THE DISTINGUISHING FUNCTIONS IN TEST GENERATION OF DIGITAL SEQUENTIAL CIRCUITS WITH MULTIPLE OBSERVATION TIME STRATEGY
Yuriy Skobtsov, Vadim Skobtsov
Abstract: An analytical approach is considered to test generation for circuits with memory which is based on method of the distinguishing functions. It uses the symbolic simulation and multiple observation time strategy of output signals, which can improve the fault coverage of test. We consider two forms of distinguishing function – disjunctive and conjunctive. Disjunctive form identifies distinguishable state pairs of good and faulty circuits and reduces the problem of test generation to verifying tautologies of distinguishing function. Conjunctive form determines the pairs of indistinguishable states and reduces the problem of test generation to satisfiability of Boolean functions problem (SAT).
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Introduction

The problem of test generation for digital sequential circuits is widely treated, and many algorithms have been suggested lately
:  structural methods, multiple-valued alphabets based, automata experiments, algorithms based on fault simulation so on. But this problem remains intractable with using three-valued alphabet and single observation time (SOT) strategy. The task complexity depends on the fact, that there is no information about initial state of the circuit in general case. When reset or synchronizing sequence is not available the sequential circuit cannot be tested with algorithms using the three-valued logic. In this case it is necessary to use other methods. The using of more adequate multiple observation time test strategy permits to improve the simulation accuracy and to distinguish state pairs of good and faulty circuits at different times. Note that the exact statement of test generation problem essentially depends on the definition of the fault detectability. In fact the various researchers use the different definitions of the fault detectability and it causes the additional difficulties. 
The purpose of this paper is the further development of analytical test generation methods for sequential circuits, based on generalized distinguishing functions through the use of multiple strategies of the output signals observation
,
,
.
Definitions

The test generation problem may be formulated analytically for given single fault of one output combinational circuit in the following way1. Let f(X) is a Boolean function implemented with good combinational circuit and φ(X) – Boolean function implemented with faulty circuit. Then Boolean expression D(X)=f(X)(φ(X) is called  distinguishing function. It is obvious that D(X)=f(X)(φ(X)=1 defines the  values of test vector X, which distinguishes behavior of good and faulty devices on the same input signals. So test generation problem is reduced to a solution search of Boolean equation D(X) =1. In the case of multiple outputs of combinational circuit the distinguishing function may be generalized in the following way:
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(1)
where m – the number of outputs lines.
Also it is obvious that a solution of Boolean equation D(X) =1 gives the test vector for given fault. The test generation problem for sequential circuits is much more complex and its target setting depends on observation time test strategy. It is known that the statement of the test generation problem for circuits with memory depends on the applied observation strategy of output signals1,2,3,4.
Let good sequential circuit realizes finite state machine (FSM) A=(X,Y,Z,(,(), where X is the input set, Y is the set of states, Z is the output set, (:Y(X(Y is the next state function, (:Y(X(Z is the output function.  Since we consider the structure model of sequential circuit then functions (  and ( are implemented with combinational circuits accordingly Hafmen model 

Y=(y1,...,yk), where 
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Further we use the following notations: X(1), X(2),…, X(p) denotes an input sequence of length p; Y(y0,0), Y(y0,1),…, Y(y0,p)  denotes the state sequence defined by initial state y0; Z(y0,1),…, Z(y0,p) denotes the output sequence defined by initial state y0 and input sequence X(1), X(2),…, X(p); zj(y0,t) is the value at the j-th  primary output after simulation step t. Using these notations the next state is defined by  
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Similarly the output Z(y0,t) is defined by the function 
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. A fault f transforms a state machine M into a machine      Af=(Y,X,Z,( f,( f), where functions ( f,( f are defined analogically.  

As an example we consider the circuit of Figure1 with the single s-a-0 fault
[image: image10.wmf]0
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. The table 1 and table 2 represent FSM, which are implemented by good and faulty circuits correspondingly. It is known that results of 3-valued simulation allow obtain low boundary of fault coverage. Therefore other more precise criterions of fault detection for sequential circuits are used (at functional level).
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Figure 1: Sequential circuit example

               Table 1: Good FSM

	S(y1y2)
	Sn, z

x=0
	Sn, z

x=1

	A(00)
	D,0
	B,0

	B(01)
	B,1
	D,0

	C(10)
	C,0
	A,1

	D(11)
	A,1
	C,1


           Table 2: Faulty FSM

	S(y1y2)
	Sn, z

x=0
	Sn, z

x=1

	a(00)
	d,0
	b,0

	b(01)
	b,1
	b,0

	c(10)
	c,0
	a,1

	d(11)
	a,1
	a,1


Definition 1.  A fault f is called detectable in sequential circuit by input sequence X(1), X(2),… , X(p) relatively to single observation time strategy (SOTS) if 
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(3)
where r and q – initial states of good and faulty circuits accordingly. 

This definition means that under this observation strategy fault is detectable if at least one clock t exists such that for any initial state pair (r,q) of good and faulty circuits at some j-th output zj has different values in good and faulty devices. The key moment is that any state pair of good and faulty circuits must has different output reactions at one clock.  Note that only outputs of last iteration of iterative combinational circuit are used with this definition.
 Table 3: Fault free responses

	S(y1y2)


	x1=1
	x2=1
	x3=1
	x4=1

	A(00)
	0
	0
	1
	1

	B(01)
	0
	1
	1
	0

	C(10)
	1
	0
	0
	1

	D(11)
	1
	1
	0
	0


Table 4: Faulty responses
	S(y1y2)


	x1=1
	x2=1
	x3=1
	x4=1

	a(00)
	0
	0
	0
	0

	b(01)
	0
	0
	0
	0

	c(10)
	1
	0
	0
	0

	d(11)
	1
	0
	0
	0


As example let consider the simulation of single stuck-at fault 
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  in sequential circuit (Figure 1) at input sequence 
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, where high index is clock number.  The tables 3, 4 represent the output responses for good and faulty circuits for each possible initial state. These data show that fault 
[image: image15.wmf]0

2

º

f

 is not detectable in accordance to single observation time strategy since there does not exists clock for which all state pairs of good and faulty circuits give different output signals. However, as show below, this fault is detectable in accordance to multiple observation time strategy. Therefore some times multiple observation time strategy is used for sequential circuits. In this case different state pairs can be differed at different clocks.

Definition 2. Single stuck-at fault f is called detectable in sequential circuit by input sequence X(1), X(2),… , X(p) relatively to multiple observation time strategy (MOTS)2 if  
[image: image16.wmf].
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Note that principle difference between these strategies is in follows. According to the first strategy all state pairs of good and faulty circuits must be differed at one clock. According to the second strategy any state pairs of good and faulty circuits can be differed at different clocks. Hence different outputs of different clocks can be used in combinational iterative circuit for comparison of good and faulty signal values. For given above example fault 
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 is detectable on input sequence 
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 relatively to multiple observation time strategy since for any state pair of good and faulty circuits there exists the time clock when they are differed (see tables 3, 4).  The application of MOTS allows increasing fault coverage of tests but requires essential computing and memory resources. In this case it is necessary save standard reactions of good circuit for all initial states. For faulty circuit also it is necessary to keep them with standard reactions of good circuit.
Test design at a functional level 
Following  1 at the functional level (using transition tables of automata A and Af, implemented by good and faulty circuits) we can design the input test sequence based on the direct or reverse distinguishing tree. For example, Figure 2 shows a fragment of direct distinguishing tree (DDT) for the automata A and Af, and described in table 1 and table 2. The path connecting the top of the zero-layer of DDT with the corresponding node of homogeneous A-group at the k-th layer of DDT determines the test of minimum length for given fault. In our example as group A-{B}{A}{bb}{D}{C}{bb} is homogeneous, the path that connects the top node at the zero-layer DDT with the node of homogeneous group of A-{B}{A}{bb}{D}{C}{bb} (in Figure2 it is marked out by the bold line), allows us to determine, that as mentioned earlier, a test of minimum length for fault 
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 is an input sequence T = (1,1,1,1). For an analogy it is convenient to use the reverse distinguishing tree (RDT), which is represented in Figure 3.
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Figure 2: Direct distinguishing tree (DDT)
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Figure 3: Reverse distinguishing tree (RDT)
In our example, the path between the top of the  RDT associated with a homogeneous group of A-{A}{C}{B}{D}{cd}{ab} and the top of the zero level (in Figure 3 bold line) determines that, as for the DDT, the test of minimum length of the fault 
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  (Figure1) is an input sequence T = (1,1,1,1).
Symbolic Simulation 
The above definition of detectability of faults for sequential circuits is given at the functional level, and requires explicit simulation for each initial state of good and bad circuits. Let consider multiple observation time strategy and symbolic simulation for faulty sequential circuits. As already noted, when using this strategy it is necessary to compare the output responses for all possible state pairs (Y, Yf) of good and bad circuits, which can be obtained based on symbolic simulation. 

In contrast to the commonly used logical simulation at the ternary alphabet, the symbolic simulation provides accurate values of the signals for each line circuit for a given input sequence X(1), X(2), ..., X(p) and the uncertainty of the initial states of the circuit. In this case, each i-th memory element is assigned with the state variable yi.  Then the state of a good circuit is described by the vector of variables
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. In the process of symbolic simulation for each line circuit the Boolean function is constructed which depends on the state variables 
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For a given input sequence X, first the symbolic simulation of a good circuit is performed, which determines for each line Boolean expressions that define the dependence on the state variables. Next, for each selected fault (usually those that are not detected with using ternary simulation) for each time clock t and j-th output are defined symbolic expression of output zj (r, t), where r is state variable of a good circuit. For our example Figure 4 shows the results of symbolic simulation for good and faulty circuits (Figure 1) at the input sequence x1 = 1, x2 = 1, x3 = 1, x4 = 1. Here, for each line circuits it is obtained Boolean expression in terms of state variables 
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Figure 4: Iterative combinational circuit with symbolic simulation data
Disjunctive Form of Distinguishing Function for Sequential Circuit
Elegant way to solve the test generation problem is to use the mathematical apparatus of distinguishing function, which generalizes the notion of distinguishing function (1) for combinational circuits to the circuit with memory. It should be noted that this approach have already been introduced in 2,3,  but the computer technology of that time did not allow to use it for large circuits.  Later it was called in 
,
 “multiple observation time strategy”.
According to 1,2 define the distinguishing function  for  multiple observation time strategy as follows:
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(4)                                                                        

for each fault f and the input sequence X = X(1), X(2), ..., X(p). In this case 
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 denote the state variable s representing the initial states of good Y and bad Yf  circuits. This distinguishing function allows to compares all output sequences for   good and bad circuits at the moments of time  
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The fault simulation with multiple observation strategy is carried out with using symbolic simulation for the iterative calculation of distinguishing function. To perform this procedure for each fault we introduce an auxiliary (current) distinguishing function that initialization gets a zero value, then in the process of symbolic simulation the disjunctive term is sequentially added at each step, appropriate to its moment of time


[image: image34.wmf])])

,

(

)

,

(

[

(

)

,

(

~

)

,

(

~

1

,

,

t

Y

z

t

Y

z

Y

Y

D

Y

Y

D

н

f

j

j

m

j

н

X

f

н

X

f

Å

Ú

Ú

¬

Ú

=

. 



(5)                                                                                                  

Upon reaching in the simulation of the external output j the fault detectability checking is fulfilled according to multiple observation time strategy of output signals. One can show 1,2 that the fault f is detectable with respect to multiple observation strategy, if and only if 
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 says that the distinguishing function contains all state pairs of good and bad  circuit (all state pairs are distinguished  with the sequence X). If 
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, then the fault is marked as detected and eliminated from further consideration. It should be noted that the coverage evaluation of the given input test sequence can also be accomplished by means of comparing the output reactions and output symbolic expressions of this circuit.
For our example (input sequences x1 = 1, x2 = 1, x3 = 1, x4 = 1 for circuit Figure 1) for the first time t =1 we have

For the second time t=2 we have 
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(6)
For the third time t=3 we obtain
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 (7)
Finally, for the t=4 obtain 
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2

0

)

4

(

)

4

(

)

4

(

y

y

t

z

t

z

t

D

f

f

=

Å

=

=

Å

=

=

=

,   which leads to

[image: image43.wmf]1

)

4

(

)

3

(

)

2

(

)

1

(

2

1

2

1

=

Ú

Ú

Ú

=

=

Ú

Ú

=

Ú

=

Ú

=

=

y

y

y

y

t

D

t

D

t

D

t

D

D

н

f

f

f

f

MOT

f

. 

(8)
We shall show the interrelationship these distinguishing function expressions with nodes of reverse distinguishing tree (Figure 2). Take the right node of the first level RDT  X = 1, which correspond to the set of indistinguishable state pairs {CDcd} {ABab}  of good and bad circuits. It is obvious that these states contained in different sets {}, are distinguished with the input sequence X = 1. So we have the following distinguishable state pairs for our example: {Ca, Cb, Da, Db, Ac, Ad, Bc, Bd}.We can show that each pair of distinguishable states of good and bad circuits corresponds to the term of perfect disjunctive normal form (DNF) of the distinguishing function:
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(9) 
For example, the first term 
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corresponds to distinguishable pair {Ca},  the last term 
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Similarly, the right node of the second level  RDT  {C}{Dbb}{A}{Bbb}  corresponds to 
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. If we expand this expression in perfect DNF, we find that each distinguishable  pair corresponds to term of  perfect DNF. 
In the same way the right node of the third level   RDT  {B}{A}{D}{Ccd}{ab}  corresponds to 
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 and  node of fourth level RDT {A}{C}{B}{D}{cd}{ab} – corresponds to 
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Equality  
[image: image50.wmf]1
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  said that the distinguishing function contains all the state pairs of good and bad circuits, and therefore the fault circuit (Figure1) is checked by the input sequence x1 = 1, x2 = 1, x3 = 1, x4 = 1 with respect to the multiple observation strategy. 

Thus, searching path at the RDT, which appropriates the test sequence, can be performed using symbolic simulation and calculation of distinguishing function.  Search for a test sequence X = X(1), X(2), ..., X(p) is reduced to solving a Boolean equation 
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. Now the speed of modern computers, along with advanced techniques of symbolic computation allows us to apply this approach to real sequential circuits
. 

So disjunctive form allows reducing the test generation problem to verifying tautologies of distinguishing function
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 can be implemented in various ways, in particular, by means of genetic algorithms (GA) 1. To draw an analogy with of reverse distinguishing tree, in this case a genetic algorithm must choose the most perspective binary  pattern (the node  of the lower level of  RDT), which should be added to the current test sequence. Note that in this case, a potential solution is a one input pattern, and not the whole test sequence, which usually occurs when using the GA to test generation for sequential circuits1. This helps to reduce the dimension of the problem. Since the purpose of test generation is a input sequence, which gives
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,    then the genetic algorithm for the evaluation of potential solutions (input sequences)  must use the fitness function, which determines the distinguishing function closeness to 1. Note that the more state pairs of good and bad circuits are distinguished, then distinguishing function is closer to 1. Therefore, we can take the fitness function of the form H = Pd * s + Pn * r, where Pn is determined by the number of new pairs of distinguished states  of good and bad circuits, and Pd is determined by the number of pairs of states,  which are distinguished with  previous input patterns. Here, r and s - weights (r > s). Note that in this case, we can use standard genetic operators of crossover and mutation1. 
Conjunctive Form of Distinguishing Function
 In addition to the disjunctive form of the distinguishing function for sequential circuits may be used the conjunctive form6.
, which is defined as follows: 
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(10)
Unlike the previous form  of DF  this expression  determines  the indistinguishable state pairs  of good and bad circuits, which for the input sequence X = X (1), X (2), ..., X (p) give the same output responses for all m outputs and all p time points . 

As in the previous form in the implementation of the calculations we introduce an auxiliary (current) distinguishing function, which at initialization phase assigns to 1 value. Further, in the process of symbolic simulation it has consistently multiplied at each step at the disjunctive term corresponding to its point in time. In this case, the fault f is detectable with respect to the strategy of multiple observations, if and only if   
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  for a given input sequence X.  This means that there are no states pairs of good and bad circuits, which produces the same output response. 

For our example, for the first time since we have
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(11)
For the second   time t=2 the function is 
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(12) 

For the third time t=3 we have 
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(13)
Finally, for the 4-th cycle we have 
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(14)
It should be noted in the case of the conjunctive form the correspondence distinguishing function with nodes of reverse distinguishing tree is more obvious. This is due to the fact that RDT determines the set of indistinguishable states pairs containing a pair with the same output responses to this input sequence. But the conjunctive form identifies precisely those states pairs for the input sequence.
So for our example, the right node {CDcd}{ABab}  of  RDT  first level corresponds to the function. 
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(15)
where the term  
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 - the set {Ccd}.  Note that for the sets {D}{B}, which do not contain pairs of indistinguishable states, the function  
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As in the previous case, the equation 
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 says that the distinguishing function does not contain any  indistinguishable states  pairs of good and bad circuits, and therefore the fault circuit in Figure1 can be verified input sequence x1 = 1, x2 = 1, x3 = 1, x4 = 1 with respect to the multiple observation time strategy.  So conjunctive form allows reducing the problem of test generating to satisfiability of Boolean functions (SAT) problem.  In solving the equations  
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 can be used sufficiently developed algorithms for solving (SAT) problem, in particular, based on symbolic simulation
.

Conclusions 
For sequential circuits the number of faults untestable with respect to a single (classical) observation time strategy of the output signals can be quite large. For example, for circuits catalog ISCAS89, even for single stuck-at faults number of faults according to some reports5,6, on average reaches 38%. Proposed analytical approach and multiple observation time strategy of output signals can significantly improve the test coverage for circuits with memory (up to 15%), but requires significant computational resources. The proposed approach reduces the problem of test generation for circuits with memory to solve standard problems of checking tautology or satisfiability of Boolean functions (SAT). In solving these problems, variety of fairly advanced techniques, in particular, as shown above, genetic algorithms, can be used.
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