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Abstract 

Sergiy Ye. Saukh. CR- factorization method for sparse matrices. The 
column-row (CR-) factorization method is offered. The CR-factorization method 
differs from the LU- factorization method by property of adaptive to the placement of 
pivoting entries. Suggested method allows to give up implementation of actions by 
transposition of columns and rows in the process of matrix factorization and 
therefore to accelerate the solving of the large-scale systems of linear algebraic 
equalizations. 

Introduction 
 
Triangular decomposition (or −LU factorization) method is one of the 

most frequently used variant of Gaussian elimination method. In this case matrix 
A  is presented as the product of lower triangular matrix  and upper triangular L
matrix U . The necessary conditions to realize −LU factorization are regularity of 
A  matrix and nonzero entry  of matrix U  on the kku −k th step of factorization. 
The triangular decomposition of regular matrix  can always be achieved by A
permuting of rows and columns so that conditions 0≠kku  are held true. For that 
purpose permutation matrices P  and Q  are used such that ULQAP ⋅=⋅⋅ . In the 
conditions of calculations with finite number of digits the Gaussian elimination 
method realization features require such selection of pivoting entries  that the jia

growth of absolute values of entries of  and U  matrices is staying limited L
during the factorization process [3-8]. In the case of the sparse matrix  the A
permutations influence on the level of filling by nonzero entries of  and U  L
matrices are also taken into account. This level may raise significantly in 
comparison with initial value of the level of filling by nonzero entries of matrix 
A . So the selection of the pivoting entries is based on the combination of 
demands to support of numerical stability of the Gaussian elimination and to 
minimize the filling levels of the  and U  matrices. In accordance with these L
demands the different strategies of pivoting entries selection are realized in 
modern software [3-6]. 

For storage nonzero entries of sparse matrices are used special formats of 
data so called row-wise or linked list representation formats. Using these formats 
significantly complicate procedures of the permutation of rows and columns [3-
6]. Although the permutation operations don’t need really displacements of the 
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values of entries in the computer memory, but they require searching and 
changing index values of the rows and columns. In general the sub arrays of 
permuting column and row indexes don’t coincide by lengths and it complicates 
the realization of index displacements. Our researches show the 
commensurability of the volumes of operations which are necessary for 
execution of the permutations and the −LU factorization. We suggest the new 
method of column-row factorization or −CR factorization briefly, which is 
distinguished on principle from the method of −LU factorization by the 
adaptation to the selection of pivoting entries. It permits to refuse from the row 
and column permutations in the process of matrix factorization and therefore to 
accelerate the process of calculation of matrix factors. 

CR−factorization method 
 
The basic relation of the method is the expression: 

( )jiij ,ARCA 1+=       (1) 
( )ji ,A1in which the initial  matrix  is presented by the sum of nn× A nn×  matrix  

and the product  of  column-vector  and 1×n jC n×1  row-vector . iR

If the entry  of matrix  doesn’t equal to zero then from the relation jia A

(1) can determine all the entries of the column  and row  accurate to a jC iR

certain factor, under the assumption made that the entries of row  and column  i j
of matrix ( )ji ,A1  equal to zero. Indeterminacy “accurate to a certain factor” in 
determination of entry column  and row  is conditioned by impossibility to jC iR

find two required values  and  from one equation jic jir jijiji arc =⋅ . 
For the elimination of indeterminacy in  and  values determination jic jir

it ought to accept one of the eventual assumptions, for example, 
1=jic ,       (2) 
1=jir ,       (3) 

jiji rc = .       (4) 
Notice that the assumptions (2) and (3) are analogous to the assumptions 

which are accepted in point of diagonal entries of one of the  and U  factor L
matrices in factorization method. The assumption (4) also takes place in the −LU
special variant of factorization method for the symmetrical positive −LU
determinate matrices and are known as the Cholesky elimination method 
( factorization) or the square root method [7, 8]. −TLL

The relation (1) determines the partial one-step column-row factorization 
of  matrix relative to the  pivoting entry. Here the column  and row  A jia jC iR

are multipliers or factors, and ( )ji ,A1  matrix is a residual matrix. Its entries, 



except those which are in −i th row and −j th column, form an active 
( ) ( )11 −×− nn  submatrix. 

Analyzing the ( )ji ,A1  matrix structure in the relation (1), we notice that 
the obtained entries of  column  and row  naturally disposes in the matrix jC iR

( )ji ,A1  on the place of zero entries its −i th row and −j th column. This 
superposition of the entries of column  and row  with the entries of matrix jC iR

( )ji ,A1  leads to the superposed matrix forming as  
( )jiCR ,A1  = ( ) ( )ijji R,C,A ⊕1      (5) 

where the symbol ⊕  is the superposition operation. 
Thus the relations (1) – (5) determine the first step of a row-column 

factorization of matrix  relatively  pivoting entry without the rows and A jia

columns permutation. The following analogous step of factorization is realized 
relative to the pivoting entry, which is chosen in the active part of matrix 

( )ji ,A1 . It coincides with the analogous part of matrix ( )jiCR ,A1 . 
If the pivoting entry is 0≠− qjipqp rca  which is situated on the intersection 

of −p row  and column of matrix −q ( )ji ,A1  then taking into account the identity 
(1), we can write  

( ) ( ) ( )qpjiji pq ,,,ARC,A 21 +=      (6) 
where  vector-column  and 1×n qC n×1  vector-row  contain the zero entries pR

0=qic  and  and  matrix 0=jpr nn× ( ) ( )qpji ,,,A 2  has two zero rows and two zero 
columns with indexes i, p  and ,  correspondingly.  j q

We receive after the substitution (6) to (1): 
( ) ( )qpjipqij ,,,ARCRCA 2++=      (7) 

or in the combined form 
( ) ( ) ( ) ( ) ( )pqij

CR qpjiqpji R,C,R,C,,,A,,,A ⊕= 22 .   (8) 
Using the expressions (1) and (6), which determine partial one- or two-

steps column-row factorization, we receive the full formula of factorization −CR
of regular  matrix  for the case when the pivoting entry co-ordinates nn× A ( )ji ,  
are chosen dynamically in the process of factorization and form certain ordered 
set P : 

 .      (9) 
( )
∑

∈

⋅=
Pji

ij
,

RCA

Here the summing is realized in the entry sequence in set P . Notice that 
in contrast to (1) and (7) the right part of this expression don’t contain the 
summand  type matrix PA n  of entries those  rows and  columns in the n n

intersection of which the pivoting entries are chosen. These entries are replaced 
by zero in the process of forming PA n  for  steps. Just these places vector-n



columns  and vector-rows  are situated at the forming of the coincidence jC iR

matrix PACR . So 0≡PA n . 
Obviously the expression (9) can be presented in the matrix form: 

PRPCA ⋅= ,      (10) 
where the matrices PC  and PR  are aggregated from the vector-columns  jC

and vector-rows  accordingly. The situation order of these vectors iR

corresponds to the order of their indexes in P  set. Therefore the situation orders 
of vector-columns  and vector-rows  in the coincidence matrix jC iR

CRCRCR RCPA ⊕=       (11) 
correspond to their  and  indexes so in fact in the matrix j i PACR  are 
superposed two matrices PC CR  and PRCR  instead of the matrices PC  and 

PR . 
In general case the matrices PC  and PR  don’t take triangular form. 

Only when the pivoting entries are chosen sequentially in the co-ordinate 
( ) ( ) ( )nn ,,,,,,P K2211  in the process −CR factorization, then forming vector-

columns  and vector-rows  form the lower triangular and upper triangular jC iR

matrices LPC =  and UPR = , which are situated in the coincidence matrix 
PACR  so that LPCPC ==CR  and UPRPR ==CR . The basic structural 

peculiarity of general matrices PC  and PR  is such as it in principle can be 
converted to the triangular form by the way of rows and columns permutations. 

The results of the experimental researches 
 
It is evident that the sample-comparison operations over the indexes into 

rows and columns lists of nonzero matrix entries, which are executed in the 
process of rows and columns permutation, cannot be directly correlated with the 
arithmetical operations executed under the nonzero entries in the factorization 
process. So the number of sample-comparison operations should be estimated 
experimentally by the time expenses for the fulfillment of those operations and 
to determine their specific weight in the general time expenses on the matrices 
factorization. The description of the experiments conditions and its results are 
represented below. 

For calculations the computer Intel P4 (Chipset Intel 865 PE, FSB 800 
MHz, CPU 3.0GHz  with HT, Dual Channel Memory 1GB: 2 x 512MB, 
DDR400) running under operational system Microsoft Windows XP are used. 
The program code was written by the author on the C++ language in the 
Microsoft Visual Studio.Net and was taken as a base for the experimental 
researches. Sequentially three algorithms are realized for solution of linear 



algebraic equation BXA =⋅  with a vector of a right part 1AB ⋅= , where  is unit 1
vector. For factorization of matrix  the first algorithm realizes the method −CR A
with the improved generalized Markovits’s strategy of the pivoting entries 
choice [4]. The second algorithm realizes the method of −CR factorization of the 
same matrix , using the set A P  of pivoting entries co-ordinates on their choice 
order, which was formed by the first algorithm. The third algorithm differs from 
the second one only the factorization method realization. Notice that in the −LU
both realization of factorization method for matrix  the assumption (3) is −CR A
used. 

The implementation of a written program code allows to estimate the 
summary time expenses for the search of X  vector-solution by the given vector 

 and to differentiate the time expenses on −CR  and −LU factorization. B
In all our experiments the equality fulfillment ( )CRCRnnz RC ⊕  = ( )UL⊕nnz  

is supported, this is the coincidence of the numbers of nonzero entries in the  C
and  factor matrices and in the  and U  factor matrices  which are received by R L
the methods of  and factorization. −CR −LU

For the supporting of correct experimental researches the influence of 
control procedures of nonzero matrix entries located in working arrays was 
slacked maximally. First of all the sizes of arrays of nonzero entries and their 
rows and columns indexes were chosen equal . This is so large that not to 61045 ⋅
need to initiate the special procedure “cleaning the refuse” in them [4, 5]. In 
addition the improving extended Markovits’s strategy is used in all tests, where 
the search of pivoting entries is limited by the set  of pS p  rows of active 
submatrix with the minimal numbers of nonzero entries. The pivoting is chosen 
the entry  with the least Markovits’s value but that the absolute value of jia

which not more than in τ  times less than maximal entry  on absolute value 
pSa ∈max .  

 

Table 1. The test matrices, their dimensions , the numbers of nonzero entries n
in initial matrices  and in the coincidence factor matrices , ( )Annz ( )RC ⊕nnz

mistakes ε  and the test systems solution time . CRT
name n  ( )Annz  ( )RC ⊕nnz  ε  cT ,CR  
ASIC_680k 682862 3871773 8220972 4.57E-08 1024.531 

ASIC_680ks 682712 2329176 6170719 9.51E-09 47.953 
ASIC_320ks 321671 1827807 5082048 2.89E-12 54.875 

scircuit 170998 958936 2408645 8.39E-11 2.328 
circuit_4 80209 307604 707803 1.92E-09 1.359 
bayer01 57735 277774 7283567 4.33E-08 40.453 

mark3jac060 27449 170695 28775871 3.42E-11 2345.125 
ex35 19716 228208 2474829 6.82E-08 7.360 

poisson3Da 13514 352762 10697886 1.10E-13 162.281 
circuit_3 12127 48137 76708 2.07E-12 0.141 
cry10000 10000 49699 501518 4.04E-06 0.828 
gemat11 4929 33185 77616 2.21E-13 0.047 
lns_3937 3937 25407 568884 1.60E-12 1.719 



psmigr_1 3140 543162 6534812 9.40E-13 122.531 
orani678 2529 90158 336551 3.07E-15 0.469 

 
Table 1. Continue 

name n  ( )Annz  ( )RC ⊕nnz  ε  cT ,CR  
adder_trans_01 1814 14579 20541 2.11E-16 0.016 

orsirr_1 1030 6858 57892 1.42E-13 0.063 
orsirr_2 886 5970 45146 1.37E-13 0.031 

 

The calculation experiments are fulfilled with the matrices which was 
taken from the Web sites [9, 10]. The general characteristics of test matrices and 
the results of experimentation with them are shown in the tables 1-2, where 

( )

n

x
n

z
z∑

=

−
= 1

21
ε .      

The parameters p  and τ  are formed equal depending on the tested 
matrix: in the test ASIC_680k – 0.0005and100 == τp , in the test mark3jac060 – 

0010and .== τnp . The parameters values were 1=p  and 1=τ  in the rest all tests. 
Described conditions of experiments realization permitted to avoid the 

initialization of procedures “cleaning the refuse” in the blocks. However, in the 
algorithm which realizes the method of −LU factorization we applied one of the 
well-known procedure of rows and columns permutation minimizing the volume 
of sample-comparison operations which are needed for that [11]. This procedure 
leads not only to change the values indexes of the permuted rows an columns in 
the arrays of rows and columns indexes but also is accompanied the permutation 
of the separate entries in the arrays and also in the array of nonzero entries. In 
the result of entries permutation in the array their placement on the present step 
of the factorization method realization differs from the placement which −LU
can observe in the case of realization of −CR factorization method. The necessity 
of placement the new appearing nonzero entries reinforces these differences in 
the placement of entries. It generates the different dynamic processes of 
replacement the entries in rows and columns. Thus we failed to achieve a full 
equality of realization experiments conditions with the  and −CR

−LU factorization algorithms. However we minimized difference of conditions 
as far as possible. 
 

Table 2. The computation time expenses of factorization ( , ) and FCRT − FLUT −

solution ( , ) of the test systems of equations by the methods of SCRT − SLUT − −CR  
and factorization; relative decelerations of the factorization −LU −LU

processes %1001 ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−

−

FCR

FLU
F T

TTδ . 

name cT FCR ,−  cT FLU ,−  %,FTδ  cT SCR ,−  cT SLU ,−  
ASIC_680k 1004.328 1539.047 53.2 0.172 0.156 

ASIC_680ks 46.656 49.204 5.5 0.188 0.140 
ASIC_320ks 54.875 59.921 9.2 0.171 0.141 



scircuit 2.000 3.907 95.4 0.125 0.078 
circuit_4 1.172 1.562 33.3 0.016 0.032 
bayer01 39.062 51.563 32.0 0.094 0.094 

Table 2. Continue 
name cT FCR ,−  cT FLU ,−  %,FTδ  cT SCR ,−  cT SLU ,−  
mark3jac060 903.953 1106.750 22.4 0.297 0.281 

ex35 7.016 10.578 50.8 0.047 0.031 
poisson3Da 159.109 204.328 28.4 0.110 0.110 

circuit_3 0.093 0.109 17.2 0.000 0.016 
cry10000 0.781 1.171 49.9 0.000 0.016 
gemat11 0.031 0.047 51.6 0.000 0.000 
lns_3937 1.625 2.313 42.3 0.015 0.000 
psmigr_1 120.437 147.562 22.5 0.063 0.063 
orani678 0.437 0.656 50.1 0.016 0.000 

adder_trans_01 0.015 0.016 6.7 0.000 0.000 
orsirr_1 0.047 0.078 66.0 0.000 0.000 
orsirr_2 0.047 0.063 34.0 0.000 0.000 

 
The conclusions follow from these results: 

1. The time expenses of execution of the rows and columns permutation in the 
active submatrices are found to compare with the time expenses of execution 
of the matrix factorizations. The realization of permutations in the 

−LU factorization method leads to the essential deceleration of the calculating 
process on the average  value =FTδ 37.3% for the given tests set. It follows 

from the table 2 where the values %1001 ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−

−

FCR

FLU
F T

TTδ  are presented. 

2. The calculating time expenses of the solution of linear equation systems  
BXPRPC =⋅⋅  received by the −CR factorization method are greater than 

the calculating time expenses of the solution of linear equation systems 
BXUL =⋅⋅  formed by the −LU factorization method. The increase of the 

calculating time expenses are stipulated by the algorithms peculiarities of 
linear equation systems BVPC =⋅  and VXPR =⋅  with the non-triangular 
matrices PC  and PR . However, as a whole the summarized calculating 
time  expenses of the solution of initial equation systems is essential SF TT +

greater in the case of use the −LU factorization method. 

Conclusions 
 
As opposed to the LU-factorization method with choosing pivot entries, 

where, in general case, rows and columns reordering are executed obligatorily, 
CR-factorization method doesn’t demand such operations and therefore executes 
the factorization more quickly. The computation acceleration is significant in the 
case of difficult access to the matrix entries allocated in arrays according to 
special formats. 

The CR-factorization method for sparse matrices can be used not only as 
the direct method of quick solving large-scale system of linear equations but also 



as the method of quick construction of the preconditioning matrices for the 
iterative solving of the systems [12-14]. Obviously the preconditioning matrices 
can be gotten by using incomplete CR-factorization algorithms. Such algorithms 
can be executed quickly without any displacements of elements in the arrays. 
Thus the suggested CR-factorization method becomes the basis of new 
algorithms of the effective solving of the large-scale linear algebraic systems of 
equations. 
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