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Abstract 

Saukh S.Ye., Semagina E.P. Gas-transport Networks Modelling on the 
Basis of Energetic Analogies Theory. The problem of computer models creation is 
considered for energy systems, which allows studying heterogeneous physical events. 
A common theory of energy concepts is proposed for such models building. This 
common theory allows selecting valid base variables from the mathematical 
description of heterogeneous events and applying circuit theory methods to build 
computer models of topologically complex objects. The efficiency of our approach is 
illustrated by the problem solution for a gas-transport system model building. 

Introduction 

 

The creation of computational models of power supply systems includes 
many difficulties. A significant variety of the generating elements of the system, 
the heterogeneity of the observed physical phenomena and the complexity of 
their mathematical description are the main aspects of the problem .A general 
solution for this problem is possible with the help of the common theory which 
provides the harmonized development of mathematical models and 
computational algorithms. 

Description of interrelated phenomena for components 
with lumped parameters 
 
The basic motivation for the application of circuit theory analogies for 

constructing models of energetic circuit components with heterogeneous 
physical phenomena is the possibility to use the laws of energy conservation. 

Introducing vector groups of generalized sequential and parallel 
variables allows describing the interrelations between variables by means of 
analogues of resistances, conductivities, capacities and inductances. As a result, 
the basic principles and analysis methods for electric circuits appear to be usable 



for the energetic circuit analysis. 
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Figure.1. Method of measurement 

All system variables are subdivided into two sets: sequential one, which 
may be measured by sequentially switched device, and parallel one, which may 
be measured by parallel switched device (Fig. 1).The main classification of 
variables was made on the basis of a generalized approach on a higher level of 
abstraction, i.e. the principle of energetic analogies, according to which: the 
concepts of generalized state variables (Table 1) and generalized action variables 
(Table 2) are introduced. The action variables determine the level of energy 
dissipation of the component and the state variables represent the integral 
characteristics of the action variables; the product of parallel and sequential 
action variables determines the level of energy dissipation in the system element; 
kinetic energy is defined as the integration of the sequential action variables with 
respect to the sequential state variables;potential energy is defined as the 
integration of the parallel action variables with respect to the parallel state 
variables. 

Table 1. Parallel and sequential state variables 
Type of 
interaction Parallel variables Sequential variables 

Electricity Charge ,  q K Magnetic flow F ,  Wb

Displacement x , m  Impulse , K m/seckg ⋅  Mechanics 
Rotation angle θ ,  rad Angular Moment М,  /seckg 2m⋅

Heat Entropy ,  S J/К Undefined 

Hydraulics Displacement , Hx

m  

Impulse of moving liquid 

∫ ⋅⋅=
V

H
H dV

dt
dx

ρK
, m/seckg ⋅  

−ρ  density, ; 3kg/m

−V  volume, . 
3

m

 



Table 2. Parallel and sequential action variables 
Type of 
interaction Parallel variables Sequential variables 

Electricity Voltage dt
du Φ

=
,  V Current dt

dqi =
,  A

Force dt
dKF =

,  N Velocity dt
dx

=υ
, m/sec 

Mechanics Momentum 

dt
dMN =

, mN ⋅  

Angular velocity 

dt
dθω =

, rad/sec 

Heat Temperature T , K  Entropy flow dt
dS

=σ
, 

K
Wt

 

Hydraulics 

Force 

dt
dK

dПpF H

S
H ∫ =⋅=

, N  
−S surface of volume V , 
2m  
−p  pressure, . Pа

Average velocity of 
liquid motion in cross-
section 

dt
dxH

H =υ
, sec

m
 

 
The law of energy conservation in passive components of energetic 

circuits with lumped parameters is represented as 0=++ PKD dWdWdW , 
where the summands are the dissipation energy 

( ) dt,dWD ⋅= iu ( ) dt⋅⋅= i,iR ( ) dt⋅⋅= − iR,u 1 ,  
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the kinetic energy ( ) ( )iiLi,iL d,/ddW К ⋅=⋅= 2 , 
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the potential energy ( ) ( )uu,Сuu,С d/ddW P ⋅=⋅= 2 . 
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In these relations  is the scalar product of the vectors  and ; ( 21 ff , ) 1f 2f
the parallel and sequential variables are organized in the vectors 
u= T

HFTNFu and i = T
Hi υσωυ ; ,  and are the matrices R L C

of the parameters with the elements. Nondiagonal elements of matrix parameters 
are obviously defined by interrelations of the physical phenomena. 

The formulas for determination of power, kinetic and potential energies 
for different physical areas are shown in Table 3. 



 
Table 3. Energetic analogies 

Type of 
interaction 

Power 
(is defined by 
action 
variables) 

Kinetic energy 
(is defined by 
sequential 
variables) 

Potential energy 
(is defined by 
parallel 
variables) 

Electricity 
2

2

uG

iR

iuR

E

E

E

⋅=

⋅=

⋅=

 2

2
0

iL

diW

Е

К
Е

=

Φ⋅= ∫
Φ

 2

2
0

uC

dquW

Е

q
P
Е

=

⋅= ∫
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2
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R
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FM

FM

FM
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⋅=
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υ

υ

 2

2
0

υ

υ

FM

К
К

FM

L

dKW

=

⋅= ∫

 2

2
0

FC

dxFW

FM

x
P

FM

=

⋅= ∫

 Mechanics 
 

2

2

NG

R

NR

RM

RM

RM

⋅=

⋅=

⋅=

ω

ω

 2

2
0

ω

ω
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М
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2
0

NC

dNW
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P
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θ
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Heat 
2

2

TG

R

TR

T

T

Т

⋅=

⋅=
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σ

σ

 
Undefined 

2

2
0
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dSTW
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Hydraulics 
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Description of homogeneous and heterogeneous 
phenomena in resistive type components 
 
For the case of homogeneous phenomena the generalized law for 

components is defined as EJ ⋅=γ , where γ  is the specific conductance of the 
flow J  induced by the intensity E . In particular, for components of 
homogeneous systems this law is formulated as following laws: 

Ohm’s law, i.e. the relation between density EJ  of the electrical current 
and the potential gradient ϕ  have the form: 

  ( ) ЕЕЕЕ EgradJ ⋅=⋅−= γϕγ , ( )ϕgradEE −= ,  0>Еγ ; 

Fourier’s law, i.e. the relation between the density  of the heat flow TJ



and the temperature gradientT , has the form:  

,  ( )TgradET −= , 0>Tγ ;  ( ) TTT TgradJ ⋅=⋅−= γγ TE

Darcy’s law, i.e. the relation between the density  of the mixture 
HJ

component flow and the pressure gradient p  has the form: 

( ) HHHH EpgradJ ⋅=⋅−= γγ , ( )pgradEH −= , 0>Hγ . 

For the case of non-homogeneous phenomena we have the generalization 
of Ohm’s, Fourier’s, Darcy’s and other laws in the vector matrix form 

EJ ⋅= ѓЎ , 

where E= T
HТRMFMЕ EEEEE  and J = T

HТRMFMЕ JJJJJ . Here  

idJ =⋅∫
ѓ¶

ѓ¶ ,   . uHdE
H

=⋅∫

Kirchhoff’s laws in energetic circuits and generalization of 
the principles of action 
 
Following the accepted notation in a generalized form, the first and 

second Kirchhoff’s laws can be formulated for energetic circuits: 

differential form of the first Kirchhoff’s law 0dJ
n

n =⋅∫
ѓ¶

ѓ¶ , 

integral form of the first Kirchhoff’s law  0=∑
n

i , 

differential form of the second Kirchhoff’s law 0HdE
k

k =⋅∫
ѓҐ

, 

integral form of the second Kirchhoff’s law  0=∑
k

u . 

The known principle of least action for electric circuits, the least entropy 
generation principle and the extreme principle of classical mechanics can be 
generalized with the extreme principle of action in energetic circuits, i.e. 

( )∑=Σ
z

zz ,minPmin iu . 



 

Energetic circuits as a model for gas transport systems 
 
We extended the principles of model construction of generalized energetic 

circuits described above to gas-transport systems with arbitrary topologies. This 
extension allows the development of software tools for modeling the stationary 
and transitional operation modes of gas pipelines. The variables included in the 
mathematical models of the individual components of the system were analyzed 
according to the proposed classification. In particular, the following mathematical 
models of the components of the system were considered: the set of equations 
describing the nonstationary nonisothermal gas flow in the pipeline with a 
constant diameter: 
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where variables are  
for gas flow:   p(x,t) – pressure, T(x,t) – temperature,  ρ(x,t) – density, 
 v(x,t) – velocity, E(x,t) – energy; 
for environment parameters:  g – acceleration gravity, 
pout – pressure on the tube surface,  Tout -    temperature on the tube surface;        
coefficients:   

;rloss factoC
,cientfer coeffiheat trans,ientce coeffictanresishydraulic 

−
−− αλ  

form factor: ;tube depth of occurrenceh,pipelength of L,pipe sizeD −−−  
initial condition: 

T

con )t,x(T)t,x(p)t,x(v)t,x(D)x( 0000

2

4 ⋅⋅= ρπW ,   (5) 



one of the possible variants of boundary conditions: 
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which is determined by the direction of the gas flow or by the sign of the 
velocity v of the flow. In the equations (1)-(3)  is an independent time 
variable,  is an independent space variable. 

0tt ≥
[ l,x 0∈ ]

The following set of equations describes the gas-pumping process: 
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The cooling process is described by the equation: 

)T,(WW aincoolingout ѓі= ,                  (11) 

Where      
T

inininin
in

in )t(T)t(p)t(v)t(D)x( ⋅⋅= ρπ
4

2
W    (12) 

and           
T

outoutoutout
out

out )t(T)t(p)t(v)t(D)x( ⋅⋅= ρπ
4

2
W    (13) 



are the vectors of gas flow parameters at the cooler’s input and output. 
Nonlinear vector-function  represents thermohydraulic 
phenomena at the temperature of air T

)T,(W aincoolingѓі
a. 

 Taking into account the continuity of heat and hydraulic phenomena 
observed in gas transport systems, the following variable vector functions are 
defined for model (7) – (13):   

sequential variables  (mass flow and energy flow) 

 

( ) ( ) ( )
( ) ( ) ( )t,xTt,xvt,x

t,xvt,xDt,x
⋅⋅

⋅
⋅=
ρ

ρπ
4

2
i ;    (14) 

parallel variables (pressure and temperature) 

( ) ( )
( )t,xT

t,xp
t,x =u .              (15) 

The balance equations  

0=∑
n

)t(M    and   0=∑ ⋅
n

)t(T)t(M    (16) 

for the mass flows  and the energy flows ( )tM ( ) ( )tTtM ⋅  on the nodes of the 
network of pipelines numbered with outin nnn U∈ , where  and  are the 
sets of inner nodes and boundary nodes, respectively. The equations (1)-(16) are 
defined on the graph which represents the set of connections between the 
elements of the pipeline network. Therefore, the model of the network consists 
of the models of its elements of the forms (1)-(3), (7)-(9), (11) suitable to build 
the model of the whole system on the basis of equations (16). The equation of 
different network elements must be transformed to unified form for integrated 
system model obtaining. The required form can be obtained through 
algebraization of the system of equations of gas dynamics (1)-(3) and its further 
linearization under the conditions (5)-(6).To algebraize the equation set (1)-(3), 
the original numerical operator method is proposed, which based on the Newton 
polynomials [1]. This method provides an equally high accuracy of partial 
derivative approximation (1)-(3) not only inside of the domain of independent 
variables  and , but also at their boundaries according to the 
conditions (5)-(6). After algebraization the model components are linearized and 
transformed in a common form:  

inn outn

0tt ≥ [ l,x 0∈ ]
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where τ is the set of discrete values of the independent variable t. The solution of 
system (1)-(16) is approximated with account of the parametrically given 
boundary conditions (5)-(6); )(in τu  and )(out τu  are the node vectors of 
unknown parallel action variables; )(in τi  and )(out τi  are the element vectors of 
unknown sequential action variables at the input and output correspondently; G  
is the matrix of element conductances;  and  are the linearization 
constants. Using the operator equations of network elements (17), the model of 
gas transport network of arbitrary topology can be easily constructed on the 
basis of balance equations (16). Now it is possible to perform the model 
construction using the method of nodal thermo hydraulic potentials, which is 
similar to that in the electric circuit theory. 

)(in τ0i )(out τ
0i

Conclusion 
 
The described approach allows to construct efficient computer models of 

different energy systems in spite of a variety of the elements of the system, the 
heterogeneity of the observed physical phenomena and the complexity of their 
mathematical description. On the basis of energetic analogies theory, a 
generalized energetic circuit principle is extended to gas-transport networks with 
arbitrary topologies. 
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