mathcal{G}}_{i}(\overline{\mathcal{G}}_{i}\overline{N}_{i})| \leq k_{i}(\overline{\mathcal{G}}_{i}\overline{N}_{i})'$$
(2)

где \overline{N}_i реакция в і-той опорной точке;

 \overline{r}_{i} - радиус-векторы, проведенные из центра масс аппарата в опорные точки;

 \overline{N} - сумма членов уравнения количества движения аппарата, не содержащих опорных реакций;

 \overline{M} -сумма членов уравнения кинетического момента аппарата, не включающих реакций опоры;

 $\overline{\mathcal{G}}_{i}$ -единичные векторы внешней нормали к поверхности в точках опоры;

 k_i -коэффициенты трения.

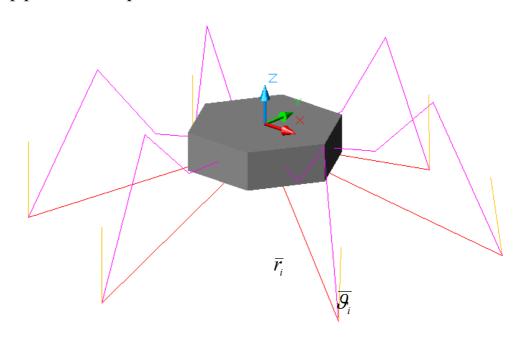


Рисунок 1- шагающий аппарат «Катарина» с указанными радиусвекторами и единичными векторами внешней нормали к поверхности в точках опоры

Предполагаем, что \overline{N} , \overline{M} , \overline{r}_i , $\overline{\mathcal{P}}_i$, k_i известны.

Аппроксимация конусов трения правильным трехгранником происходит по следующей формуле

$$\overline{\mathcal{G}}_{ij} = \frac{\overline{\mathcal{G}}_i + k_i \overline{\mu}_{ij}}{\sqrt{1 + k_i^2}},\tag{3}$$

где $\overline{\mu}_{ij}$ - единичные векторы, ортогональные вектору нормали $\overline{\mathcal{G}}_i$, i=1,...,l;l -число точек опоры; j=1,...,l1;l1 -число граней многогранника, аппроксимирующего конус трения.

Апроксимация і-той ноги

$$\overline{N}_{i} = \sum_{j=1}^{l} \overline{\mathcal{G}}_{ij} N_{ij} , \qquad (4)$$

где N_{ii} - неотрицательные числа.

После подстановки выражений получим:

$$\sum_{i=1}^{l} \sum_{j=1}^{li} \overline{\mathcal{J}}_{ij} N_{ij} = \overline{N}; \qquad \sum_{i=1}^{l} \sum_{j=1}^{li} (\overline{r}_{i} \times \overline{\mathcal{J}}_{ij}) N_{ij} = \overline{M}.$$
 (5)

Совокупность неотрицательных чисел N_{ij} будет являться решением данной задачи.

Используя представление опорных реакций (4) и (5) находим совокупность векторов \overline{N}_i , удовлетворяющих уравнениям (1), но, возможно принадлежащих не границам конусов трения, а граням трехгранников (рис.-2).

Условие принадлежности полученных реакций границам соответствующих конусов трения с точностью до ε запишем в следующем виде

$$k_{i}(\overline{\mathcal{G}}_{i}\overline{N}_{i}) - |\overline{N}_{i} - \overline{\mathcal{G}}_{i}(\overline{\mathcal{G}}_{i}\overline{N}_{i}| \le \varepsilon . \tag{6}$$

Для тех конусов трения, для которых реакция оказалась не на границе будем изменять ориентацию соответствующих трехгранников, путем поворота на угол α , вычисляемого следующим образом.

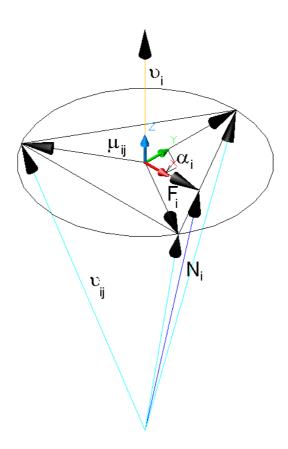


Рисунок 2- Аппроксимирующий трехгранник

Введем вектор $F_i = \overline{N}_i - \overline{\mathcal{G}}_i(\overline{\mathcal{G}}_i \overline{N}_i)$, тогда

$$\cos\alpha_{i1} = \frac{(\overline{F}_{i1}\overline{\mu}_{i1})}{|\overline{F}_{i1}|}.$$

После проверки условия (6) для всех точек опоры и выполнения указанных выше действий определяется ориентация всех трехгранников, необходимых для следующей интеграции.

Ниже приведены результаты моделирования при определении реакций по неровной местности походки типа «галоп»

Таким образом: 1)Получена математическая модель метода, которая приведена в уравнении (6).

2)С точностью до ε приведено условие принадлежности полученных реакций границам соответствующих конусов трения.

"Автоматизація технологічних об'єктів та процесів. Пошук молодих" ДонНТУ-2003

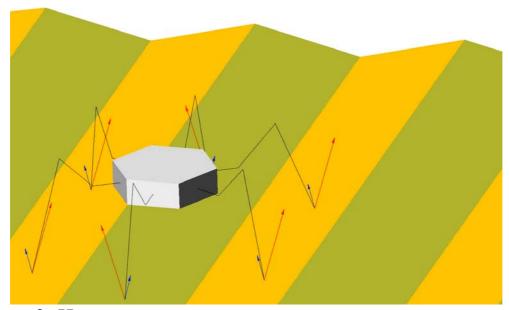


Рисунок 3- Исходное положение аппарата

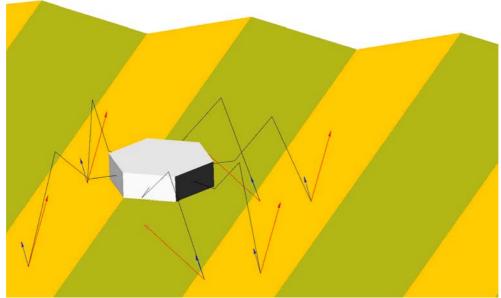


Рисунок 4- Перенос средних конечностей

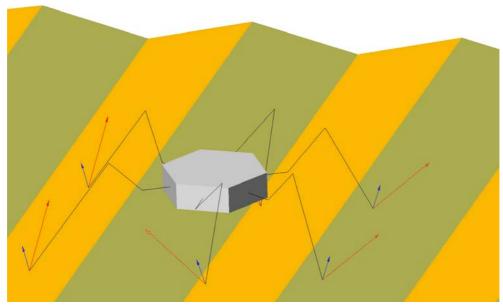


Рисунок-5 Перенос передних конечностей

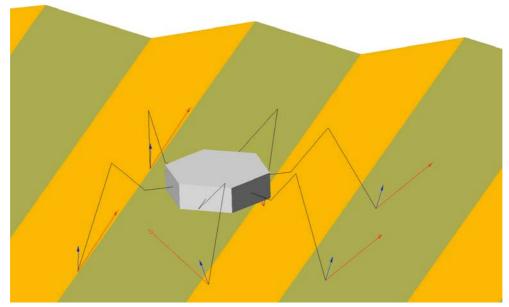


Рисунок 6-Перенос задних конечностей

- 3)Дана графическая интерпретация метода.
- 4)Проведено моделирование, целью которого был поиск распределения реакций аппарата при использовании походки «галоп» в трехмерном пространстве по неровной местности.

Перечень ссылок

- 1 Чепрушин А.Р. AutoCAD 2000 для пользователей. Днепропетровск-книга, 2001.
- 2 Голубев Ф.Ю. Распределение реакций при движении шагающего аппарата. Препринт ИПМ АН СССР, 1979, №123