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Abstract

Saukh S.Ye., Semagina E.P. Gas-transport Networks Modelling on the
Basis of Energetic Analogies Theory. The problem of computer models creation is
considered for energy systems, which allows studying heterogeneous physical events.
A common theory of energy concepts is proposed for such models building. This
common theory allows selecting valid base variables from the mathematical
description of heterogeneous events and applying circuit theory methods to build
computer models of topologically complex objects. The efficiency of our approach is
illustrated by the problem solution for a gas-transport system model building.

Introduction

The creation of computational models of power supply systems includes
many difficulties. A significant variety of the generating elements of the system,
the heterogeneity of the observed physical phenomena and the complexity of
their mathematical description are the main aspects of the problem .A general
solution for this problem is possible with the help of the common theory which
provides the harmonized development of mathematical models and
computational algorithms.

Description of interrelated phenomena for components
with lumped parameters

The basic motivation for the application of circuit theory analogies for
constructing models of energetic circuit components with heterogeneous
physical phenomena is the possibility to use the laws of energy conservation.

Introducing vector groups of generalized sequential and parallel
variables allows describing the interrelations between variables by means of
analogues of resistances, conductivities, capacities and inductances. As a result,
the basic principles and analysis methods for electric circuits appear to be usable



for the energetic circuit analysis.
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Figure.1. Method of measurement

All system variables are subdivided into two sets: sequential one, which
may be measured by sequentially switched device, and parallel one, which may
be measured by parallel switched device (Fig. 1).The main classification of
variables was made on the basis of a generalized approach on a higher level of
abstraction, i.e. the principle of energetic analogies, according to which: the
concepts of generalized state variables (Table 1) and generalized action variables
(Table 2) are introduced. The action variables determine the level of energy
dissipation of the component and the state variables represent the integral
characteristics of the action variables; the product of parallel and sequential
action variables determines the level of energy dissipation in the system element;
kinetic energy is defined as the integration of the sequential action variables with
respect to the sequential state variables;potential energy is defined as the
integration of the parallel action variables with respect to the parallel state
variables.

Table 1. Parallel and sequential state variables

T f : . :
_ype ol Parallel variables Sequential variables
interaction
Electricity | Charge 7, K Magnetic flow F, Wb
.| Displacement * , m K kg-m/sec
Mechanics p - Impulse ¥, 5
Rotation angle ?,d | Angular Moment M, kg m/sec
Heat Entropy 5, VK Undefined
Impulse of moving liquid
d.
. X K :J‘p'% -dV
Hydraulics Displacement H, ’ t ,kg-m/sec
m P~ density, ke/m’;
V= volume, m




Table 2. Parallel and sequential action variables

T f : : :
_ype Y| Parallel variables Sequential variables
interaction
Electricit u="22 =%
ectrici =— =
Y Voltage dt |V Current  dr J A
F — d_K ) U= ﬂ
Force dt N Velocity  df, m/sec
Mechanics Momentum Angular velocity
M do
N="F w=""
dt A N-m dt | rad/sec
das
T
Heat Temperature 7', K ]%atrop y flow ’
K
Force :
dK A_VG}‘age yelqcﬂy of
Fy = jp il =—) liquid motion in cross-
Hydraulics ’ » N section
S —surface of volume V', dx, m
Uy =—— —
m’ T dr , sec
P~ pressure, Pa.

The law of energy conservation in passive components of energetic

circuits with lumped parameters is represented as dw®P +aw* +aw?® =o,
where the summands are the dissipation energy

dWP =(ui)-di=(R-i,i)-di =\, R -i)-dt,

RE ,E RE M RE JRM RE T RE JH
RFM,E RFM,FM RFM,RM RFM,T RFM,H
R

R= RRM,E RRM,FM RRM,RM RRM,T

RT,E RT,FM RT,RM RT,T Ry
R
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the kinetic energy aw =d(L-i,i)/2=(L-i, di),
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E,FM LE,RM LE,T LE,H

LFM,E LFM,FM LFM,RM LFM,T LFM,H
L= LRM,E LRM,FM LRM,RM LRM,T LRM,H
LT,E LT,FM LT,RM LT,T LT,H
LH,E LH,FM LH,RM LH,T LH,H

the potential energy dW’ =d(C-u,u)/2=(C-u,d u.

C‘E ,E C‘E JM C’E JRM CE T C‘E JH
CFM,E FM,FM CFM,RM C'FM T CFM,H

C= CRM,E CRM,FM CRM,RM C'RM,T CRM,H

C’T WE C’T WM CT JRM CT T C’T H

CH ,E CH M C'H JRM CH A CH WH

In these relations ( fi, fz) 1s the scalar product of the vectors f; and f;;
the parallel and sequential variables are organized in the vectors
u=lu F N T FH\Tand i=|i v o o vy|; R, L and Care the matrices
of the parameters with the elements. Nondiagonal elements of matrix parameters
are obviously defined by interrelations of the physical phenomena.

The formulas for determination of power, kinetic and potential energies
for different physical areas are shown in Table 3.



Table 3. Energetic analogies

Power Kinetic energy | Potential energy
Type of | (is defined by | (is defined by |(is defined by
interaction | action sequential parallel
variables) variables) variables)
< q
Ry =u-i Wé(:J‘i-dCD WEpzju-dq
Electricity | =R; i’ N Y
E E 5 £,
K X
Ry =F -0 Wi = [v-dK Wiy = [ F-dx
=R, 02 0 0
=@ CF? =7 ﬁ C F_z
Mechanics o ) Mo
M 4
Ry =N-o Wisy = [w-dm W{M:IN do
=Ry, - ©° 0 0
2 2
— 2 w N
=Gpy N :LRMT _CRMT
S
Ry =T-o wi =[T-ds
Heat =R, -0’ Undefined )
2 T
= GT T — CT 7
Kr Xy
Ry =Fy vy wk=1\v,-dK, W,fzIFH dx
Hydraulics | =R, -vy ; 02
-G, F> v F
Description of homogeneous and heterogeneous

phenomena in resistive type components

For the case of homogeneous phenomena the generalized law for
components is defined as J=y-E, where ¥ is the specific conductance of the

flow J induced by the intensity FE. In particular, for components of
homogeneous systems this law is formulated as following laws:

Ohm’s law, i.e. the relation between density J of the electrical current
and the potential gradient ¢ have the form:
Jg=-yp-grad(p)=yg-Ey,  Ep=—grad(p), 75 >0;

Fourier’s law, 1.e. the relation between the density J; of the heat flow



and the temperature gradient 7, has the form:
Jr=~yr-grad(T)=yr - Er, Er =~grad(T), yr >0;

Darcy’s law, i.e. the relation between the density , ~ of the mixture
component flow and the pressure gradient p has the form:

JH:—7/H‘gmd(P):7H‘EHa EH:—gmd(P)» yu >0.

For the case of non-homogeneous phenomena we have the generalization
of Ohm’s, Fourier’s, Darcy’s and other laws in the vector matrix form

J=tYE,
Where E: ‘EE EFM ERM ET EH‘T al’ldJ:‘JE ‘]FM ']RM JT JH T. Here

J-dif=1i, E-dH =u.
] ]
- H

Kirchhoff's laws in energetic circuits and generalization of
the principles of action

Following the accepted notation in a generalized form, the first and
second Kirchhoftf’s laws can be formulated for energetic circuits:

differential form of the first Kirchhoff’s law §>J -di, =0,
9

integral form of the first Kirchhoff’s law > i =0,

differential form of the second Kirchhoff’s law §E dH, =0

T,

integral form of the second Kirchhoff’s law > u = 0.
k

The known principle of least action for electric circuits, the least entropy
generation principle and the extreme principle of classical mechanics can be
generalized with the extreme principle of action in energetic circuits, i.e.
minP; = minZ(uz, iz).

z



Energetic circuits as a model for gas transport systems

We extended the principles of model construction of generalized energetic
circuits described above to gas-transport systems with arbitrary topologies. This
extension allows the development of software tools for modeling the stationary
and transitional operation modes of gas pipelines. The variables included in the
mathematical models of the individual components of the system were analyzed
according to the proposed classification. In particular, the following mathematical
models of the components of the system were considered: the set of equations
describing the nonstationary nonisothermal gas flow in the pipeline with a
constant diameter:

op  olpv) _4C 1
ot + Ox - D (pout p)’ ( )

o(pv) G(p + pvz) ( dh v|v|j
=—p-|lg—+2 , 2
or | ox S O RRRY> )

opE) 8{,0\/-(E+2H _da

dh 4C p
=—.(1,,-T — . -p) | E+5 | 3
6t + ax D out )+pvgdx+ D (pout p)( +p) ( )
p y?
=———, z=z(p,T), E=—+u, u=u(p,T) 4
p=—ror 2=2(pT) stu u=ulpT) (4)

where variables are

for gas flow: p(x,t) — pressure, T(x,t) — temperature, p(x,t) — density,

v(x,t) — velocity, E(x,t) — energy;,

for environment parameters: g — acceleration gravity,
Pows — pressure on the tube surface, T,,- temperature on the tube surface;
coefficients:

A — hydraulic resis tan ce coefficient, o — heat transfer coefficient,

C —loss factor;
form factor: D — pipe size, L —length of pipe, h — occurrence depth of tube;

initial condition:

Wcon (x)=

T

2
ﬂD%.p(x,to).v(x,to) pixty) T(xty)| (5)




one of the possible variants of boundary conditions:

Hoa) Ti0) ) AL(Li] 020 Lo
§0) T(01) pLy) T(Ltf', w01)>0 WLt)<0

(©)
D00 HLY) T(L,rf, W0)<0, WL<0

Wil )=

d)%.qo,t)-v(o,t) ﬂD%-p(L,t)-v(L,tf, w01)<0, wLt)=0,

which is determined by the direction of the gas flow or by the sign of the
velocity v of the flow. In the equations (1)-(3) #2>#, is an independent time

variable, x €[0/] is an independent space variable.
The following set of equations describes the gas-pumping process:

(nD%.p.v) :(ﬂD%.p.v) , (7)

in out

() (RT) e
=p. |1+ =1 - 0 (g2 —1 ) 8
Pout = Pin +(n0] (ZRT)m (50 )] (8)
 (n ) (eRT)
Tout :Tin' 1+ — '—0'(‘9(31_1); (9)
no (ZRT )in
k-1 n 2
a=i ey=alQk m=m(@k 0= ) L o)
ko ng in
The cooling process is described by the equation:
Wout = fl cooling (VVm ’ Ta ) > (1 1)
D, '
Where W, (x)=|""in

4 'pin(t)'vin(t) pin(t) Tm(t) (12)

2
and Wou(x)= ﬁDOW4 Pout (1) Vour (1) Pous(t)  Toyy(1) (13)




are the vectors of gas flow parameters at the cooler’s input and output.
Nonlinear  vector-function  fti,,,.(W,,T,) represents thermohydraulic

phenomena at the temperature of air 7.
Taking into account the continuity of heat and hydraulic phenomena

observed in gas transport systems, the following variable vector functions are
defined for model (7) — (13):

sequential variables (mass flow and energy flow)

i(x.)="D/ ‘ f’(f“’t)'vg’f’tz ; (14)

parallel variables (pressure and temperature)

| px0)
u(x,t)—‘T(x,t) : (15)
The balance equations
>M(t)=0 and > M(t)-T(t)=0 (16)

for the mass flows M(¢) and the energy flows M(¢)-T(t) on the nodes of the

network of pipelines numbered with nen;, Un,, , where n;, and n_, are the

out
sets of inner nodes and boundary nodes, respectively. The equations (1)-(16) are
defined on the graph which represents the set of connections between the
elements of the pipeline network. Therefore, the model of the network consists
of the models of its elements of the forms (1)-(3), (7)-(9), (11) suitable to build
the model of the whole system on the basis of equations (16). The equation of
different network elements must be transformed to unified form for integrated
system model obtaining. The required form can be obtained through
algebraization of the system of equations of gas dynamics (1)-(3) and its further
linearization under the conditions (5)-(6).To algebraize the equation set (1)-(3),
the original numerical operator method is proposed, which based on the Newton
polynomials [1]. This method provides an equally high accuracy of partial
derivative approximation (1)-(3) not only inside of the domain of independent
variables ¢>#, and x€[0l], but also at their boundaries according to the

conditions (5)-(6). After algebraization the model components are linearized and
transformed in a common form:



L (T)
L out (T)

~G- (17)

where 7 is the set of discrete values of the independent variable t. The solution of
system (1)-(16) is approximated with account of the parametrically given
boundary conditions (5)-(6); w,,(r) and wu,,(7r) are the node vectors of
unknown parallel action variables; i;,(7) and i, (7 ) are the element vectors of
unknown sequential action variables at the input and output correspondently; G
is the matrix of element conductances; i (z) and i_,(7) are the linearization
constants. Using the operator equations of network elements (17), the model of
gas transport network of arbitrary topology can be easily constructed on the
basis of balance equations (16). Now it is possible to perform the model
construction using the method of nodal thermo hydraulic potentials, which is
similar to that in the electric circuit theory.

Conclusion

The described approach allows to construct efficient computer models of
different energy systems in spite of a variety of the elements of the system, the
heterogeneity of the observed physical phenomena and the complexity of their
mathematical description. On the basis of energetic analogies theory, a
generalized energetic circuit principle is extended to gas-transport networks with
arbitrary topologies.
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