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MATHEMATICAL ANALYSIS
INTRODUCTION IN MATHEMATICAL ANALYSIS

LECTURE NO.12. LIMIT OF A FUNCTION

POINT 1.FUNCTION (ADDITIONAL REMARKS).

POINT 2. LIMIT. INFINITELY SMALL AND INFINITELY LARGE.
POINT 3. PROPERTIES OF LIMITS.

POINT 4. REMARKABLE [STANDARD] LIMITS.

POINT 5. INTERESTS IN INVESTMENTS.

POINT 1. FUNCTION (ADDITIONAL REMARKS).

Def.1 a) Set of all real numbers R =R' = (-0,0) (Ox-axis), b) Ox,x,-plane
(R*), ¢) Ox,x,x, - space (R*) are called correspondingly a) one-dimensional, b) two-
dimensional, c) three-dimensional space.

Correspondingly points a) xe®R'; b) x =(x,,x,)e R*; ¢) x=(x,,x,,x;) € R’
are called a) one-dimensional, b) two-dimensional, ¢) three-dimensional points.

Def. 2. n-dimensional space R" is called the set of all n-dimensional points
X =(X,%y,0,X,).

Def. 3. Distance between two points x = (x,,x,,...,X,), ¥ = (¥, V,,...,y,) of R"

is called the next expression

p(x, ) =05 =1, ) + (=, )+t (3, =2, ) = \/Zn:(xk - ).

k1
Theorem 1. For any three points x, y, z of R”
p(x, y) < p(x,z)+ p(z, y) (triangle inequality).
Def. 4. Function y=f{x) with domain of definition D( f ) e R" and set of values
E(f) <R is called a mapping of D(f) onto E(f) that is some rule which puts in corre-

spondence a certain (unique) number y € E(f) < R to every point x e D(f).



Forn =1, 2, 3, ..., n we have a function of one, two, three, ..., n variables
=), y= (0= f(x,5), y=f(0)=f(x,0,%), y= ()= [(5,%,.x,).

Def. 5. f(x) is called the value of a function at a point x.

Ex. 1. Number [numerical] sequence (function of a natural argument). Let
D(f)=8=1{,2,3,.,n,...; and y, =11, y,=1Q2), y;=,3),0, = f(n),..., or
brieﬂy{ =1 (n)}. Values of function form a number sequence with general term
Yo =S ().

Ways of definition of a function:

1. Analytical way: with the help of some formula

2 2 2 2 2 2
Ex.y=x", y=x"+x,7, y=x+x," +x;".

7 4 n. 5;35;{‘&5} xg) 2.Graphical (geo-
metrical) way (for n

=11 X
F_ﬁ:' :] =1, 2): with the help

=1

of some graph(ic).
— Ta All is clear for n =
[:] -
A x, 1 (see fig. 1).
Fig. 1 Fig. 2 Let n =2 that is

we deal with a func-

tion of two variables y = f(x) = f(x,,x,). Then for any point x = (x,,x,)e D(f)we get
a corresponding point M (x,,x,,y), v = f(x,,x,) of the space Ox,x,y. Set of all such
the points M forms some surface S which is called the graph of the function (fig. 2).

A function of two variables y= f(x)= f(x,,x,) can be geometrically repre-
sented with the help of so-called level lines [level curves, equiscalar lines] that is
lines along which this function takes on constant values,

f(x,x,)=C,C—const.

It’s obvious that for every C a level line is the projection of the intersection line

of the graph of the function y = f(x) = f(x,,x,) and the plane z = C onto the x,Ox, -

plane.



Ex.2. Level lines of the function
y=flx,x)=a +x;
are determined by the equation
x;+x2=C;C=>0.
For C =0 we have x, =x, =0 that is a point 0(0,0). If C > 0, the level lines are

circles centered at the origin 0(0,0) with radii R = JC.

A function of three variables y = f(x) = f(x,,x,, x;) doesn’t possess a graph
but can be geometrically represented by level surfaces that is surfaces along every of
them the function has a constant value, that is

£(x,,x,,x,)=C, C—const.
Ex. 3. Level surfaces of the function
Y= f(x,%,, X)) =X +x; + x5
are represented by the equation
xi+x;+x;=C,C>0.
For C = 0 the level surface degenerates into a point O(O, 0,0), and for C > 0 the level

surfaces are spheres centered at the origin 0(0,0,0) with radii R = JC.

3. Tabular way (for n = 1, 2): with the help of some table.

For n =1 see for example tables of trigonometrical functions, of logarithms etc.
There are double entry tables [two-input tables] for n = 2, three-entry tables [three-
input tables] for n = 3 etc.

4. Description way (with the help of some description).

Ex. 4. Trigonometric functions of an arbitrary real argument were defined (see
Lecture No. 2) by description with the help of trigonometric circle.

5. Algorithmic way (with the help of a program for a computer).

Def. 6. Basic elementary functions (of one variable) are called the next func-
tions:

1) constant function y = f( x ) = C, C -const;

2) power function



y=x% aeR';
3) exponentional function
y=a",0<a=#1,in particular y = e”,
where , e~ 2.71828... 1s Euler number;

4) logarithmic function

y=log, x, in particular y =Inx =log, x;
5) trigonometrical functions

y=sinx, y=cosx, y=tanx, y =cotx;
6) inverse trigonometrical functions

y =arcsinx, y =arccosx, y =arctanx, y =arccotx.

Def 7 (composite function). Let y = f(u), u =¢@(x) be two functions of one
variable, and E ((p) < D(f). A function y= f(¢(x)) is called a composite one [a
function of a function, a superposition of functions fand ¢ ].

Note. For functions of several variables a composite function can be defined
analogously, for example a composite function of three variables

Y= 1@ (x5 %, ), 0, (%), X5, %5))

where
y= f(”): f(”1>”2)> u = (01(x): (01(x1>x2>x3)> u, = (Dz(x): (02(x1>x2>x3)>
u=(u,u,)e R, x=(x,x,,x,) e R’

Def. 8 (elementary function). A function y = f( x ) of one variable x € R' is
called that elementary if it is a basic elementary one or can be represented as result
of finite number of arithmetical operations (addition, subtraction, multiplication, divi-
sion) and superpositions on basic elementary functions.

Ex. 5. n-th degree polynomial (of one variable x € R')

P(x)=a,+ax+a,x’+..+a,x",a, #0

Ex. 6. A rational fraction (of x € R') is called a ratio of two polynomials

R(x) = M, Q,(x)=b, +bx+bx* +..+b x"
F,(x)



The fraction is called proper one if m < n and improper otherwise (m > n).
Def. 9. Let a € R'. A neighbourhood U, of the point a is called every inter-
val which contains this point. Specifically an interval U, =(a—¢,a+¢), which is

defined by the inequality ‘x — a‘ < ¢, 1s called the ¢ - neighbourhood of the point a.

Def. 10. A deleted neighbourhood U’ of the point a € R’ is called its neigh-
bourhood U, without this point: U] = U, \{a}. In particular the deleted ¢ -neigh-
bourhood U, of the point a is the union of two intervals: U’ =(a—¢,a)U(a,a+¢).

Analogous definitions can be stated in n-dimensional space for any n. We’ll
limit ourselves by the case n = 2 that is by the case R (the plane x,Ox,).
| Def. 11. A domain on the plane is called a point set
D < R* satisfying two conditions: 1) every point x = (x] ,xz)

of D belongs to D with some circle centered at x = (x,,x, );

2) every two points x = (x] , X, ), y= (y1 Y, )ofD can be joined

7’

Fig. 3 by some line / which entirely lies in D (/ < D) (fig. 3).

Ex. 7. Open circle K(a, R) of radius R, centered at a point a =(a,, a, ) (a circle
without its boundary that is the circumference S(a, R)).

By analogy with definitions 9, 10 we can state

Def. 12. A neighbourhood U, of the point a=(a,,a,)eR* is called every

domain containing this point (for example an open circle K (a, R ))

Def. 13. A deleted neighbourhood U’ of the point a = (a,, a,)e R’ is called
its neighbourhood U, without the point a that is the set U =U_ \{a} (for example
deleted circle K'(a, R)=K(a, R)\{a}).

Many functions (of one and several variables) are studied in economics: pro-
duction (BupoOnmua) function, productive (mpoayktuBHa) function, profit [return]
function (dynkiis npudyTKy), cost function (dbyHkiis BUTpar, PyHKIlS BapTOCTI),
demand function (pyukuis nmonuty), supply function (dbyHkiuis npomno3suiii), payoff

function (dyukiis Burpamy), utility function (dyHkiis xopucHocTi), loss function
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[expenditure function] (dbyHkiis BTpat), risk function (pyskuis pusmky), damage
function (dbynkiis 30utkiB), effectiveness function (¢pynkiis edpexruBHocti), Cobb-
Douglas function (dynkiiss Ko66a-/lyrmaca), insolvency function (pynkiiss GaHk-
pytctBa), loss-of-utility function (dbyHkuis BTpat KopucHoCTI), preference function
(pynxuis nepeBaru (mpenmnourenusi)), propositional function (mpomnosumiiina GyHK-

11is) etc.

POINT 2. LIMIT. INFINITELY SMALL AND INFINITELY LARGE

A. Limit of a function at a point.

We’ll begin by the next example.
Ex. 8. Let there be given a function (fig. 4)

x* =9
fl)="—

with domain of definition D(f)=(~o0,3)U(3, ®0), and let x tend to the number 3

(x = 3). We see (table 1) that the values of the function tend to 6, f (x) — 6, as

x — 3. This fact is usually fixed by the next notations

lim flx)=6, f(x)>6asx—3,

but it requires exact definition.
Table 1
X 2.94 2.96 2.98 3 3.02 3.04 3.06
y=f(x) 5.94 5.96 5.98 Doesn’t 6.02 6.04 6.06

exist
f(x)-6  0.06 0.04 0.02 0.02 0.04 0.06
Let x #3 and ¢ be arbitrary number, which is positive and however small. We
study the modulus of difference between values of the function and the number 6 and

we have
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2
1/ (x)-6) =~ _39—6‘=\(x+3)—6\=\x—3\<g if —&<x-3<e,
e

3-g<x<3+g,xe(3-¢,3+e)x#30rxe(3-£,3)U(3,3+¢).

For example | f(x)—6/<0.01(¢ =0.01) if x €(2.99, 3)U(3, 3.01); | f(x)— 6] < 0.001

£ =0.001) if x €(2.999,3)U(3,3.001) and x # 3.

Thus for any positive however small number ¢ there exists a neighbourhood of

the point x = 3, that is the interval U, = (3—&, 3+¢) (on the fig. 4 U, = (m, n)), such
that for any x € D(f), if x reaches deleted neighbourhood of the point x = 3, that is
Ul=(3-¢,3+&)\{3} = (3-¢,3)U(3,3+5)=(m, 3)U(3, n), then the inequality

£ (x)—-6|< & holds. Symbolically:

Ve >0,3U, =(3-¢,3+¢),Vxe D(f):(xeU; =(3-¢,3)U(B,3+&) = |f(x)-6 < &)

It is exact definition of the fact that the limit of our function, as x tends to 3, equals 6

or, which is the same, that the function tends to 6 as its argument x tends to 3.

The inequality ‘ f (x)— 6‘ < & 1s equivalent to the next one

¥l A
B 2 6—-¢< f(x) < 6+¢&, so we can state geometric sense of given
NN
|2 i i defini-tion of the fact that £1£1% f (x) =6 (see fig. 4). Namely, if x
]
4 E i i belongs to the deleted neighbourhood U’ = (m, 3)U(3, ) of the
L4
R % point x = 3, then corresponding part of the graph of the function
Fig. 4 f (x) lies in the hatched 2 & -strip bounded by the straight lines

y=6-—¢g,y=6+¢.
On the base of studied example we are able to state general definition of the li-
mit of a function y = f (x) as x tends [goes] to some point a (or the limit of the func-
tion y = f (x) at the point x = @). A function can be dependent as on one as on # vari-

ables.

Def. 14. A number b is called the limit of a function y = f(x) as x — a (the

limit of the function at the point @), lim f(x)=5 or f(x)— b as x — a, if for any

positive however small number ¢ there exists some neighbourhood U, of the point a
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such that for any value x from the domain of definition D(f’) of the function, if x be-

longs to deleted neighbourhood U/ of the point a then the inequality
f(x)-bl<e,
or, which is the same, the double inequality
b—e< f(x)<b+e,
holds.
Symbolically,

lim f(x)="5

if
Ve>0,3U,,YxeD(f):(xeU. = |f(x)-b <& = (b—e< f(x)<b+g)).
Remarks.
1) A point a can belong or not belong to the domain of definition D( f ) ofa
function y = f (x) That is why deleted neighbourhood U of the point « is intro-

duced in the definition of limit. It can be substituted by U, if

a e D(f)

2) In the case of function of several variables the defi-

nition of limit is stated under indispensable assumption that

x can tend to a along arbitrary path which wholly lies in the
Fig. 5 domain of definition of a function.
3) In the case n = 1 that is for a function of one variable it’s easy to give geo-
metric sense of definition of the limit of the function at the point a (fig. 5). Namely

for any ¢ > 0 there exists a neighbourhood U, of the point a (an interval (m, n) on
the fig. 5) such that for all points x € D( f ) of the deleted neighbourhood of the point
a, namely U/ = (m, a)U (a, n), the corresponding part of the graph of the function
lies in the hatched 2 & -strip between the lines y=b—¢ and y=b+¢.

Ex. 9. Prove that limx* =4 .

x—2
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Domain of definition of the function y = f(x)=x? is the set of all real num-

bers R' = (-0, ). Behaviour of the function for x — 2 is represented by a table 2.

Table 2
X 196 197 198 199 2.00 2.01 2.02 203 204
y=x (z) 384 388 392 396 4.00 4.04 4.08 4.12 4.16

‘x2—4‘ 0.16 0.12 0.08 0.04 0.00 0.04 0.08 0.12 0.16

Let & > 0 be positive however small number. Then
‘f(x)—4‘=‘x2—4‘<g if —e<x’—4<g,d-g<x’<d+e,Jd-s<x<d+s.

Therefore for any ¢ > 0 it exists a neighbourhood of the point x = 2 namely U, =

=(m,n)= (\/4 —g, N4+ 8) such that for all values of x € U, the inequality ‘xz - 4‘ <g

holds. By definition of limit and according to remark 1) we can write

Ve>0,3U, =(Va—¢,Vd+e), VxeR:(xeU, =[x —4|<¢), limx* = 4.

x—2

tinasé State yourselves geometric sense of studied passage to the

Btang limit.
ol é"}g ‘;; " Ex. 10. With the help of definition of tangent prove
A X that lim tan x = tana forany a € (0, 7/2).
0 mLet’s mark three points tana —¢, tana, tana + ¢ on
M the tangent line (points C, B, D correspondingly, fig. 6) and
Fig. 6. join these points with the centre O of the trigonometric cir-
cle. Let

o =ZA0C, a=ZAOB, = LAOD, x = ZAOM (fig. 6).
We get the next result (in symbolic form):
Ve>0,3U, =(a, B),Vx e (0,7/2): (x e (e, f)=tana—& < tanx < tana + &

that is ‘tan x—tan a‘ <e).

By definition of the limit imtanx =tana m

xX—a

It’s possible to extend this result on any a # 7/2,n=0,£1,+2,+3,.... Try
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to do it yourselves.
Prove yourselves with the help of definitions of sine, cosine, cotangent that

limsin x =sin a; limcos x = cosa; limcotx =cota (a zm,n=0,%1,+2, ir3,...).

xX—a xX—a x—a

Note. Examples 9, 10 and above-sited results as to sin x, cos x, cot x give us

the first examples of functions possessing the property of the form
lim f(x)= f(a)

(limit of a function at a point a equals the value of the function at this point). There
are very many functions of such kind (so-called continuous functions), for example
all basic elementary and elementary functions. We’ll especially study continuous fun-
ctions in the next lecture, but here we’ll apply continuity of elementary functions in
simple cases.

XXy

Ex. 11. Prove that a function of two variables f(x)= f(x,, x,)= T
X, + X,

doesn’t possess limit at the origin O(0, 0).

mlt’s sufficient to approach the origin along two different paths. Along the

straight line x, = x, one has

XX, 1 . XX, 1
x,x,)=flx,x )=———=—and lim X, X, )=lm——-=—;
along the other straight line x, = 2x, one gets the other limit, for
X, - 2X 2 X, -2x
x,x,)=flx,2x)=—"—"1—-="and lim X, Xx,)=lim——1— ==,
f( ! 2) f( ! l) x12+(2x1)2 5 (xl,xz)a(o,o)f( : 2) xl—>ox12+(2xl)2 5

In accordance with remark 2) the limit of the function for (x,,x,)— (0,0) doesn’t

exist.m

We have defined the limit of a function y = f(x) of one or several variables at
a point a. There are some other types of passage to the limit. We’ll briefly study them
for a function of one variable x € D(f) < R' (see B, C, D).



B. Unilateral limits of a function at a point

Let x <a and x — a. One says that x tends to a from the left and denotes this

fact by the next way: x — a—0. Corresponding limit b, of a function y = f (x), if it
exists, is called the left limit of the function at the point a and is denoted
7y — b= fla=0)= lim f(x) (fig. 7).

Def. 15. A number b, is called the left limit of the

. & function y = f (x) at the point a (that is if x approaches a
? R from the left) if (symbolically)
. : Ve >0, H(m a)VxeD(f) (xema ‘f bl‘<8).
Fig. 7 In analogous way one says about tending of x to a

from the right (x > a and x - a, x > a+0) and the right limit b, of the function
at the point a,
b, = fla+0)= lim f(x) (fig. 7).

Def. 16. A number b, is called the right limit of the

g

function y = f (x) at the point a (that is if x approaches a

from the right) if
Ve >0, H(a n) VxeD(f): (xean ‘f b2‘<8).

Ex. 12. A function
x—1, if 0<x<3,
flx)= .
3—x, if3<x<4
has the left limit 2 and the right limit O at the point x = 3,
f(3-0) lim flx)= lir3no(x ~1)=2, lim f(x)= lim (3-x)=0 (see fig. 8).

x—3+0
State yourselves geometric sense of right and left (unilateral) limits.
Theorem 2. Limit of a function of one variable at a point a exists if and only if

left and right limits at this point exist and are equal,

Blim f(x))& 3/ (a-0)= lim f(x),3f(a+0)= lim f(x), f(a—0)= f(a+0))
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mValidity of the theorem follows from the definitions 14 (forn =1), 15, 16 =

C. Limit of numerical sequence

Ex. 13. Let there be given number sequence

{ 2n+1}
X = .
" 3n=2

Its bihaviour is represented by a table 3

Table 3
n 10 10? 10° 10° 10°
x, (=) 0.7500000  0.6744966  0.6674449  0.6666674  0.6666667

x,—2/3(x) 0.0833333  0.0078300  0.0007783  0.0000008  0.0000000

From the table we see that general term x, of the sequence tends to 2/3 = 0.(6).

We usually denote such the fact by the next way
. 2n+1 2
lim =—
n>e3p—2 3

29 <6

and say that the sequence {x,} tends (“converges”, “is convergent”) to 2/3.

To express exactly this fact let’s determine for which values of # the inequality

x,—2/3|=

2n+1 2
-Z<eg
3n—-2 3

holds for any however small number &. We have

M_%‘:L T
3n-2 3| 3(3n-2) 3(3n-2)

<8if3(3n—2)8>7,3n—2>3l,n>%(l+2j= 7+6e
&

x,—2/3=

‘z{fornkl}:

3(3n-2) 3¢ 9¢

} e X is the integer part of the number 7 +6s :

9¢

7+ 6¢
9¢

Let the natural number N = [

We have found that for however small positive number ¢ the inequality ‘xn -2/ 3‘ <¢g
holds for all natural numbers » which are greater than the found number N. Symboli-
cally

7+ 6¢
9¢

V8>O,EIN={ },Vn:(n>N:>xn—2/3‘:

2n+1 2
—— <&
3n-2 3
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Generalizing the reasonings of the example we can state the definition of the

limit of arbitrary number sequence { ¥, : ¥,,V,5s ¥, 5o} -

Def. 17. A number b is called the limit of number sequence { y, } if for how-
ever small positive number ¢ there exists a natural number N such that for any natu-
ral number n, which is greater than N, the inequality ‘ v, — b‘ < & holds.

One writes in this case

7 limy =b
bee n—»o0
,f; = % and says that the sequence tends [converges, 1s
l l l ’ l convergent] to b.
O SR ! TR Symbolic expression of the Def. 17 is the next:
Fig. 9 limy =5
if

V8>0,E|N€N,VI/ZENZ(I/Z>NZ>‘yn—b‘<8).

Geometric sense of the limit consists in the next: for n > N all terms of the se-

quence lie in hatched strip between straight lines y=b—¢, y=b+¢ (fig. 9).

D. Limit of a function on plus or minus infinity

s y=b+s Def. 18. A number b is called the limit of a
EESSSSSSsss=——  function y = f(x) as x —>+o0, lim f(x) = b, if for

bt 0L T2 . ,
' 9 x any & >0 there exists a number x, such that for all

/ x

values of x € D(f'), which are greater than x;, the
Fig. 10 inequality
f(x)-bl<e(b-e< f(x)<b+e)
holds. Symbolically
lim f(x)=b if V& >0,¥x), ¥V e D(f): (x> x;, =|f(x)-b < &).

X—>+00

Geometrically (fig. 10): for D(f) 3 x > x; the corresponding part of the graph

of the function lies in hatched strip bounded by straight lines y=b—-¢, y=b+¢.
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Ex. 14. Prove that lim 3x+2 = é
oo dx—5 4
Sx¥2 3| B ={ifx>§}=i<g if4g(4x—5)>23,x>l(£+5j.
4x—5 4| |4(4x-5) 4] 4(4x-5) 4\ 4¢
Ve >0,3x =l(§+5j,vxez)(f): S L | P PN T A
4\ 4¢ 4x -5 x>+ 4y — 5§ 4
cweE 7 Def. 19. A number b is called the limit of a func-
< g’*é tion y = f(x) as x — —o, lim f(x)=b, if forany & >0
\ X—>—00
_ f~&
°?°;?,%.;, there exists a number x; such that for all values x € D(f),
) x
X, \< which are less than x; , the inequality
Fig. 11 f(x)-bl<e(b-e< f(x)<b+e)
holds.
Symbolically

lim f(x)=b if V& >0,¥x], ¥V e D(f): (x < x) =|f(x)-b|< ).

x—>—0

Geometrically (fig. 11): for D(f) 3 x < x; corresponding part of the graph of

the function lies in hatched strip bounded by the straight lines y=b-¢, y=b+¢.

Ex. 15. Prove that lim Sx+2 =§.
o dx -5 4
Indeed,
3“2—3:L:{ifx<§}:— 23 2 <gif 4e(5-4x)> 23,
4x-5 4| |4(4x-5) 4 H4x-5) 4(5-4x)

5—4x>§,4x<5—§,x<l 5—2 ,
4g 4g 4g

3x+2_§
4x-5 4

Vg>O,E|xg:%(5—j—3j,VxeD(f):(x<x(')':>
€

. 3x+2 3
<¢|= lim =—
—odx -5 4

E. Infinitely small

Def. 20. A function y = f(x) is called infinitely small (1S) in some passage to
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the limit if its limit is equal to zero.
For the case of x — a one get the definition of /S from Def. 14 for b =0:

function y = f(x) is called IS in the case x — a if

Vg>0,3Ua,VxeD(f):(er; :‘f(x)—O‘:‘f(xX<g<:>(—g<f(x)<g))

Ex. 16. A function y=x" is ISas x = 0, limx” =0, because of xz‘ = ‘x‘z <eg

x—0
if‘x‘<g,—g<x<g,er0:(—8,8), Ve>0,3U0, =(—8,8),VXZ(XEU0:>‘x2‘<8).

Ex. 17. A function y =1/x is IS as x — fo0, lim I/x=0.

Xx—>Fo0

1 1
=—<g if |x|>— thatisif x>x;=— or x<x;=—— m.
1 .f“ h . .f < i
] £ £ £

X

Theorem 3. All elementary functions are 1S at their zeros.

c Let’s prove for example that sin x is S at the point

x=0, thatis Iimsmx=0.
f.gx 5 x—0
mFrom the trigonometric circle (fig.12) we see that

sinx<x for 0 <x < /2 and [sin x| <|x| if —7/2<x<z/2. So

sinx|<¢ if x|<g,—e<x<g orxelU, =(—¢,¢&). Thus we
0

Fig. 12 we can write
Ve>0,3U, =(-¢,¢), Vxe(-x/2,7/2):(xeU, :‘sinx‘<8):>lin%sinx=0l

. 1
Theorem 4. All next functions: a) —, neN, for x — to0; b) a” for a > 1
X

and x > —w;c¢)a” for0<a<l1and x— +oo are IS.

One can remember these facts with the help of graphs of corresponding func-
tions.
F. Infinitely large

Let, for example, be given a function y = f(x) of one variable x € R' and

x—>a—0.
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Def. 21. The function y = f(x) is called infinitely large (IL) as x > a -0,

lim

x—>a—0

f (x)‘ = 4o, if for however large positive number N there exists an interval

(m, a) such that for any value of the argument x, if x (m, a) then the inequality
|/ (x)|> N holds, that is
VYN >0,3(m, a), Vx e D(f):(xe (m, a):‘f(x)‘ > N).
Note. If a function y = f(x) 1sIL for x >a—0 and f(x)>0 (f(x)<O0)

from the left of the point a then one can say that lim0 f(x)=+x ( lim0 f(x)=—x).

1

. . . .1 :
Ex. 18. Function 1/x is IL if x - 0. Namely lim —=—o0, lim —=+o.
x—>0-0 x x—=0+0 x

mLet, for example, x > 0—-0 (x —> 0 and x < 0). For however large positive

number N
l=l=L=—l>N,l<—Nif—1<xN,x>—L,xe(—i,Oj.Thus,
X ‘x‘ —-X X X N N
VN>O,EI(—L,OJ,V)C: XE(—L,Oj2>1>NOI'l<—L = lim l:—OOI
N N X X x—>0-0 x

Ex. 19. With the help of trigonometric circle prove that

lim tanx =+o0.

x—>/2-0
! v Let N be however large positive number and o = arctan N
) ' (see fig. 13). Then for any x from the interval

(m, %) = (arctan N%) m = arctan N ,

/"'

the inequality O tan x > N holds, that is

X
0 lim tanx = +o0.
x—>/2-0
\/ Finally, by definition of /L (for the case f(x)=tanx >0 on the
Fig. 13 interval (0, 7/2))

YM >0, El(m%j Vx e (0%) N (x S (m%j = tanx > Mj

Analogous definitions can be stated for the other types of passage to the limit.
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Ex. 20. x° is IL if x — +oo. Namely, lim x* =+o0, lim x* = —o.

X—>+00 X—>—00

mIf x — 400 then (we can consider that x is positive) x* > N for x > x|, = AN .
If x — —oo then (we can consider that x is negative) x* <—N for x < x} = /N =
Theorem 5. All the next functions: a) x",n e X for x — t00; b) a” for a >1

and x > +o0;c¢) a” for 0<a<1 and x > —o0; d) log, x for x - +00 or x > 0+0;
e) tanx for x — 7/2+ 7k from the left or from the right, k € Z; g) cot x for x — 7k

from the left or from the right, k € Z, are IL.
One can remember these facts with the help of graphs of corresponding func-

tions.

POINT 3. PROPERTIES OF LIMITS

Def. 22. A function f{x) is called bounded above on some set X < D(f) if
there exists some number C; such that the inequality f (x)é C, holds for any value of
the argument x containing in the set X. Symbolically

3C,Vxe X : f(x)<C,.
A function f(x) is called bounded below on the set X if

3C,,Vxe X : f(x)>C,.
A function f(x) is called bounded one on X if it’s bounded above and below.
Theorem 6. A function f(x) is bounded on X iff (if and only if)

AC, vxe X :|f(x)<C.

Prove this theorem yourselves.
General properties of limits of functions

All this properties are true for any types of passage to limit. We’ll state them

for the case of the limite of a function at a point a.
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1. If the limit

lim f(x)= 4

exists then the function f(x) is bounded in some neighbourhood of the point a.

mBy definition of limit
Ve>0,3U,,VxeD(f):(xeU, = |f(x)-d<e= d-s< f(x)< d+¢).
Thus in U’ the function f(x) is bounded above and below and so it is bounded onem

2.1f
lim f(x)=A4>0,

then the function f'(x) is positive in some neighbourhood of the point a.
mProving follows from that of preceding property if one takes & such small

that A - & be positive. Then in U’ one has 0 < A—¢ < f(x), f(x)>0m
3 (corollary). If in some neighbourhood U, of a point a one has f (x) < 0 (or
£(x) < 0) then lim f(x)<0.

mProve this corollary yourselves by reduction to absurditym

.1
Ex.21. 150 for any natural n, but im—=0.
n n—o p

4. Theorem about two militiamen. If in some neighbourhood U, of a point a

a double inequality
glx)< f(x) < hlx)
for three functions g(x), f(x), #(x) holds and
lim g(x)=lim h(x)= 4,

X—>a xX—>a

then there exists the limit of the function f(x) at the point a and lim f(x)= 4.

xX—a

m lim g(x)=lim 4(x)= 4 means that

xX—>a xX—>a

Ve>0,3U ‘v’xeD(f)'(er' :‘g(x)‘A‘“»A—E<g(x)<A+8J
2 a2’ . a2 .

‘h(x)—A‘<8,A—g<h(x)<A+g

Let U, =U,, U, , is the common part of U, and U ,. In U, all the inequalities
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A—-¢ <g(x)<f(x)< h(x)<A+8
hold, therefore
A-e< flx)<A+e,

f(x)—A‘<g.
Thus
Ve >0,3U,,Vxe D(f):(xeU, =|f(x)- 4|<&), that is lim f(x)=4 =

xX—>a

5. If a numerical sequence {y, } is increasing and bounded above then it has the

99 6

limit (“it converges”, “it is convergent”).
Properties of IS (of infinitely small)

1. Sum of two IS is IS.
2. Product of 1S by bounded function is /8.
3 (corollary). Product of two 1S is IS.

Note. One can say nothing about a quotient of two IS. It’s undetermined ex-

pression of the type % :

4. If o (x) 1s IS then f(x)z ! ) is IL (symbolically: %: ).
o(x

5.1ff(x ) is IL then a(x)=

1
is IS (symbolically: —=0).
J(x) 0

6. A function f{x) has a limit 4 at a point a (for x — a) if and only if in some
neighbourhood of this point the function can be represented in the form
fx) =4+ a(x),
where o (x) is IS for x > a.

m a) If 3lim f(x)= 4, that is

Ve>0,3U,,VxeD(f):(xeU, =| f(x)-A|<e),
then the function a(x)= f(x)— 4 isISas x >a and f(x)=A+a(x) in U,.
b) Inversely let /' (x) = 4 + a (x), where « (x) is IS for x — a, that is
Ve>0,3U,,VxeD(f):(xeU, = |a(x) = f(x)- Al &).
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Hence if follows by definition of limit that lim f(x)= A m

xX—>a

“Arithmetical” properties of limits

1. Limit of sum, difference, product, quotient of two functions equals (corre-

spondingly) sum, difference, product, quotient of limits of these functions, that is

lim(f (x) £ g(x)) = lim f(x)£lim g(x),
lim(f(x)- g(x))= hmf( )-lim g(x)

lim(f(x)/gx(;)) lsz /szg )pr0V1ded lzm g( )# 0.
m Proof for the limit of a product. Let
lim f(x)= 4, lim g(x)=B.

xX—>a

Then by the property 6 of properties of IS
f(x)z A+ a(x), g(x) =B+ ﬁ(x),

where a(x), B(x) are IS for x — a. Product of these functions equals:

f(x)-g(x)=A4-B+ Aﬁ(x)+ Ba(x)+ a(x)ﬁ(x)

It means that f(x) g(x)=4-B+1S = lim(f(x)- g(x))= 4- B =lim f(x)-lim g(x) m

xX—a xX—a xX—>a

.

Note. It can be said nothing without special investigation about the limit of
quotient of two functions
jim £ %)
a g(x)

when

lim f(x)=0, limg(x)=0

xX—a

or when functions f(x), g(x) are infinitely large as x — a . In such the cases one says

about indeterminate expressions [indeterminate forms, indeterminacies, indetermi-

: . : : 0 o
natenesses, indeterminations, indeterminedness] of the types o or —.
o0

Corollaries. a) For any constant C
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lim(C- f(x))=C-lim f(x)

xX—a xX—>a

that is a constant factor can be taken outside the limit sign.
b) For any natural number n the limite of the nth power of a function is equal to

the nth power of the limite of this function,

tim(f (x))" = (lim f(x))

xX—>a

2 (limit of a composite function). Let there be given a composite function

y=/(p(x))
(where y = f(u),u=p(x)). If limp(x)=5b and linll) f(u)= A then there exists the

limit of the composite function at the point a which equals

lim f(p(x))= 4.

xX—>a

1

1
Ex. 22. Let uz(p(x)z—z,y:f(u):e” that is yzf(qo(x))zeg.
x_

1

lim ¢(x)= lim = +o0, lim f(u)= lim " = +00 = lim f(p(x))= lim e*? =+

x—2+0 X240 x — 2 U—>+0 U—>+00 x—240 x—2+0

1

=—a, lim f(u)=lim " =0= lim f(p(x))= lim e =0;

lim ¢(x)= lim

x—2-0 x—2-0 x — 2 U—>—00 U—>—00 x—2-0 x—2-0
L (4o, if x> 240,
lime*? =9 |
X2 0,iff x—>2-0.

Def. 23. Two functions f'(x), g (x) are called equivalent as x — a (f(x) ~ g (x)

or f(x)~ g(x) on computer) if limit of their ratio is equal to unity,

limM =1.
=a g(x)
3. Finding limits we can substitute any factor by its equivalent one.

mLletf(x)~h(x),g(x)~k(x)as x > a and it’s necessary to find a limit
i £ HuE)w(x)
e g(xv(x)

Multiplying and dividing by /4 (x) and k& (x) one gets

lim J (u(x)w(x) — lim f(x)k(x)h(x)u(x)w(x) _
e gov(x) e h(x)g(ok(xv(x)
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e SO k() A uw(x) L A (o) w(x)
T ) b k)

Factors f'(x), g (x) are substituted by 4 (x), k£ (x) without changing the limit m
Properties of IL (of infinitely large)

1. If f(x)— %, g(x) > 0 then f(x)+ g(x)— *oo.

2. If f(x)— %o0,g(x) > Foo then f(x)- g(x)— o0

3.IL'IL =1L

4. If f (x), g (x) be two functions, f (x) is IL for x >a and g(a)=4+#0 or

lim g(x) = A+ 0, where 4 is some finite number then the product f (x) g (x) of these

X—>a

functions is IL for x > a.

Ex. 23. nth degree polynomial

P(x)=a,+ax+a,x*+.+a,_x"'+ax",a, #0
is IL for x tending to infinity (x — +o0). It's equivalent to its highest term [term with
higher exponent] a,x" for x — +oo.

m Taking x" out the parentheses we get a product

a a a a
P(x):x”-(—°+ L 2 +...+L“+anj

n n—1 n-2

X X X X

of IL x" and a function having the finite limit a, # 0. Therefore this product is /L as

x — oo . Futher

a a a a
x”-(°+ Ly =2 +...+”“+anj
a
n

) P(x ) xn xn—l xn—2 X
thn)zhm . =1=1=P(x)~ax". =
x—>too anx X—>o0 anx an

Ex. 24. Using this last fact we find the next limit:

4x% —3x° +2x—4 ~4x*
5x" +2x =3x*+4 ~5x’

lim =|—
e ST 4 2x% —3x% +4

4x* —3x° +2x—4 (ooj_

o0
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POINT 4. REMARKABLE [STANDARD] LIMITS

The first remarkable limit

The first remarkable [standard] limit is called the next one

B i (o) o
C mUsing the trigonometrical circle we’ll study the case
C 0< x<7/2 (fig. 14). Finding the areas S, ,,c» S50 Soumc OF
n - A the triangles AOC, AOB and circular sector O4AmC we see that
Hence
1 o4’ -x 1 1 1 x

Fig. 14 —0A4-OC -sin x < <—O0A-AB,—-1-1-sinx < <—-1-tanx,
2 2 2 2

1
—<
siInx COSx

sinx<x<tanx,1<

or better
sin x
cosx<——x<1.
X

This last double inequality is valid and for the case — /2 < x <0.

As for as limcos x =1 we get the required result by virtue of the theorem about

x—0
two militiamen.m

The graph of

v kf
/ \ y= Sz the function
—2% s g _n\.-f’fn: @ f (x) =
L4 X
Fig. 15 is representted on the

figure 15.

Corollaries.
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| lim &resinx _ (%) 1 lim tanx _ (%) 1 lim arctan x _ (gj 4

x—0 X x>0 x x—0 X 0

We’ll prove the third of these limits. Prove the other yourselves.

arctanx = y,
. arctanx : : cos . .
mlim =y —>0, =llmizllmu=hm_i-hmcosy=1-1=1-
-0 X y»oitany -0 smy  »20smy »0
x=tany

2. For x — 0 functions sin x, arcsin x, tan x, arctan x are /S, which are equiva-

lent to their argument x: sinx ~ x, arcsinx ~x, tanx ~x, arctanx ~Xx .
Ex. 25. With the help of the third property of “arithmetical” properties of limits

sindx ~4x tan7x ~ 7x 4x-7x_7

m )
=03x.8x 6

0

lim =

sindx-tan7x (Oj
x-0 gresin 3x - arctan 8x

arcsin3x ~3x arctan8x ~ 8x

—_— / 3
Ex. 26. Find the limit 4 = fim - > 3%
H% 1—sin" 9x

Let’s remark that

. 13T T LT .9 . T T
sin——=¢sin| 6r+— |=sin— =1, sin—=ysin| 4dr+— |=sin—=1,
2 2 2 2 2 2

and so by “arithmetical” properties of limits

=1
7 (1-sin 9x)(1 +s5in9x + sin’ 9x) XTZT 1-sin9x

0

i3 s . .2 e
A:liml Sm313x:(0j—l'm (1 Szn13x)(l+sml3x+sm 13x) 1—sinl3x
o 1=sin” 9x
2
because of
lim(1+ sin13x +sin*13x) =1+ 1+1= 3, lim(1+ sin9x + sin® 9x)=1+1+1=3.

3
x—>= x>
2 2

Now we introduce a substitution %— x =1,y — 0, whence it follows that
. : T (137 : T (r
sinl13x =sinl3 E—y = sin T—lSy = sin 67r+5—13y = sin 5—13y =cos13y

sin9x = Sin9(§—yj = Sin(gg—9yj = Sin(47r +%—9yj = Sin(%—9yj =cos9y.

Hence,
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2 2
o 13y | 213y (13y 13y
_ 1—cosl3y . 2sin I S 2 13V 169
A=1lim-—Y i _ )| Ztim\ 2 (13} _169
y201—cos9y »0 2sin29—y sin29—y~(9—yj y—0 (%}j 9 81
» "2 2

The second remarkable limit
Let’s study the next number sequence

el

Approximate values (to 3 decimals) of some terms of the sequence are given in the

table 4

Table 4.
n 10 50 100 150 1000 2000 3000 10000
V. 2.594 2.692 2.705 2.709 2.717 2.717 2.717 2.718

We come to conclusions (and there is a strict proving of these facts): a) the gi-
ven sequence increaces; b) it is bounded above. Therefore (by virtue of property 5 of
general properties of limits of functions) it possesses the limit which is denoted by a

letter e (Euler’s number; it’s known that e = 2.718281828459045...). Thus we can

lim(l + lj =e.
n—»0 n

More general result is true, namely

lim(l + lj =e,
X—>0 X

where x can tend as to + oo, as to —oo. This result can be represented in the next

write

form:

lim(l + x)l/ Y =e.

x—0

We’ll write all these formulae together and call them the second standard limit
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lim(l + lj —¢; lim(l + lj —e;lim(1+x)" =e (2)
n—»w n X—>00 X x—0
Corollaries.

1. lin(}M =1 the third remarkable limit (3)

x> X
1 1
-nngM = 1in311n(1 +x)=limIn(l+x): =Inlim(i+x): =lne=1.m
X X X X xX—> X

Legitimacy of the passage to the limit under logarithm sign will be proved later.

2. lirr(} e -1 =1 the fourth remarkable limit (4)
x—> X
X 1 ex _1 = y’
mlim& =] y50, |=lm—2  =1m
x—0 X y—0 ln(l + y)
x=In(1+y)

3. From the formulas (3), (4) it follows that for x — 0 the functions In(1 + x),

¢* —1 are IS which are equivalent to their argument x, In(1+x) ~ x, ¢" —1 ~ x.

In(1+ 1
4. log,(1+x)= ngnaX)Nlna.x'

5. ax—lz(e'““)x—lzex'”“ —1~x-lna.

6. (1+x) —1=e™" 1~ o In(l+ x)~ ax.

As the final consequence we form the table of equivalent IS

sin x
lgx log,, (1+x)~ li
arcsin x na
, ~x as x—0 a*—1~xlna as x—0
arctgx
& (4x)f —1~ax
In(1+x)
e —1
Ex. 27.

x-1 2)(?—3 x—1 x—1
lim(zx_?’j s b =lim(1+2x_3—1j =lim(1+ -8 j —
xoo\ 2x +5 x—1— o0 X—>00 2x+5 X—>00 2
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2x+5 \2x+5 (x—l)

. . —8(x-1) . —8x
. -8 -8 lim (x-1) lim ——— lim —— B 1
— 111’11 1+ — ex—)oozx+5 — ex—)oo 2x+5 — ex—)oo 2x =e 4 :_4 .
x>0 2x+5 e
Ex. 28.
4x+3

lim (3x —2)(In(4x +3)—In(4x — 7)) = (oo (o0 — 0)) = lim(3x — 2) In

X—>00 X—>00 4x -7

= lim(3x —2)ln(1 g axs —1j = lim(3x —2)1n(1 +4&j i Bx=2)10 15
o

x>0 4x -7 x>0 xoo 4x 77 2
To
~4x—7
Ex. 29.
A tandx arcsin 3x .
T ms ltan ax.| — arcsin 3x
lim («5/1 +tan4x — l)- log, (1 —arcsin 3x) _lim In8 B
X0 (6Sin3 ¥ l)arctan 5x =0 sin3xIn6-5x
~sin3x ~5x
~4x ~3x
—tan4x -arcsin 3x 1 . 4x-3x 4
= lim : =— lim =—
=0 25In&In 6sin 3x - x 25In8-In6- >0 3x-x 375-In8-In6
~3x
Ex. 30.
N ~x(3In4-81n5)
43 _ 58 o3xnd _ ,8xIns elenS(ex(3ln4—81n5) B 1)
lim =lim =lim =
0 41-sin3x -1 0 —lsin3x 0 _éx
~%(—sin3x) ~~3x 2

i 2x(3In4-8In5) _ —2(31n4—81n5):_%1n4_:‘
x-0 —3x 3 375




POINT 5. INTERESTS IN INVESTMENTS

Let

P(t) is a principal (that is amount of money) invested to a time moment ¢,

1 (t) is an interest (mpuOyToK) to a time moment ¢,

B(t)=P(t)+ 1(¢) is the balance to a time moment # that is the general amount
of money because of investments and an interest (mpudyToOK),

B(0)=P(0)+ 1(0) = P(0) = P is the opening capital at the time moment ¢ = 0
(moyaTKkOBUI KamiTal B MOMEHT 4acy ¢ = 0),

o 1s the per cent of the interest per unite of time (BizcoTok npuOyTKY Ha OU-

HULIIO Yacy).

Let we do an investment of our opening capital B(0)= P to a time moment 7.

At this moment 7' we have the next general amount of money (the sum of the opening

capital P and the interest /(7’) to the moment T)

(04 (04
B(T)=P+I(T) =P+ TP=P(l+ . T). (5)

It’s a formula of simple interests (hbopmyna npocTux BIACOTKIB).

Let we fulfil » investments of all our money during time interval 7 (in the time

moments 0, z, g,.--, M)

n n n

. T . . .
To the time moment — we’ll have (the sum of the opening capital P and the in-
n

T T
terest / (—j to the moment —)
n n

B L =petL)=pep. & Lopl1, 2.1
n n 100 n 100 n

. 2T : :
To the time moment — we’ll have (the sum of the invested capital B(Zj and
n n

. 2T T
the interest / (—j from the moment — to the moment 2—T)

n n n
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A A Ao

100 n

2

_ (L+:1“ZJ(L%£L”ZJZ;{1+_z_.T |

100 n 100 n 100 n
) T
To the time moment — we’ll have
n
2 3
a3 _plip e T (1, @ T\ _pf{ . x T
n 100 n 100 n 100 n

and so on.

. T
At the time moment 7 =~ we’ll have final amount of money
n

nT a TY
sty ) 1 .T) ©

The formula (6) is that of compound interests (popmyna ckragHUX BiICOTKIB)

Let the number of investments n — +oo during time 7. In this case final

amount of money B *(T') at the time moment 7 by virtue of the second remarkable
limit will be equal

N a T a T
BT =lmB(T)=lmP(l+— -—)"'=Plm(l+—-—)" =
(1) =lim B(T) = lim P(1+ 2 ) I+

n—>0 n

ol 10 of o,
= Plim((1+-——) o )10 = Pel00”
hm((1+255) )

B (T) =P (7)

The formula (7) is that of continuous interests (hbopmyrna HenepepBHUX BiJI-

cotkiB). It gives final amount of money at the time moment 7' by condition that we
fulfil investments continuously.



LECTURE NO.13. CONTINUITY OF FUNCTIONS
POINT 1. CONTINUITY OF A FUNCTION AT A POINT
POINT 2. DISCONTINUITY POINTS
POINT 3. PROPERTIES OF FUNCTIONS WHICH ARE CONTINUOUS
ON A SEGMENT OR IN A CLOSED BOUNDED DOMAIN.
POINT 4. INTERVAL METHOD AND ITS EXTENSION

POINT 1. CONTINUITY OF A FUNCTION AT A POINT

Def. 1. A function y = f(x) of one variable or of n variables is called continu-
ous one at a point a (a eR'ora=(a,a,,.,a)eR" ) if:

1) the function is defined at the point @ and in some its neighbourhood;

2) there exists the limit lim f(x) at the point a;

xX—>a

3) this limit equals the value of the function at the point a,
lim £ (x) = £ (lim x) = £ (a). (1)
On the language of the limit theory this definition means:
Ve>0,3U,,Vxe D(f):(xeU, = |f(x)- f(a)<é).
Theorem 1. A function of one variable x € R' is continuous at a point a € R’
if and only if [iff]: a) there exist the left and right limits
fla=0)= lim f(x), f(a+0)= lim f(x)
of the function at the point a; b) these limits are equal to the value of the function at
this point,
fla=0)=f(a+0)=f(a). (2)
m Validity of the theorem follows from the theorem 2 of preceding lecture.m

Def. 2. A function of one variable x is called continuous at the point @ from

the left if it’s defined in some interval (m, a) and f(a—0)= f(a).Itis called con-

tinuous at the point @ from the right if it’s defined in some interval (a, n) and

fla+0)=f(a).
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Therefore a function of one variable is continuous at a point iff (if and only if)
it is continuous at this point from the left and from the right.

Def. 3. For a function y = f(x) of one variable a difference

Ax=x-a
is called the increment of the argument x and a difference
Ay =Af(a) = f(x) = f(a) = f(a+Ax) - f(a) (3)

is called the increment of the function at the point «a.

It’s evident that x — a iff Ax =0, (x > a)< (Ax —0).

Def. 4. For a function of n variables the next differences

Ax, =x,—a,Ax,=x,—-a,,..,Ax, =x —a,,
are called increments of its arguments, » — dimension vector
Ax =(Ax,, Ax,,...., Ax ) =(x, —a,, X, —a,,....X, —a,)

is called the increment of its (n-dimensional) argument and the difference

Ay =AM (a)= f(x) = f(a) = f (%, ;... 5,) = f @y, 0550, 0,) = (4)
= fla+Ax)- f(a)= f(a, +Ax,,a, + Ax,,...,a, + Ax,) - f(a,, a,,...,a,).
is called the (total) increment of the function at the point a = (q,, a,,...,a,).
It’s evident that x — a iff Ax >0, (x > a) < (Ax > 0).
Theorem 2. A function y = f(x) is continuous at the point ¢ if and only if

from tending to zero of the increment Ax of the argument it follows tending to zero

of the increment Ay = Af'(a)= f(x)— f(a) of the function at this point, that is iff /S

increment of the function at the point a corresponds to 1S increment of the argument.

m Theorem 2 follow from the theory of limits if one supposes b= f(a)m
Def. 5. A function y = f(x) is called continuous on some set if it is continu-

ous at any point of this set. In particular a function of one variable is continuous on

the segment [a, b] if : 1) it’s continuous at all points of the interval (a, b), 2) at the

point a it’s continuous from the right ( lim0 f(x)= f(a)), 3) at the point b it’s con-

tinuous from the left ( lirbn0 f(x)=f(b)).
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Properties of continuous functions.

1 (continuity of arithmetic operations on continuous functions). The sum, dif-
ference, product of two continuous at a point @ functions f(x), g(x) are continuous
at this point. The ratio f (x)/ g(x) of these functions is continuous if g(a) # 0.

m(for a product). Let F'(x) = f(x)-g(x). By virtue of the property 1 of “Arith-
metical properties of limits”

lim F(x) =lim £((x)- g(x)) =lim £ (x)-lim g(x) = f (a)- g(a) = F(a)
that is the function F(x)= f(x)-g(x) is continuous one at the point a m

2 (continuity of a superposition of functions). If a function u = qo(x) 1s continu-

ous at a point a and a function y = f(u) is continuous at the corresponding point
b = @(a) then the composite function y = f(¢(x)) is continuous at the point «a .

It means that if lim ¢(x)=5 = ¢(a) and lim £ (u) = f(b) = f(¢(a)) , then

lim f(p(x)) = £ (lim g(x)) = flplim x))= 7 (@(a)).

3 (continuity of an inverse function). If a

d’ ______________
r\ function of one variable y = f(x) is continuous and
Yie L \
4
o increasing (decreasing) in some interval (a, b), then
¢ a * 6 X
its inverse function x = g(») is continuous and in-

Fig. 1. creasing (decreasing) in the interval (c, d)=(f(a), £(»)).
Ex. 1. A function y = f(x)=x’ with the domain of definition D( )= [O, + oo)
and the set of values E(f) = [O, + oo) is continuous at any point of D(f) = [O, + oo)
and increases. Therefore its inverse function x = g(y) = \/; is continuous at any po-

intof E(f)= [O, + oo) and increases.

mlt’s sufficient to prove continuity of the function y = f(x) = x’. for example

let a be any positive number. We must prove that Eg} f(x)= £1£13 x’=a’ = f(a).

Let &£ >0 be such small that > —¢ > 0. We have ‘f(x)—f(a)‘z‘x2 —a2‘<8 if
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—e<xt-a* <eg, O<a’—-e<x*<a’ +¢&, Nat —e <x<Aa? +e,xeU, =

_(\/a —& \/a +&). Therefore lim x* = a’.

X—>a

Ex. 2. A function y = f(x)=sinx € [— 1, 1] 1s continuous at any point a in par-
ticular on the segment [~ /2, /2] on which it increases. Therefore its inverse func-
tion x = g(y) =arcsin y 1s continuous one and increases on the segment [— 1, 1].

m [t’s sufficient to prove continuity of the sine that is to prove, that

limsin x =sina.

xX—>a

But for any ¢ >0

<

Sll’l

‘sin X —sin a‘ =

2 cos % cos Hsm %

X—a

<2 =‘x—a‘.Therefore sinx—sing|<¢if [x—a|<e,xeU, =(a—¢&,a+¢).

It means that limsin x=sinam

xX—>a

Prove yourselves continuity of functions y = f(x)=cosx, x = g(y) =arccos y.
Ex. 3. Continuity of tan x at any point a # /2 + 7k, k € Z,and of cotx at any
point a # ik, k € Z, follows from property 1 and continuity of sin x, cosx. Prove

yourselves continuity of arctan x, arccot x.
Ex. 4. Continuity of a power function y =x“, o € R', and an exponential func-

tion y=a*,aeR',0<a =1, is laid in the strict definition of these functions (on the
base of the strict theory of real numbers).
Continuity of a logarithmic function y =log, x,aeR', 0<a =1, follows from

continuity and (strict) monotonicity of the exponential function.
From properties 1 — 3 and examples 1 — 4 it follows the next theorem.
Theorem 3. All elementary functions are continuous in their domains of defi-
nition.
Ex. 5. Proving the third remarkable limit in point 4 of the preceding lecture we

have used continuity of the logarithmic function.
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Remark. Finding limits we make use of continuity of elementary functions.

POINT 2. DISCONTINUITY POINTS

Def. 6. Let a function y = f(x) be continuous in some deleted neighbourhood
U, =U, \{x,} of a point x, excluding this point. In this case the point x, is called a
discontinuity point of the function.

In the case of a function of one variable y = f(x), x € R', we can do classifica-
tion of discontinuity points in terms of the left and

right limits f(x, £0) = lim+0 f(x) of the function

s at the point x,, (see figures 2, 3).

1. Discontinuity point of the first type is a
point x, for which there exist both (finite) the left and right limits (fig. 2). Three ca-

ses can occur for discontinuity point of the first type:

a) f(x,—0)# f(x,+0) (see fig. 2a); in this case the difference
h=f(x,+0)~ f(x,~0)
is called a (finite) jump of the function at its discontinuity point x,,;
b) f(x,—0) = f(x,+0) and the value of the function at the point x, exists (see
fig. 2b);
c) f(x,—0)= f(x,+0) and the value of the function at the point x, doesn’t
exist (fig. 2¢). In the cases b), ¢) the point x, is called the point of a removable dis-

continuity.

3 9 ¢) 2. Discontinuity point of the second type

/ is a point x, for which at least one of the limits

#ed f(x, £ 0) is infinite or doesn’t exist (fig. 3).
%, ‘

Xo

Xo

Corollary. The graph of a function y = f(x)

Fig. 3 of one variable which is continuous on some
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/{éj Y . B interval (a, b)is some continuous line (fig. 4).
Ex. 6. The discontinuity points of functions tan x,
4 4 cotx (7/2+kr, krr correspondingly, k € Z) are those
& € x ofthe second type.
Fig. 4 Ex. 7. In Ex. 22 of preceding lecture we have
found

1 [+, if x>2+0,
“loif x—>2-0.

1
Therefore a discontinuity point x = 2 of the function f(x)=e*? is that of the second

type.
Ex. 8. A discontinuity point x = 2 of the function

1
x-2

3-5-¢
f(x)=j
44272
is that of the first type.
mlet
1
. 3-5.y
=e 2 and f(x)= :
y =5

If x > 2—0 then (by virtue of Ex. 7) y — 0 and f(x)—)%. If x > 2+0 then (by

virtue of the same Ex.) y — +o0 and

lim £(x)= lim 5> = fjm —>¥ = -3
x—2+0 y—>+oo4+2.y Yoo 2y 2

Thus f(2-0)=3/4, f(2+0)=-5/2, f(2-0)# f(2+0), and the point x=2 is a
discontinuity point of the first type. The function suffers a jump

h=f(2+0)— f(2-0)=-13/4
at this pointm

3x—-1 if x<1,
2+ax’if x>1.

Ex. 9. Let f(x)= {



39

For what a will the function f(x) be contiuous?
FU=0)= lim f(x)=lim (3x=1)=2; f(1+0) = lim f(x)=lim (2+ax®)=2+a,
f(1-0)=f(1+0)if 2=2+a thatisifa=0.
Ex. 10. Discontinuity points of a function f(x, y)= (3x -4y + 5)/ (x — y) gene-

rate the straight line x = y. This example demonstrates that a set of discontinuity po-

ints of a function of several variable can be extremely complicated.

POINT 3. PROPERTIES OF A FUNCTION WHICH IS CONTINUOUS
ON A SEGMENT OR IN A CLOSED BOUNDED DOMAIN

Theorem 4. If a function of one variable is continuous

on a segment [a, b] then (see fig. 5):

-~
>
4

1) it takes on the greatest M and the least m values on

\ [a, b]: there are points ¢, € [a, b], ¢, € [a, b] such that

< a e = = e e 1
T fle)=M = =max f(x), f(c)=m=minf(x)
‘ Fig. 5 (Weierstrass' theorem);

2) it takes on all values containing between m and M (Bolzano>-Cauchy’ theo-

rem );

3) if it has values of different signs in two points of the segment then it has at

least one zero between these points.

Remark. Conclusions of the

é) c ; .
J\ i Mg ? ~ theorem can not fulfil (but sometimes
can fulfil) if a function has at least one
” discontinuity point. For example a
2

a % éx '« x¢ % function on the fig. 6a with discontinu-

Fig. 6 ity points a and b hasn’t the greatest

! Weierstrass, K.Th.W. (1815 - 1897), a German mathematician
? Bolzano, B. (1781 - 1848), a Czech mathematician, philosopher, and logician
* Cauchy, A.L. (1780 - 1859), an eminent French mathematician
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and the least values. A function on the fig. 6 b with one discontinuity point x, pos-
sesses the greatest M and the least m values but doesn’t take on values which belong
to an interval [c, d ) Finally a function on the fig. 6 c has two discontinuity points a
and x,, but the conclusions 1) and 2) of the theorem are fulfilled.

Analogous theorem is valid for a function of several variables.

Def. 7. Union D of a domain D and its boundary 0D is called closed do-
main, D =DJdD.

Def. 8. A domain is called bounded one if it’s contained in some circle cen-
tered at the origin.

Theorem 5. If a function of several variables is continuous in a closed bounded
domain D then:

1) It takes on the greatest M and the least m values in D.

2) It takes on all values containing between m and M.

3) If it has values of different signs in two points of the domain then it has at

least one zero in D .

POINT 4. INTERVAL METHOD AND ITS EXTENSION

The third conclusion of the theorem 4 often applies in so-called interval me-
thod for solving inequalities or definition of signs of functions.

Let for example a function y = f(x) of

+ —~ ; # one variable has three zeros b, ¢, e and two dis-
X a ngj’jcit,drréfsx

i

continuity points a, d on R' = (—0, o) (fig. 7).
Fig. 7 The points a, b, c, d, e generate six intervals
(—o0.a). (@, b). (b, c). (c.d). (d. e). (e, + )
on every of which the function, by virtue of the third conclusion of the theorem 4, has
a constant sign. To determine this sign it’s sufficient to find it at arbitrary point of an

interval. On fig. 7 points x,, x,, x,, X,, X5, X, are taken and a possible distribution of
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signs of the function on the intervals (—o,a), (a,b), (b, ¢) (c,d).(d, e), (e, +) is

shown.

Analogous method is applicable for functions of two variables.

Ex. 11. Solve the inequality x> >a’ for a>0.

Solution. A function f(x)=x>—a’ is contininous one on R'and has two ze-
roes +a which generate three intervals (—o0,~a), (—a, a), (a,+). For the points
x=-2ae(—w,~a)and x =2a € (a, + o) we have f(~2a)>0, f(2a)> 0. For the
point x=0€ (~a,a) £(0)<0. Therefore the inequality is true if

xe(-oo,—a)U(a, + ), orif x| >a.

Ex. 12. Find the domain of definition of a function of two variable x, y
g [y 16
X’ +yl -4

x4y —16

Solution. Let

f(x,y)= e

The domain of definition of the function Z is the set of points (x, y) of the xOy-plane
for which the inequality

x+y —-16
+y° -4

flep)=" >0

holds It’s necessary to solve this inequality. The function

'\é 7 f(x ) equals zero on the circle x* + y* —16=0 and doesn’t

i
/ exixt on the circle x* + y* —4 =0. These circles divide xOy-

Fig. 8 plane into 3 parts 1, 2, 3 (see fig. 8) in every of which the

function, by virtue of the third conclusion of the theorem 5, has constant sign. To find

this sign we calculate
F0)=1(0,00=4>0, f(4) = f(2,2)=-2<0, f(B) = f(4,4)=4/7>0.
Therefore the function f'(x, y) is positive in the parts 1 and 3 of the xOy-plane.

Answer. Domain of definition of the function Z is hatched union of the disk
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x>+ y* <4 without the boundary x* + y* = 4 and the outer part of the big circle
x” +y”? =16 including this circle.

Ex. 13. Investigate a function

and graph it.

Investigation is fulfilled in the next order.

1) Domain of definition of the function is D(f) = (— 0, 8)U (8, + oo). The graph
of the function doesn’t intersect the straight line x =8 which is perpendicular to the
Ox-axis.

2) Intervals of constant sign of the function. Points x = 0 (zero of the function)
and x = 8 (discontinuity point) generate three intervals (—oo, 0), (0, 8), (8,+c) . On the
interval (O, 8) the function is positive so its graph lies above the Ox-axis. On the in-

tervals (—oo, 0), (8,+00) the function is negative and its graph lies below the Ox-axis.

3) Knowing the sign of the function we easy find its right and left limits at the

discontinuity point x = 8 namely
3

f£(8-0)= lim -~ =(%=ooj=+oo,f(8+0)=lim al =(l:ooj:—oo.

x—>8+0 8 —X

x—>8-0 8 —-X

Graph of the function goes up if x - 8 -0 and goes
down if x > 8+0.

4) Limit of the function as x — Foo

3 3
lim f(x)= lim = lim - = — lim x* = .

x—>+oo xot0 8 — x—+0 — x X—>*00

X

Graph of the function goes down as x — +o.

Fig. 9 5) Intersection points of the graph of the function
with Ox-, Oy-axes.
Oy: x=0=y=0= 0(0;0);
Ox: y=0=x=0= 0(0;0).

Taking into account obtained results we graph the function (fig. 9).
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g _ Ex. 14. Investigate and
plot yourselves the graph of the
function

{ )] o
-6 '?’ f(x)— (X+1)(2—X)
\ / (x - 5)(x + 6)
Fig. 10
The key.

1) D(f) =(=2,~6)U(=6,5)U(5, +0).

2) £(x)>0o0n (=6,5) f(x)<0 on (—o0,~6)U(=12)U(5, + ).
3) f(-6-0)=—w, f(-6+0)=+0; f(5-0)=+0, f(5+0)=—0.
4) lim f(x)=-1.

x—>to0

5) (-1;0)€ Ox, (2;0) € Ox, (0; —1/15) € Oy (see fig. 10).



INTRODUCTION IN MATHEMATICAL ANALYSIS:

1. Approéach [tend to, go
to] a nimber a (from the
left/right) [the plus or
minus infinity] (about an
argument, a numérical
séquence, a function)

2. Ball [globe] (of/with a
radius R céntered at a po-
int A)

3. Boundary [frontier] of
a domain [a région], of a
set

4. Boundary [frontier] po-
int of a set

5. Boéunded

6. Béunded [limited] do-
main [région]

7. Boéunded [limited] set

8. Bounded above
9. Bounded beléw
10.Bounded function
[numérical séquence]

11.Character/nature of
discontintity (point)
12.Choéose an arbitrary po-
int in/on each/évery inter-
val

13.Circle (with a radius R
and with a céntre (at a po-
int) A; circle céntered [the
céntre of which is] at (a
point) A
14.Circular
hood of a point
15.Cléosed  bdéunded do-
main/région

16.Closed domain [région]
17.Composite  function,

néighbour-

basic terminology

IIpssmyBatu 1o yucina a
(3711Ba, crpasa) [0 TUTIOC
Y1 MIHYC HECKIHYEHHOCT!I |
(Mpo apryMeHT, YHCIOBY
MOCT1AOBHICTD, (PYHKIIIFO)

Kyns (paaiyca R 3 11eHT-
pom (B Toutti) 4)

['panuns 061acTi, MHOXHU-
HU

['paHMYHA TOYKA MHOXKH-
HU

OOMeXeHu

OOmMerxeHa o0J1acThb

O0OMexeHa MHOXKHUHA

OOmexeHuit 3Bepxy
OOMexxeHH 3HU3Y
Ob6mexeHa (QyHKIIIS [4un-
CJIOBA TIOCJT1IOBHICTS |

Xapakrep (TOUYKH) pO3pH-
BY

BubpaTu 10BUIbHY TOUKY
Ha KO)KHOMY IHTEpBai

Kpyr (paniyca R 3 1ies-
TpoMm (B TouIli) 4)

Kpyrosuii okis1 TOUku

3amMKHeHa oOMe)keHa 00-
J1aCTh

3aMKHeHa 00J1acTh
Cxknanena QyHkiis, GpyHK-

CTpeMUThCS K YUCTY d
(cneBa, cripaBa) [K ILTIOC
WM MUHYC O€CKOHEYHOC-
TH] (00 aprymeHTe, 4ucio-
BOH TOCIIEIOBATEIBHOCTH,
GbyHKIIN)

[ap (panuyca R ¢ 1eHT-
poMm (B Touke) 4)

['panuna obnacti, MHOXe-
CTBa

['paHnYHas TOYKA MHOXE-
CTBa

OrpaHuydeHHbIN
OrpanudeHHas 00J1acTh

OrpaHnyeHHOE MHOXKECT-
BO

OrpaHuYeHHBIN CBEPXY
OrpaHuyeHHBIN CHU3Y
OrpannueHHast QyHKIMS
[4rciioBas mocieaoBare-
JIBHOCTB |

XapakTtep (TOYKH) pa3pbl
Ba

Br16path npou3BOIBHYIO
TOUYKY Ha Ka)KJIOM UHTEp-
Baje

Kpyr (paguyca R c 1ieH-
TpoM (B TOuKe) A)

KpyroBast OKpeCTHOCTh
TOYKH

3aMKHYTasi OrpaHHYEHHAs
00JacTh

3amMKHyTast 00JaCTh
Cnoxnast yHkuus, QyHK-
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finction of a finction, su-
perposition [cOmposition]
of finctions

18.Connécted [tie] set
19.Consérve a constant/fi-
xed sign [do not change a
sign] in/on/over an inter-
val

20.Continuity of a fliinc-
tion at a pdint a
21.Contintiity of a flinc-
tion on/in/over a(n) inter-
val/segment
22.Contintiity on the left
[on the right], [left/right
contintity] of a finction at
the pdint a

23.Continuous curve
24.Continuous function
25.Continuous function
(on the left [on the right]
[(left/right) continuous
finction] at the pdint a
26.Continuous function
on/in/over a(n) interval/
ségment

27.Convérge (to a nimber
a)

28.Convérgence of a nu-
mérical séquence (to a
number a)

29.Convérgent (to the
nimber @) numérical
séquence

30.Decréase (strictly,
nonstrictly)

31.Décrease (strict, non-
strict)

32.Decréasing (strictly,
nonstrictly)

33.Deléted e-néighbour-
hood of a point a
34.Deléted néighbourhood
of a point

uist Bix QyHKIIII, cynepmo-
3ULLIs PYHKIIN

3B"sd3Ha MHOXKMHA
30epiratu cranuid/dikco-
BaHMM 3HAK [HE 3MIHIOBa-
TH 3HaK| Ha 1HTEepBaIi

HenepepBHicTh GyHKIIIT B
TOUIl a

HenepepHicTh GyHKIIIT
Ha IHTEPBaII/BIIPI3KY

HenepepBHicTh ¢yHKIIIT
3J1iBa/cIipaBa B TOUIIl a

HenepepsHa kpuBa
HenepepsHa ¢yHKIis
®OyHKIis, HEepepBHA B
Toulll a (311Ba/cripaBa)

dyHKIIisI, HENEpepBHA Ha
THTEpBaI1/BIAPI3KY

36iraTucs (10 yncia a)

301KHICTH YHUCI0BOI TOC-
J1IOBHOCTI (40 4KCIa @)

361xHa (10 9ucia a) Yuc-
JIOBA IIOCI1I0B-HICTD

Cnagatu (CTpOro, HeCTpO-
ro)

Cnananus (cTpore, HECT-
pore)

Cnanuuii (cTporo, HeCT-
poro)

[IpokoneHuit £-0KuT TOYKH
a

[IpokoneHuit oK, OK1I 3
BUKOJICHOIO TOYKOIO

s OT PYHKIUH, CyTIep-
no3uuus QyHKIui

CBsI3HOE MHOKECTBO
CoxpaHsTh MOCTOSTHHBIN/
(buUKCUpPOBaHHBIN 3HAK (HE
U3MEHSTh 3HAK) Ha UHTEP-
Baje

HenpeposiBHOCTD QyHKIIMH
B TOUKE a
HenpepoiBHOCTH QyHKIIMH
Ha UHTEpBaJIe/OTpE3Ke

HenpeposiBHOCTh QyHKIIMH
clieBa/cripaBa B TOUKE a

HenpepbiBHas kpuBas
HenpepbiBHas GyHKIUsSA
@DyHKIMS, HENPEpPhIBHAS B
TOYKE a (clieBa/crpaBa)

OyHKIWS, HETPEPHIBHAS
Ha UHTEpBaJIe/OTpE3Ke

Crpemuthbcs (K yuCay a)

CX0auMOCTh YHCITIOBOU
MOCJIEA0BATEILHOCTH (K
JUCITY Q)

Cxopsimiasics (K 4UCITy @)
YHCIIOBAsI TIOCIIEIOBATEIb-
HOCTb

VY6sIBaTh (CTPOro, HECTPO-
ro)

YorIBaHue (CTpOroe, HeCT-
poroe)

VYo6siBatomnuii (cTporo, He-
CTpOro)

[TpokonoTas €-0KpecT-
HOCTb TOYKH d
[IpokonoTast OKpeCTHOCTH,
OKPECTHOCTD C BBIKOJIOTOH



35.Discontinuity (of the
first/second kind) of a
finction at the pdint a
36.Discontinuity of a
finction at the pdint a
(finite, infinite, remdvab-
le)

37.Discontinuity point
[péint of discontintity] of
the first/second kind
38.Discontinuous function
at the podint a
39.Distribution of signs of
a finction on the intervals
40.Divide/partition/de-
compose an interval into
parts by noughts/zéros and
discontintity points of a
finction

41.Domain [région]
42.Domain of définition of
a finction
43.Equivalence, equiva-
lency

44 Equivalent infintely
larges

45.Equivalent infintely
smalls [equivalent infini-
tésimals]

46.Evaluate (find the va-
lue of) an indetérminate
form/expréssion [an inde-
términacy/indetérminate-
ness/indetermination/in-
detérminedness]
47.Extérior [outside] point
of a set

48.Find the intervals of
constant/fixed/invariable
sign of a function by the
méthod of intervals, by the
interval méthode

49.Find the limit (of a

Po3puB ¢ynkuii (nepuroro
/Ipyroro poay) B TOYIII @

Po3puB dynkiii (ckiHyeH-
HUN/HECKIHYEHHHH, YCYB-
HUI) B TOYIII @

Touka po3puBy nepuioro/
APYroro poxy

@DyHKIIIs, pO3pUBHA B
TOUIIl a

Posnonin 3HakiB QyHKITIT
Ha MHTEpBaIax
JUTTH/OAITUTH THTEP-
BaJl HA YaCTUHU HYJIAMH U
TOYKaMU pO3pUBY (QYHKIIIT

Oo0nactp
O01aCcTh BUBHAYECHHS

byHKIIIHN
EKBIBaJIEHTHICTH

ExBiBajieHTHI HECKIHYEH-
HO BEJIMKI

ExBiBajieHTHI HECKIHYEH-
HO MaJl

POBKpI/ITI/I HEBU3HAYECHICTh

30BHIIIHA TOYKA MHOXH-
HU

3HailTH IHTEepBaJIU 3HAKO-
cTasiocTi GyHKII MEeTO-
JIOM 1HTEpBaJIiB

3Haittu rpaHuiio (pyHk-
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TOYKOU

Pa3peiB ¢pynkumu (nepso-
ro/BTOPOTro pojia) B TOUKE
a

Pa3peiB pyHkmu (KoHeu-
HBI1/0€CKOHEUHBIN, yCTpa-
HUMBIN) B TOUKE a

Touka pa3psiBa nepBoro/
BTOPOT'O pojia

OyHKIWsA, pa3pbIBHAS B
TOYKE a

Pacnpenenenue 3HaKkoB
GyHKIMH Ha HHTEpBalax
Jlenuts/pa3nenuTs UHTEP-
BaJI Ha YaCTH HYJISIMU U
TOYKaMHU pa3pbiBa QyHK-
UH

O6nacThb
O6nacTp onpeesIeHUsS

byHKIIIHN
OKBUBAJIEHTHOCTb

DKBUBAJIEHTHBIE OECKO-
HEYHO OOJIBbIIINE
DKBHUBAJIEHTHBIE OECKO-
HEYHO MaJIble

PackpeITh HEeonpenenex-
HOCTh

BHemnss Touka obnactu
Haiitu nHTEpBaIBl 3HAKO-

MOCTOSIHCTBA METOJIOM HH-
TEPBAJIOB

Haiitu npenen (pyHkuuu,
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flnction, of a numérical
sequence)
50.Find/detérmine the sign
of a flnction at the chosen
point, in/on each/évery in-
terval

51.Finite discontintity of
a finction at the pdint a
52.Finite jump of a finc-
tion at the point of its dis-
continuity [at its disconti-
nuity (point)]

53.Finite limit
54.Fanction of a natural
argument

55.Fanction of one [two,
three, n, séveral] variables

56.Géneral term/¢élement
of a numérical séquence

57.Graph of a function of
two variables

58.Graph of a function
continuous on/in/over a
ségment

59.Graph of a function
having points of discon-
tintity [discontinuities,
discontintity points]
60.Gréatest value (M) of a
finction continuous on/in/
over a ségment

61.Have a discontintity,
jump at the point a (about
a finction)
62.Have/posséss a limit
63.Hole in a graph of a
finction (at the point of its
remoévable discontinuity)
64.Increase [-s] (strict,
nonstrict)

65.Incréase [-s] (strictly,
nonstrictly)

111, YUCI0BOT IMOCIITOBHO-
CT1)

3HaNTH/BU3HAUNUTHU 3HAK
¢byHKuii y BUOpaniit Tou,
Ha (KO’)KHOMY) 1HTepBaJi

CkiHYeHHUI pO3puB
¢GbyHKLIi B TOYIII @
CkiHueHHHM cTprOOK
¢GbyHK11i B TOYIII ii pO3pHU-
BY

CKiHYCHHA TpaHUIl]
DyHKIIiSI HATYpaTbHOTO
apryMeHTy

DyHKIIis OJIHIET [IBOX,
TPHOX, 11, AEKUTBKOX | 3M1H-
HUX

3arajibuii 4jieH/eIeMeHT
YKCJIOBOI ITOCII1JOBHOCTI

I'padix dpynkuii 1BOX
3MIHHUX

I'padix bynkuii, Henepep-
BHOI Ha BIJPI3KY

I'padix bynkuii, sxa mae
TOYKHU PO3PUBY

HaiiGinpie (M) 3nHaueHHs
byHK1L1i, HeTIepepBHOT Ha
BIJIPI3KY
Matu/3a3HaBaTu/TepIiTu
PO3pUB, CKA4OK B TOUIII
(mpo pyHKIIIO)

Maru rpasuito

Hipka B rpadiky QyHKIii
(B TOUI ii YCYBHOI'O pO3-
puBy)

3pocTaHHs (cTpore, HECT-
pore)

3pocTaTH (CTpOro, HeCT-
poro)

YHCIIOBOM TOCIE0BATENb-
HOCTH)
Haiitu/onpenenuts 3HaK
(GbyHKUMY B BBIOpaHHOU
TOYKE, Ha (KaKJIOM) UH-
TepBaje

Koneunslii npegen QpyHk-
IIUU B TOUKE a

KoHneunslii npeiKoOK QyHK-
LMY B TOYKE €€ pa3pbiBa

Koneunslit npenen
@yHKIHS HATYPAJTBHOTO
apryMeHTa

@yHKUIHS OTHOU [ABYX,
TPpEX, 1, HECKOIBKUX | Te-
PEMEHHBIX

OO61mumii uneH/>J1eMeHT Yu-
CJIOBOM MMOCIEN0BATEIb-
HOCTH

I'padux dpyHxUM ABYX
MIEPEMEHHBIX

I'padux bynkuuu, Hempe-
PBIBHOW Ha OTPE3KE

['padux dpynkuuu, KoTo-
pasi UMeeT TOYKH pa3pbiBa

Haunbonpmmee (M) 3nade-
HUE (QYHKIINH, HETIPEPHIB-
HOW Ha OTpE3KE
Nmetn/mpeTepneBars pas-
PBIB, CKa4OK B TOUKE a (O
GyHKIIN)

Nmets ipenen

Hbipa B rpaduke pyHKUIMU
(B TOUKE €€ yCTPaHUMOTO
pa3phbiBa)

Bospacrtanue (ctporoe,
HECTPOroe)

Bospacrats (cTporo, HecT-
poro)



66.Incréasing [-s-] (strict-
ly, nénstrictly)
67.Increment of a function
at a point a

68.Increment of an argu-
ment

69.Indetérminate form/ex-
péssion [indetérminacy,
indetérminateness, inde-
termination, indetérmined-
ness| of the type/form
70.Infinit limit

71.Infinite discontinuity of
a function at the point a

72 .Infinitely large

73.Infinitely large func-
tion, numérical séquence

74 .Infinitely small, infini-
tésimal

75 . Infintely small [infini-
tésimal] function, numé-
rical séquence; infinitési-
mal

76.Intérior [inner] point of
a set

77.Interval of constant/fi-
xed/invariable sign of a
function
78.Intire/Gnbrdken curve

79.Invéstigate (a function
onto/upon/for a continuity,
chéracter/nature of a point
of discontinuity [disconti-
nuity pdint])

80.Jump (finite, infinite)
of a graph of a function at
the podint of its disconti-
nuity [at its discontinuity
(point)]

81.Léast (m) value of a

3pocTatounii (cTporo, He-
CTpPOro)

[Ipupict pyHKIIi B TOULI
a

[Ipupict aprymeHTy

HeBu3naueHicTh BUIIAY

HeckinueHnHna rpanuiis
Heckinuennuii po3pus
¢GbyHKLIi B TOYIIl @
HeckinuenHno Benuka (Be-
JTUYNHA)

HeckinuenHno Benuka QyH-
KIIis1, YMCJIOBA MOCIIIIOB-
HICTh

Heckinuenno mana (Benu-
Y1HA)

HeckinuenHno mana ¢pyHk-
Iis1, YMCIIOBA MOCIII0B-
HICTh

BHyTpimHs TOYKa MHO-
KUHU
InTepBain 3HaKoCTaNOCTI

byHKITIi

Henepepsna/cyiinbHa
KpHUBa

Hocniantu (PyHKIIIO0 Ha
HETIEPEPBHICTh, HAa XapaK-
TEp TOYKH PO3PUBY)

Ctpubok (CKiHYeHHUI/He-
CKIHYEHHUH) Tpadika
¢byskuii B ToUIl 11 po3pu-
BY

Hatimentie () 3HaueHHs
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Bo3spacTaromuii (cTporo,
HECTpPOro)

[Ipupamienue GyHKIuu B
TOYKE d

[Ipupamienue apryMeHTa

Heomnpenenénunocts Buaa

beckoHeunbI npeaen
beckoHneuHbIl pa3pbIB
(GyHKUMU B TOUKE @
beckoneuno Gomnbinas (Be-
JUYNHA)

beckoneuno 6omblas
GbyHKUMA, YUCIOBad 10~
CJIEI0BATEIbHOCTD
beckoneuno manas (Benu-
Y1HA)

beckoneuno manas GpyHk-
1[Us1, YUCIIOBas MOCIE10Ba-
TEJIBHOCTD

BHyTpeHHsst Touka MHO-
KECTBA

WuTepBan 3HaKOMOCTOSH-
cTBa (YHKLIUH

HenpepriBHas/criomnHas
KpuBas

UccnenoBath (pyHKIIHUIO
Ha HETPEPBIBHOCTH, HA Xa-
paKkTep TOYKU pa3phiBa)

[IpbiKOK (KOHEUHBIH/Oec-
KOHEUHBIN) rpaduka GyH-
KLU B TOUKE €€ pa3pbiBa

Haumensinee (m) 3naue-
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flnction continuous on/in-
/over a ségment
82.Left-hand limit [limit
on the left] of a finction at
the pdint a

83.Lével line/curve of a
flnction of two variables
84.Lével surface of a func-
tion of three variables

85.Limit (of a finction, of
numérical séquence)
86.Limit of a flnction at
the plus or minus infinity,
if/as/when/while x appro-
aches [tends to, goes to]
the plus or minus infinity
87.Limit of a finction at
the point a (bilateral/two-
sided/doublesided, unilate-
ral/one-sided)

88.Limit of a flnction at
the pdint a (from the left
[from the right])

89.Limit of a flinction f{x)
if/as/when/while x approa-
ches [tends to, goes to] ...
(by/for ténding/téndency
of x to..., for x approa-
ching [tending to]...)
90.Map(ping)

91.Mapping of a set X into
/onto a set ¥

92.M¢éthod of intervals, in-
terval méthode (for solu-
tion of an inequdlity, for
detérmination a finction
sign)

93.Natural domain of défi-
nition of a flinction

94.n-diménsional space

byHK11i, HeTIlepepBHOT Ha
BIJIPI3KY

JliBa [11BOGIYHA, J1BOCTO-
pOHHsI| rpaHuIlsd GyHKUIT B
TOUIl a

Jlinis piBHA QyHKIIT ABOX
3MIHHUX

[ToBepxHs piBHS QYHKITIT
TPHOX 3MIHHUX

['panuus (dhyHKii, yuciIo-
BO1 MOCITITOBHOCT1)
['panuns QyHKIT Ha TUTIOC
Y1 MIHYC HECKIHYEHHOCTI

['panuns QyHKIIii B TOUII
a (1BOO1YHA/IBOCTOPOH-
HsI, OJHOOIYHA/0JHOCTO-
POHHS)

['panuns QyHKIIii B TOUII
a (3711Ba, cripaBa)

['panuus QyHkiii fx),
AKILO X MPSIMYE JI0...
(mpu mpsiMyBaHHi X 0. ..,
IPU X MPSAMYIOUOMY J10...)

BinoGpaxenus

Bino6paxeHHs MHOXUHU
X B/Ha MHOXHUHY Y

Merton inTepBaniB (A
pO3B"s13aHHS HEPIBHOCTI,
JUTsl BA3HAYEHHS 3HaKa

byHKIIIT)

[Ipupoana [HatypanbHa |
00J1aCTh BU3HAUCHHS
byHKITIi

En-BumipHuit (n-Bumip-
HUI) OPOCTIp

HUe (QYHKIHUU, HETIPEPHIB-
HOW Ha OTpE3KE

JleBbl1ii [1€EBOCTOPOHHMIA |

npenen GyHKIUU B TOUKE
a

Jlunus ypoBHs QyHKIMH
JBYX MEPEMEHHBIX
[ToBepXHOCTH yPOBHS
byHKUIMU TPEX IEpEeMEH-
HBIX

[Ipenen (byHKUIMUU, YUCITO-
BOH MOCIIE0BATEIBHOCTH)
[Ipenen ¢pyHKIMU HA TUTIOC
WM MUHYC O€CKOHEYHOC-
TH

[Tpenen GpyHKIMM B TOUKE
a (IByCTOPOHHSIS, OJTHO-
CTOPOHHSIS)

[Tpenen hpyHKIMM B TOYKE
a (cieBa, cripaBa)

[Ipenen dbynkuunu fx),
€CJIN X CTPEMUTCS K ...
(pu CTPEMIIEHUH X K ...;
IpH X, CTpEMSIIEMCS K. .. )

OtobpaxkeHue

OTobOpakeHre MHOXKECTBA
X B/HA MHOECTBO Y

Merton uHTEpBaIOB (IJ151
pEeLIeHNs HEPABEHCTBA,
IUIsL ONIPEACIICHUS 3HAKA

GyHKIIN)

EcTtecTBeHHas [HaTypaib-
Has| 00acTh onpeene-
HUS QYHKIIUH

DH-MepHoe (n-MepHOEe)
MIPOCTPAHCTBO



95.Néighbourhood of a
point

96.No6te [mark (off), trace,
6utline] points on the axis
and get [obtain, receive,
derive] séveral/some inter-
vals

97.Numérical séquence

98.0ne-diménsional space

99.0pen set
100. Pdassage to the limit

101. Point of discontinti-
ty [discontinuity point] of
the first/second kind

102. Point of removable
discontinuity

103. Point set, set of po-
ints, punctual set

104. Property (pl proper-
ties) (of limit)

105. Remarcable/stan-
dard/standardized limit
106. Removable disconti-
nuity of a fiinction at the
point a

107. Right-hand limit
[limit on the right] of a
finction at the pdint a

108. Right-hand/right-
side continuity of a finc-
tion at the pdint a

109. Solve the inequality
by the méthod of intervals,
by the interval méthode

110. Sphére (of/with a ra-
dius R céntered at a point
A)

111. Sphérical [globular]

néighbourhood of a point
112. Sphérical néigh-
bourhood of a point

OK1JI TOYKH

BigkmacTtu [BigMITHTH, Ha-
HECTH | TOUKHU Ha Oci il OT-

pUMaTH JIeKUIbKa IHTEpBa-
JB

YuciioBa OCI1I0BHICTD
OaHOBUMIPHUI TPOCTIp

Binkpurta MHOXHHA
['pannynuii nepexiz, mne-
pexiJl 0 rpaHuIll

Touka po3puBy nepuioro/
APYyroro poay

Touka ycyBHOTO pO3pHUBY

MHOXkHHA TOYOK, TOUKO-
Ba MHOXHHA
BrnacTtuBicTb (rpanuiii)

CrangapTHa rpanuis

YcyBHUM po3puB PyHKITIT
B TOULII @

[IpaBa/mpaBo6i4Ha/IpaBo-
CTOPOHHS TpaHUIs QyHK-
mii B To4Il a
[IpaBoGiuHa/mpaBocTO-
POHHSI HETIEPEPBHICTh
¢GbyHKLIi B TOYIII @
Po3B"s3aTH HEPIBHICTH
METOJIOM 1HTEpBaJiB

Cdepa (paniyca R 3 11eH-
TpoMm (B TouIli) 4)

KynboBuii oK1 TOUKH

Cdepuunuii oK1 TOUKH
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OKpecTHOCTh TOUKHU

OTn0XUTh (OTMETHUTH, Ha-
HECTH) TOYKW Ha OCH U TIO-
JyYUTh HECKOJIBKO UHTEP-
BAJIOB

YucioBast mocie10BaTeIb-
HOCTh

OnHOMEPHOE TPOCTPAHCT-
BO

OTKpBITOE MHOXKECTBO
[IpenenpHbIN TIEPEXO, TIE-
PEXO0X K Ipeneny

Touka pa3psiBa nepBoro/
BTOPOT'O poJa

Touka ycTpaHuMOro pas-
pbIBa

MHOXeCTBO TOYEK, TOUCH-
HOE MHOYKECTBO

CgoiicTBo (mpenena)

3aMedaTenbHbIN Mpene

YcTpaHuMBbli pa3pbiB
(GyHKUMU B TOUKE @

[TpaBbIii/TIpaBOCTOPOHHUIMA
npeaen GyHKIUN B TOUKE
a
[IpaBasi/mipaBOCTOPOHHSIS
HEMPEPHIBHOCTh (PYHKIIUU
B TOUYKE a

Pemuts HepaBeHCTBO Me-
TOJIOM UHTEPBAJIOB

Cdepa (panuyca R c 11eH-
TpoM (B TOuKe) A)

[ITapoBasi OKPECTHOCTH
TOYKH

Cdepuueckas okpect-
HOCTb TOYKHU
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113. Table/list of equiva-
lent infintly smalls [ of
equivalent infinitésimals]
114. Take on values of
dif-ferrent signs

115. Ténding/téndency
(of an &rgument, of a func-
tion) to the nimber a
(from the left [from the
right]), to the plus or mi-
nus infinity

116. Term/¢élement of a
numérical séquence

117. Three-diménsional
space

118. Toétal increment of a
function

119. Turn/chdnge/trans-
form into [reduce, go to,
become] zéro/nought; va-
nish

120. Two-diménsional
space

121. Unconnécted set
122. Unilateral/one-sided
contintiity of a finction at
the pdint a

123. Unilateral/one-sided
limit of a finction at the
point a

124. Uniqueness of the
limit

125. Unlimited set

126. Zéro/nought [root]
(of an equétion, of a nu-
merator/denominator, of a
function)

Ta6JII/II_I$I EKBIBaJICHTHHUX
HECKIHYCHHO MaJINX

HaGyBaTu 3HaueHHs pi3-
HUX 3HaKiB

[IpsimyBaHHs (apryMeHTa,
byHKI1T) 10 yKcna a (31i-
Ba, CIIpaBa), /10 TUIIOC Yu
MIHYC HECKIHUYEHHOCTI

YeH/eneMeHT YUCIOBOT
MOCJIITOBHOCTI
TpuBuMipHHil TPOCTIp

[ToBHu# npupict QyHKIIT

OO6epratucs Ha HYJIb, I1€-
pPETBOPIOBATHUCS Ha/B
HYJIb, AHYJIIOBaTHCS

JIBOBUMIpHUI TPOCTIp

He3s"s138Ha MHOXKHMHA
OnHo614Ha [0THOCTOPOH-
Hs1| HENEPEePBHICTh PYHK-
mii B To4Il a

OnHo614Ha [0THOCTOPOH-
Hs1| TpaHuls QyHKIIT B TO-
4Iil a

€IIUHICT TPaHMII

HeoOmesxena MHOXHMHA
Hynb [KopiHb] (piBHSIHHS,

YHCeJIbHUKA, 3HAMEHHHKA,
byHKIIIT)

Tabua SKBUBAJIEHTHBIX
OECKOHEYHO MaJIbIX

[TpyHUMATE 3HAYCHUS pa3-
HBIX 3HAKOB

CrpemiieHue (aprymeHTa,
GbyHKIMN) K yucay a (cie-
Ba, CTIpaBa), K TIIOC WIH
MHUHYC O€CKOHEUHOCTH

UseH/37€eMeHT YuCI0BOM
MOCTIEI0BATEIIHHOCTH
TpéxmepHoe MpOoCTpaHCT-
BO

[TomHoe mpuparnienne Qy-
HKIIUU

OOpaiatecs B HyJb, aH-
HYJUPOBATHCS
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DIFFERENTIAL CALCULUS
LECTURE NO. 14. DERIVATIVE

POINT 1. PROBLEMS LEADING TO THE CONCEPT OF THE DERIVATIVE

POINT 2. DERIVATIVES AND PARTIAL DERIVATIVES

POINT 3. DERIVATIVES OF SOME BASIC ELEMENTARY FUNCTIONS

POINT 4. DIFFERENTIABILITY AND CONTINUITY

POINT 5. DERIVATIVES OF THE SUM, DIFFERENCE, PRODUCT AND
QUOTIENT OF FUNCTIONS

POINT 1. PROBLEMS LEADING TO THE CONCEPT OF THE DE-
RIVATIVE

1. The rate of changing of a function

Lety = f(x ) be a function of one variable and x = x, is some point. If the ar-

gument x receives an increment Ax = x —x, then the function receives an increment

Ay =AM (x,)= f(x)= f(x,) =[x, + Ax)— f(x,)

which is a changing of the function on the interval [x,, x, + Ax]=[x,, x]. The ratio

Vv _ﬂzAf(xo) f(x)_f(xo) f(x0+Ax)—f(x0)

YA Ax Ax Ax

is called the average rate [the mean rate] of changing of the function on the interval

[x,, x, + Ax]=[x,, x]. Let Ax — 0 thatis x — x,. The limit

V(x,)=lim Vav=lim&:hmmzhm S +Ax)- f(x,) (1)
Ar—0 M0 Ay a0 Ax Ax—0 Ax

is called the rate of changing of the function at the point x,.

2. The labour productivity
Let U (t) is a produced quantity of some factory during a time ¢ (that is during a

time interval from 0 to #). Then the increment of the function U(¢) at a point ¢,,

AU(t,)=Ult, +At)-Ul(t,),
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1s the produced quantity during the time interval from ¢, to #, + A¢. The ratio

P _AU(t,) U, +At)-U(t,)
“ A At

is the average [the mean] labour productivity during this time interval. Limit of the

average labour productivity as At —> 0,

£e)= tim £ = tim200) _ i, Ul +80)-Ul) (2)

At—0 A—0 At At—0 At

is called the labour productivity of the factory at the time moment ¢,.

2. The tangent to a curve

Let be given a curve y = f(x) and M,(x,, y,),
y, = f(x,) is its fixed point, M (x, y) is its arbitrary point.
Straight line M,M is called a secant of the curve y = f/(x).

Let M— M, along the curve. If there exists the limiting
position M, T of the secant MyM as M—M, (from the

Fig. 1 right and from the left), then the straight line M,T is cal-
led the tangent (or the tangent line) to the curve y = f(x) at the point M(x,, y,). Its

slope (angular coefficient) equals

k,=tga= lim tgp = hmﬂ: limM: lim f(X)—f(xo) _
g ,f{—mM M0 M N A0 AB Ax—0 Ax
Ax:))() 0 ( 3 )
i Lot ) o A ) Ay
Ax—0 Ax A—0  Ax Ax—0 Ay

POINT 2. DERIVATIVES AND PARTIAL DERIVATIVES

The derivative of a functions of one variable
Let be given a function of one variable y = f (x) Giving arbitrary increment

Ax = x — x, to the argument x and finding corresponding increment of the function at

the point x,



54
Ay =Af(x,)= £ (x)= f(x;)= £ (x, +Ax)= f(x,) (4)
we find their ratio

&:Af(xo) f(x)_f(xo) f(xo+Ax)_f(xo)

Ax  Ax Ax Ax

and pass to the limit as Ax =x—x, = 0.

Def.1. The limit

tim 2~ pim Y G0) gy S ) e S +Ax)_f(x°), (5)
Ax—0 Ax A—0  Ax Ax—0 Ax Ax—0 Ax

that is the limit of the ratio of the increment of the function y = f(x) at the point x,

to the corresponding increment of the argument Ax as this latter tends to zero is called
the derivative of the function at the point xo. We denote the derivative by one of the

next notations

e e i)
y—y(xo)—f(xo)—dx— 0
and so
y':f'(xo):d_yzmzlim&:limmzhmf(xo"'m)—f(xo) (6)
dx dx A—0 Ay M0 Ax Ax—0 Ax

Above-stated examples allow to establish some senses of the derivative.
1. From the formula (1) it follows that the rate of changing of the function

y = f(x) at the point x, is the derivative of the function at this point

V(xo)=f'(x0):£%%:£%%:£g)f(xo+ixz—f(x0) (7)

2. From the formula (2) it follows that the labour productivity of the factory

at the time moment ¢, is the derivative of the function U(¢), that is the derivative of

the produced quantity of the factory, at this moment,

£)=U(t) = 1imAU) _ Ul +41)-Ulsy)

A—0 At At—0 At

(8)

3. From the formula (3) it follows the geometric sense of the derivative:

The slope &, of the tangent M T to the graph of the function y = f (x) atits

point M(x,, v,), v, = f(x,) (fig. 1) is the derivative of the function at the point x,,
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klg:tga:f,(XO)zgg%%:g%%:g%f(xo+?_f(XO) (9)

Equation of the tangent MyT (with the slope &, =iga = f (x,)) is

y=yo+ (N x=x), vy = f(x,). (10)
The normal M ,Q 1 M T to the graph of the function

AN

y = f(x) at the point M(x,, ,), v, = f(x,) (fig. 2) has the

slope
1 1
knorm = = '
klg f (x())
Fig. 2 and the next equation
1
y=Yy=——77— x—x (11)
’ S (xo) ( 0)

It’s interesting the next problem. Find the angle ¢ at
which two curves L, : y = f,(x) and L, : y = f,(x) intersect

(fig. 3).
Solving. Let M (x,, y,) be intersection point of the

curves L; and L, and M,T,;, M,T, are the tangents to L;, L, at

Fig. 3 the point My. Their slopes are k,, , = £(x,), Ky,r, = £(x,)

therefore

R A Y AL (12)
UKoy Ko, 1+ f(x,)- f3(x,)

tan @ =

Partial derivatives of a function of several variables

J @ﬂ"/ty/ ‘
J My For a functions of several variables we introduce the
|7 ‘ concept of partial derivatives. for example let there be gi-
o /f1 ax A//x’(%/ . .
g ven a function of two variables x, y
ol =, xr x
z:f(M):f(x, y),M(x, y).

Fig. 4 We introduce four points M, (xo, Yo ), M(x,y), N(x,y,),
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P(x,,y)and we imply Ax =x—x,, Ay =y -y, whence it follows that x = x, + Ax,

y =y, +Ay(fig. 4).
Def. 2. Difference (for fixed y = y,)

Az=Af(My)=f(N)=f(My)=f(6.30) = S (xg.30) = f (3 + A6, 3,) = f (%, %)
is called the partial increment of the function z = f(M )= f(x, y) with respect to x
at the point M (x,, y,) . Difference (for fixed x = x,))

Az=A,f(M,)= f(P)= (M) = [ (%0 )= f (o ) = f (g5 vo + AV) = f (0, o)
is called the partial increment of the function with respect to y at this point.

Def. 3. Partial derivatives of the function z = f(M )= f(x, y) with respect to

x, y at the point M ,(x,, y,) are called (and denoted) correspondingly the next limits

' ' ' 0 M 0 X . AxZ . Ax M
£ = 10,) = 5 0,) = L) 0 gy S i 0 0)
im0 S y0) SO+ A yy) = f ()
Ax—0 Ax Ax—0 (13)
A A (M
Z'y :fy'(Mo)=fy'(xo,y0)= af(Mo): af(xopyo): lim—yzz lim yf( 0):
Oy Oy Ay—0 Ay Ay—0 Ay
— lim f(xoay)_f(xoayo) — lim f(xo,yo +Ay)—f(x0)y0)
Ar=0 Ay A0 Ay

POINT 3. DERIVATIVES OF SOME BASIC ELEMENTARY FUNC-
TIONS

Derivatives of many basic elementary functions can be find on the base of
definition of the derivative.

1. C'=0,C —const.

mlet y= f(x)=C. Then

_ _ A =0 _ 0 v i Y
flx+Ax)=C, Ay = f(x+Ax)- f(x)=C C_O,Ax_o,y_gglom_o-

2. x'=1.
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mLet y= f(x)=x. Then

£+ Ax)= x + Ax, Ay=f(x+Ax)—f(x)=Ax,E

4 4

3. (xa) =ax“", a € R. In particular (\/;) =

mLet y= f(x)=x“. Then

Flr+Ax)=(x+Ax)", Ay = f(x+Ax)— f(x) = (x + Ax)" —x“ :(X(Hﬂj}a =

x
= x“ (1+£j ~1 ~=x“-a£=ax“‘le:>&=ax“‘l,y'=limﬁzax““l
X X Ax A0 Ay

! !

4. (ax) =a" Ina”. In particular (ex) =e".

mlet y = f(x)=a*. Then

flr+Ax)=a"" Ay = f(x+Ax)- f(x)=a""™ —a" :ax(an—l)~ a*-Ax-lna
&—a’c lna:y'zllmﬁzax Inam
Ax Ax—0 Ax

. In particular (Inx) =—.
xlna X

mlet y = f(x)=log, x. Then

5. (log, x) =

f(x+Ax)=loga(x+Ax), Ay=f(x+Ax)—f(x)=loga(x+Ax)—logax=

x+Ax Ax Ax Ay 1 , o Ay | =
=log, ——=log |1+— |~ = = ,y' =1lim = =
X X xlna Ax xlna a0 Ax  xlna
6. (sinx) =cosx, (cosx) =—sinx.

mLet for example y = f (x) =sinx. Then
f(x+Ax)=sin(x+ Ax), Ay = f(x + Ax)— f(x)=sin(x + Ax)—sinx =

Ax) . Ax Ax ) Ax Ax Ay Ax
=2cos{ x+— |[sin—~2cos| x+— |-—=cos| x+— |-Ax = —=cos| x +—
2 2 2 2 2 Ax 2

;. Ay ( ij
y'=Ilim —=limcos| x+— |=cosxm
A—0 Ax  Ax—0 2

Ex. 1. Find the angle between two intersecting lines f,(x)=sinx, f,(x)=cosx.
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Solving. Intersection points of the lines are determined by the equation
sinx=cosx=tanx=1,x,=n/4+m,neZ
1(x,)=cosx, = cos(z/4+m), f;(x,)=—sin x, = —sin(z/4 + m)
and by virtue of the formula (12)

o = —sin(7/4+nr)—cos(z/4+nr) . V2sin(z/4+n7) _

- 1+COS(”/‘H‘””)‘(_Sin(”/4+n7[)) ) 1—ésin(7r/4+2n7r)

= —% = 2J2cosnr = —2\/5(— 1)" = 2\/5(— 1)"+1.

Ex. 2. Compile equations of the tangent and the normal to the curve y =sin x

at the point with abscissa x, = %
: : . T
Solution. Let y = f(x)=sinx. We have y, = f(x,)=sinx, = smg =—;

f'(x)=cosx, f'(x,)=cosx, = cos% = g Making use of the formulas (10), (11) we

compile the equation of the tangent

and the equation of the normal

POINT 4. DIFFERENTIABILITY AND CONTINUITY

Def. 4. Function of one variable y = f(x) (x €fR) is called differentiable at the
point x, if it has derivative f"(x,) at this point.
Let a function y = f(x) 1s differentiable at the point x,. On the base of defini-

tion of the derivative and the theory of limits

, . A A , '
f(xo):AI;TOEy:Ey:f(xo)+a»Ay:f(XO)A’H‘O“AX
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where o = a(Ax) is IS (infinitely small) as Ax — 0. Therefore the increment of a
function which is differentiable at the point x,, can be represented in the next form
Ay =Af(x,)= £ ()= f(xy)= fog + Ax)= flop) = 4- Ax + a(Ax)-Ax - (14)
where 4= f"(x,) and o = a(Ax) is IS for Ax — 0.
Definition of differentiable function of several variables is more delicate and is
connected with generalization of the formula (14). For the sake of simplicity we’ll
say about function of two variables.

Def. 5. Function of two variables z = f(M )= f(x,y) is called differentiable

one at a point M (x,, y, ) if its total increment at this point

Az =N (My)= (M)~ f (M) = 16, 9)= F (g 70) = f (5 + A%, g +A9) = £ (X, 35)
(see Def. 4 in the Lecture 11 and fig. 4 in this Lecture) can be represented in the next
form

Az=f(M)—- f(M,)=A-Ax+B-Ay+a-Ax+ -Ay (15)

where 4, B are some numbers and «,  are IS as Ax — 0, Ay — 0. It’s easy to prove

that A:fx'(MO):fx'(xO,yO),B:fy'(MO):fy'(xO,yo) and therefore
2= 1) 1) = £, Acs £, ) By At oy =

:fx'(xoaJ’o)‘Ax"'fy'(xooJ’o)'AJ""a'Ax"'ﬂ'Ay

Theorem 1 (sufficient condition for differentiability). If a function z = f (M ) =

(16)

= f(x,») has partial derivatives in some neighbourhood of the point M(x,,y,) and

these derivatives are continuous at this point itself, then the function is differentiable
one at this point.

We’ll prove this theorem later.

As can be illustrated by examples it isn’t sufficiently for a function to possess
the partial derivatives at the point M (x,, y,) for to be differentiable at this point.

Theorem 2 (necessary but not sufficient condition for differentiability). If a
function is differentiable at a point then it’s continuous at this point (but not vice

versa!).
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mLet for example y = f(x) is function of one variable which is differentiable
at a point x, and let Ax =x—x, — 0. It follows from (14) that increment of the func-
tion at the point x, goes to zero, Ay = f(x, + Ax) — f(x,) = 0, which means continu-
ity of the function at the point x, m

‘a Note. There’re continuous functions which haven’t derivative

at least at one point.

Ex. 3. Function y = ‘x‘ (see fig. 5) is continuous one at all

X
points x € R but its derivative doesn’t exist an the point x =0.

Fig. 5 mWe've x, =0, f(x,)= £(0)= ‘0‘ =0, f(x, +Ax)= ‘Ax‘

A A
Ayzf(xo+Ax)—f(x0)=‘Ax;Ey=1forAx>O,Ey=—1forAx<O

and so y' = limOAy/Ax doesn’t exist.
Ax—

POINT 5. DERIVATIVES OF THE SUM, DIFFERENCE, PRODUCT
AND QUOTIENT OF FUNCTIONS

Let u = u(x),v=v(x) be two differentiable functions of one variable x. The
next rules are valid

m(for the product). Let’s remark that
Au =u(x+Ax)—u(x),u(x+Ax)=u(x)+Au =u+Au; Au=u+Au and Av=v+ Av.

If Ax — 0 then Au — 0, Av — 0 because of differentiable functions u = u(x), v =v(x)
are those continuous. Therefore

' u(x+Ax)-v(x+Ax)—u(x)-v(x) (u+Au)-(v+Av)—u-v

(u-v) = lim = lim =
Ax—0 Ax Ax—0 Ax
. u-v+v-Aut+u-Av+Au-Av—u-v . v Au+u-Av+Au-Av
= lim = lim —

Ax—0 Ax Ax—0 Ax



. ([ Au Av  Au , , , ,
=lm|—v+u-—+—Av|=v'v+u-V+0=u"-v+u-v'm
Ax—0\ Ax Ax Ax

Particular cases.

a)(C-u)=C-u' (C - const) (constant factor can be taken outside the sign of

differentiation) because of (C-u)' =C'u+C-u'=0-u+C-u'=C-u.

4 4

b) (%) =—::—2 by virtue of(lj vy 0wl v

2 2 2
v v v v

Ex. 4. Derivatives of functions tan x, cot x.

!

! [
. . . 2 .2
(tan ! Sin x (sm x) -COSX—SInx- (Cos x) cosS“  x+sm” x 1
x e e e e
COS X Cos2 X Cos2 X Cos2 X
! !
, 1 (tan x) 1 1
(Cotx)z =— > == 3 T =""3
tan x tan” x tan” x-cos” x s x
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Ex. 5. Find partial derivatives of the function z =Inx-5” —arctan x- y° with re-

spect to x and y.

Remark. Finding partial derivative with respect to x (y) we consider the other

variable y (correspondingly x) as fixed (or constant) one.

Z 2= fretan o = (inx) 57 ~aretan ) »* =
X
1 1
— .5 _ -y
X 1+ x? re
oz ' '

5 =z, = (lnx-Sy)y —(arctanx-ys)y =Inx-(5"), —arctanx-(ys)'y =
=Inx-5" In5—arctanx-5y*.
Ex. 6. Differentiate the next function

y =arcsinx-3/x.

' , 3 ]
y' = (arCSin X- 3\/;) = (arcsin x)' . 3\/; + arcsin x - (i/;) — \/; : n ar(;snlx -
VI—x 3 x

Ex. 7. Prove the formula for derivative of a product of three factors

!

(w-v-w) =u"-v-wtu-v-wru-v-w
Hint: consider the product u-v-w as u-(v-w).



LECTURE NO. 15. TECHNIQUE OF DIFFERENTIATION

POINT 1. THE DERIVATIVE OF A COMPOSITE FUNCTION

POINT 2. DIFFERENTIATION OF IMPLICIT, INVERSE AND
PARAMETRICALLY REPRESENTED FUNCTIONS

POINT 3. THE HIGHER ORDER DERIVATIVES

POINT 4. THE DIFFERENTIAL
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POINT 6. DERIVATIVES IN ECONOMICS. THE ELASTICITY

POINT 1. THE DERIVATIVE OF A COMPOSITE FUNCTION

Theorem 1. If functions of one variable y = f(u), u = qo(x) are those differ-
rentiable, then the composite function y = f (qo(x)) possesses the derivative which is
calculated by the next rule

y'=f"(p(x))-'(x) or for short y, =y, -u| (1)

m From the theorem 2 of preceding lecture it follows that the differentiable fun-
ctions y = f(u),u = qo(x) are those continuous. So if the increment of the argument x
tends to zero, Ax — 0, then Au = ¢(x + Ax)—@(x) — 0 and therefore the increment
of the function tends to zero, Ay = f(u+Au)— f(u)— 0.

On the base of the formula (14) of the Lecture No. 14 we can write

Ay = f'(u)Au+ o - Au
where « is IS for Au — 0 (and so for Ax — 0). Dividing both sides of the equality
by Ax and passing to the limit for Ax - 0 we get

A )V B AV ey e A e A 0
Ax—f(u)Ax+a Ax,AlgloAx_f(u) lim “=+a Al;r_r)loAx—f(u)u+0 u

whence the formula (1) followsm

Note. Function u = ¢(x) is often called an intermediate argument or an in-

ner function. We can state the nest rule: derivative of a composite function equals
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the product of its derivative with respect to the intermediate argument [to the inner

function] and the derivative of the intermediate argument [of the inner function].
Applying the theorem and all preceding formulas for differentiation of the ba-

sic elementary functions (see Lecture No. 12) we can compile the next table in which

u = u(x) means some function.
Table of derivatives
!

a’—aua_l-u' a u’= 1 ' b) Rlu) = : ‘u' ¢ 1 Z—L'M'
1L () = ) (Vu) T b) (V) (j

3 (log u) =llogae u' = 1 u' a) (lnu)' 1 u'
a u ulna u
4. (sinu) =cosu-u'
5 (cosu)lz—smu u
’ 1
6. (tanu) =———-u'=sec’u-u' (secx: 1 j
cos” u COs X
7 (cotu)'z— _12 -u' = —cosec’u-u' (cosecx: _1 j
sin” u sin x

j =secu-tanu-u’

!

' 1
9. (cosecu) :( _ j = —cosecu -cotu -u'

sinu
10. (arcsinu)' _ ! u'
1-u’
11.(arccosu)! S u'
1-u’
12.(arctanu)' _ ! >eu'
I+u
13.(arccotu)' __ >eu'
I+u

! '

Ex. 1. (sin6 x) = ((sin x)6) = 6(sin x) - (sinx) =6sin> x-cosx

Ex. 2. (\3/arc cotx) = ! -(arc cot x)’ =— !

33 (arccotx)2 33 (arccotx)2 (1+x2)
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Ex. 3. Find partial derivatives of the function z =/x” + y*> with respect to x

and y. If the variable y is fixed then

@:(rr—7L: ! 0)=
ox Y 24x* +y? (X 7 ) 2'\/)(: +y° 2X+ '\/X +y?

For fixed x

T R
8y_ x2+y2y_2 x4+ y? (X +y) 2x* +y?

Ex. 4 (logarithmic differentiation). Let there be given a function

y= (o)) (2)
Let’s take logarithm both of the left and right sides of the equality and then dif-

0+2y

q/x + 2

ferentiate termwise:

!/

Iny = In(p(x))""), In y = g(x)- In g (x), (n y) = (9(x)- I (x)),

L =00 () 60 (s =) o) 20 ()
)

y o(x

Multiplying both members of this last equality by y = ((0(x))¢(x

"= g (x)- In x+M-'x
o= (o)1 mole) 200

Ex. 5. Let’s applicate this method to differentiate the function y = x

tanx

! ! !

Iny=mx"" Iny=tanx-Inx,(Iny) =(tanx-Inx),—-y"=(tanx) -Inx+

! Inx tanx , Inx tanx wny ( Inx  tanx
+tanx-(lnx) = 2 + =y =y > + =X . . +
COs” X X COs” X X Cos” X X

For functions of several variables we can get a lot of analogous formulae. One
of them is given by the next theorem.

Theorem 2. If functions y= f (u,v), u=u(x),v=v(x) are differentiable, then

there exists the derivative of the composite function y = f(u(x),v(x)) which equals

yV="—u+=——-v (3)
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Prove the theorem yourselves with the help of the formula (16) and the next
scheme of proof.
Ay = f(u,v)-Au+ f(u,v)-Av+a-Au+ - Av,
Ay , Au , Av Au Av
— = fu,v)—+ flu,v) —+o-—+p-—,
Silwsv)- == S v) P

Ax Ax
= tim 2 s ),
Ex. 6. Find the derivative of the function (2) using the formula (3).
Let u = o(x),v=¢(x). We get y=u", @ _ veou'T, Y. u' Inu and therefore
ou ov
y' = a—y-u'+a—y-v' =vu"u ru nuy =

ou ov
= (o) -9 (x)+ (o))" I () - ¢ (x)
Ex. 7. Calculate the derivative of a function y = (cosx)™".

. -1
u=cosx,v=sinx,y=u',y, =vu" ,y, =u"lnu,y'=y -u'+y, -V

sinx—1

y" = sin x(cos x)™™ " - (= sin x) + (cos x)™™* In cos x - cos x

Ex. 8. Find formulas for differentiation of functions

y = f(x0(x),¢(x)), z = F(u(x),v(x), w(x)) (4)
Answer.
y—ax+a(pg0+a¢¢, F -u+F VvV+F, -w. ®))

!

Ex. 9. Let’s find the derivative (u-v-w) . Denoting F =u-v-w we get
F =v-w, F/=u-w F, =u-v. Now with the help of the second formula (5) of pre-

ceding example we get the same result as in Ex. 7 of the 12-th lecture,

!

(w-v-w) =F -u'+F V+F -wW=u-v-wtu-v -wtu-v-w
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POINT 2. DIFFERENTIATION OF IMPLICIT, INVERSE AND
PARAMETRICALLY REPRESENTED FUNCTIONS

The case of an implicit function

Def. 1. A function y = f(x) of one variable x € R is called implicit one (or
defined implicitly) if it’s defined by an equation of the form

F (x, y) =0 (6)
which isn’t resolved with respect to .

If one can find y = y(x) from the equation (6) then the function y(x) turns the
equation into identity ( F(x, y(x))=0).

Ex. 10. Equation x* + y* =1 defines two implicit

func-tions y = ++/1—x? . Their substitution in the

I _ equation gives identity x> + (i V1-x? )2 =1.
@ X, 6 X Theorem 3. Let:

Fig. 1 1) a function F (x, y) and its partial derivatives
FY, Fare defined and continuous is some neighbourhood U, ofa point M| (x0,¥,);
2) F(M,)=F(x,,y,)=0 but F/(M,)=F(x,, y,)#0.
Then the equation (6) defines the unique implicit function y = f(x) in some

neighbourhood U, ,, < U,, of the point M. This function is continuous and differ-
>0 0

entiable in some interval (a,h) = R', containing the point x,, and satisfies the condi-

tion /(x,) =y, (fig. 1).
To find the derivative of implicit function y = f(x) we consider the equation

(6) as identity (F(x, f(x))=0 for x  (a, b)) and differentiate it with respect to x:

!

(F(x,y)), =0, F X, +F, -y, =0,F -1+ F -y, =0,F, -1+ F. -y, =0,

!
X

,: ,:— 7
V=Y = T (7)

y
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In what follows we can apply both the formula (7) and the method of its deve-

lopment.
Ex. 10. Find the derivative of a function defined implicitly by an equation
x+y? =Txy +6.
Solution. The first way.
F(x,y)=x?+y*=Txy—6, F =2x—-Ty, Fl=2y-Tx,
and by the formula (7)

,__ix'__2x—7y _Ty-2x
4 F! 2y—Tx 2y—Tx

y

The second way. Let’s, in accordance with the method of deduction of the for-
mula (7), differentiate both members of the given equality with respect to x taking

into account that y is the function of x. We’ll have
2 2 , ' r__ ’ ’ r__ ’
(x +y )x :(7xy+6) S 2X+2y-y —7(x YEX-Y ), 2x4+2y-y' =Ty+Tx-y".
We’ve got the first degree equation in y’. Solving it we get y':

Ty—2x
2y—-T7x’

2y-y' —=Tx-y' =Ty-2x,2y-7x)-y' =Ty -2x,y' =

Ex. 11. Write an equation of the tangent to a circle x> + y* =16 through a
point 4 (0; 5).
Solving. a) Let’s find a desired equation in the form y—-5= k(x — O), and 1t’s

necessary to find a slope £.
b) We differentiate both members of the equation of the circle,2x+2yy’ =0,
finding a slope of a tangent to the circle at any its point y' =—x/y.
c) It must be in the tangent point (x, y):
y—=5=kx,
x> +y? =16,
k=—x/y.
d) It’s sufficient to find only k& from this system of equations. We do in the next

way:
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kzy):;fy;m{yzgkz”gzl@ﬂ@l:ﬁ-zs:m-(ﬁ+1}k2=§-k
’ 2 _ 5. 2y 2 2 > 4’
y-s=k(—hpy LI FU=S (K +1)

There are two values of k£ and so two tangents to the circle of the equations

y=5i§x.

+

V3
=3

Ex. 12. Find the angle between two intersecting lines x* + y* =8, y* = 2x.

Solution. a) At firxt we find intersection points of the lines (of a circle and a
parabola) solving a system of equations
2, .2 2
= = 2 X = 2
R I Moy (22), My (23 -2)
y?=2x(x>0) |x*+2x-8=0; |y=%2
b) Secondly we find the slopes of the tangents to the curves at arbitrary their
points as the derivatives of the implicit functions,
1
a)x* +y* =82x+2yy' =0,y =y :—ﬁ; b) y> =2x,2yy' =2,y =y, =—.
y y

c¢) For the point M, (2;2) (x, = 2,y, = 2) the slopes of the tangents to the cur-

ves are equal

oo 2ot k=)= =

1
ki, =y/(x,)=— -l
=)= L.l

b

and on the base of the formula (12) of the lecture 14 the angle between the curves at
this point is defined by the equality

ky—k _ 12-(=1) _
l+kk, 1+1/2-(=1)

tang, =

d) For the point M ,(2;-2) we get by the same way tan¢, =-3. Verify!
A differentiable implicit function z = f (x, y) of two variables x, y can be de-
termined by an equation of the form
F(x,y,z)zO. (8)
In this case its partial derivatives with respect to x and y can be calculated with the

help of the next formulas
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F! Fi(x,,2) .
PR i €5 23 S € D) BYy (9)
le(x)yaz) g Fz(x’y’z)

Prove these formulas yourselves!
Instructions. (F(x,y,z)),x =0,F-x,+F -y, +F -z, =0,
FIA+F -0+F -z, =0, F/+F-z, =0, z| =—F!/F!,

and by the same way for z/,.

Ex. 13. Find partial derivatives of an implicit function z = f (x, y) determined
by an equation

(:os(x2 +y° + 24): e™”

Solving. In accordance with the formula (9)

F(x,y,z)=e" —Cos(x2 +y° + 24), Fl =yze™ + 2xsin(x2 +y° +z4))
Fy' = xze™* +3y2 sin()c2 —l—y3 +z4), F! = xye™” +473 sin(x2 +y3 + 24),
oz yze”" —l—2xsin(x2 +y° +z4) 0z xze™” +3y° sin(x2 +y° +z4)

o xye” +4z° sin(x2 +y° +z4)’5 Bl xpe™* +4z° sin(xz 4y +z4)

Differentiable implicit functions can be determined by a system of equations.

The case of an inverse function

Theorem 4. Let a function y = f ( x ) of one variable satisfy conditions of the
third property of continuous functions (see point 1 of the lecture No. 13) and is dif-

ferentiable one. In this case the inverse function x = g(y) is too differentiable and its

derivative can be found by the next formula

R
fx)
mBoth functions y = f(x), x = g() are continuous and so if Ax — 0 then

X, =g'(y)= (10)

Ay — 0 and conversely if Ay — Othen Ax — 0. Besides 4y # 0 if 4x # 0 and vice
versa. Therefore

, , . Ax : 1 1 1
x=xy=11m—=l1m = =
o0Ay a0 Ay AV Y
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Ex. 14. Derivatives of inverse trigonometric function

(arcsin x) = ——— (arccos x) = ———— (arctanx) = (arccotx) =—
1—x? 1—x? 1+x

, )
2 1+ x2

m(for arctanx). Let y = f (x) =arctanx and x = g(y) = tan y. By virtue of the

formula (10)
(arctanx), =y! L N 1 _ 1 ]
X (tany) , 1 l+tan®y 1+x7
cos” y

The case of a parametrically represented function

Function y = f(x) of one variable x can be determined with the help of certain

{x = x(t),
y =),
containing some auxiliary variable (parameter) t.

pair of equations

(11)

Ex. 15. The equations x =acost, y =bsint for 0 <t <z determine a function
with the upper part of the ellipse (of semiaxes a, b) as the graph; for 7 <¢ <27z they
determine a function with the graph which is the lower part of the same ellipse.

Ex. 16. Equations x = a(¢f—sint), y = a(l —cos¢) determine a function whose
graph is the cycloid.

Parametrically represented function can be given in the form of direct depend-
ence between x and y if in parametric equations (11) the function x = x(¢) possesses
an inverse function ¢ =#(x). In this case we can write y = y(#(x)) what means that y
is defined directly as a function of the argument x.

To evaluate the derivative of a function which is represented parametrically it
isn’t necessary to express ¢ in terms of x.

Theorem 5. If the functions x = x(¢), y = y(¢) in the parametric representation
(11) of a function y = f(x) are differentiable and the function x = x(¢) has an inver-
se one then the function y = f(x) has the derivative which is given by the next for-

mula
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V=y =2t (12)

'
t

mUsing the rules of differentiation of composite and inverse functions we do as

follows

'
xt

! ! ! ! ! 1
V==Y L=y =
xt
Ex. 17. Write equations of a tangent and a normal to an ellipse x =a cos t, y=

= b sin t at a point for which t=1t, = %

Solving. We find the equations of the tangent and normal in the next form

' 1
:y(xo)(x_xo)’ Y=Vo =77, (x_xo)'
y(xo)
1 . . \/g
But xp = th= £=—, =sinfy=sin— = —,
ut xo = COS fo = COS— = —, ¥ 0 3 5
/ b b b3
y'(x)zy—iz bco§t =—écott, y'(x0)=——cott0 =——cot£=——£
X, —asint a a a 3 a 3
and therefore the equations in question are
_ﬁz_éﬁ-x_l) _ﬁ:_( __)
- a3 2T NE)

POINT 3. THE HIGHER ORDER DERIVATIVES

Let y = f (x ) be a function of one independent variable x and y' = f '(x) be its
derivative. It’s a function of x and we can differentiate it. Such the procedure leads us
to the concepts of derivatives of the second, third, ... orders (second order, third or-

der, ... derivatives).

Def. 2. The derivative of a derivative of a function of one variable is called a
derivative of the second order (the second order derivative, the second derivative) of
this function and is denoted as follows

y=yt =90 )= ()= LW ) () = (dyj L))

X dx? X dx dx \ dx dx
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By analogous way are defined the third, fourth, ... nth order derivatives,

ym:(yﬂ) :fm(X), ylV :y(4) ( m) f]V(x) f (X)
Ex. 18. Let y =a". Then

(y(n—l))' _ (),

Y =a"lna,y"=a*In*a,y"=a*In’a, y" = y(4) =a*In*a,..., y(”) =a'In"a.

Ex. 19. Let y =sinx. Then

, : T\ : : T\ . : T
y :cosx:sm(x+l-5j,y :—smx:sln(x+2-5j,y :—cosx:sln(x+3-5j,

and in general

y" = (sin x)(”) = sin(x +n gj :
For the function y =cosx we can by analogy deduce that
3™ = (cosx)™ = cos(x +n- %) .

Ex. 20. Find the second derivative of an implicit function given by an equation

x>+ =4,

Solving.
2 (b2 2 12— x- 2w
2x+3y°y =0,y ==,y =2 )y = L) 2 1y e A
! y=2x j 2 2 3 2
2y 2 2 3y +ax’ 2 430 +y?) 2 2412
3oy 3 o3 % 3y

Ex. 21. Second derivative of a function which is represented parametrically

Let x = x(t),y = y(¢). By double application of the formula (12) we get

!/

ymy =,y y =) 2Bl RSN

Xy B X; (] )3

Thus

" " ( )f y ;,2 X; B x;lz Y t,
Yo, == ; : (13)
’ Xt (/)

t
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Ex. 22. Let x =acost, y =bsint. Then

, (bsinz‘)' bcost b (—cottjt b 1
y':y; :y—l;: ! = :——Cotf, y”:y;Z :—a : _—

Xt (acosz‘)'; —asint a (acost) . a’ sin’t

For functions of several variables one introduces the second, third, ... partial

derivatives.
Let for example z = f (x, y) be a function of two variables. Then the second

order partial derivatives of the function are

2 2 ' 2 2 '
L _0z_0 f(x,y):(z,) L 0z _0 f(x,y):(z,)y’

* ox? ox’ 0 L T OxOy Ox0y *
2" = 822 — azf(xay) _ (Z' )'x 2" = azz _ 82f(x,y) _ (Z, )' ‘
" Oyox Oyox YT gy oy v)

The partial derivatives z} , z) are called those mixed.

Ex. 23. Let z = f(x,y): x*y® +x%y°. Then
z, = 4x*y° +2xy°, z'y =6x*y° +5x%y*,
z, = (4x4y6 +2xy5)x =16x>y° +2y°, Zy = (4x4y6 +2xy5)y =24x"y° +10xy",
z;x = (6x4y5 +5x2y4)x = 24x3y5 +10xy4, 2;2 = (6x4y5 +5x2y4)y = 3Ox4y4 +2O)c2y3

In the example the mixed partial derivatives are equal, z;, =z} , and it’s the

general fact. Namely the next theorem holds.

Theorem 6. Mixed partial derivatives z7, z) are equal at any point at which

they are continuous.

POINT 4. THE DIFFERENTIAL
Def. 3. Let a function y = f(x) of one variable x be differentiable one at a

point x, and therefore its increment at this point can be given by a formula (see the

formula (14) in the lecture 14)
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Ay =Af(xg)= f(x) = fx0) =[x +Ax) = £ xg) = (g ) Ax + a(Ax)- Ax (14)

g %’_ _______ - —\F [  Where a = a(Ax) is IS as Ax — 0. Expression
| ) /() Ax (15)
AJL_/ -/ T is called the differential of the function y=f(x)at
‘ L M, ""lx WV the point x,. It is denoted by dy = df (x, ) and therefore
R dy = df (x,)= ["(xo)- Ax (16)
Fig. 1 For example let y = f (x) =x. Then

dy=dx=x""Ax=1-Ax = Ax,
dx =Ax.
This result means that the differential of an independent variable equals its increment.
Now we can represent the differential of the function in its usual form
dy =df (x,)= f'(x,)dx. (17)
Geometric sense of the differential we can see from the fig. 1:
dy = f'(x,)-Ax = tana- M N = NT
that is the differential is the increment of the ordinate of the tangent to the graph of
the function at the point M (x,,,) where y, = f(x,).

The concept of the differential is also introduced for functions of several vari-
ables.

Def. 4. Let z = f(x, y) be a function of two variables which is differentiable
one at a point M (x,,y,) that is its total increment at this point has the next form
(see the formula (16) of the lecture No. 14)

Az = f (g + A, yy + A7) = £ (50, 30 ) = £1(0, 30) - Ao+ £ (50, 3) - Ay - A+ - Ay,
Here a, 8 are IS as Ax — 0,Ay — 0. Differential dz = df(x,,y,) of the function
z=f (x, y) at the point M (x,,,) 1s called the next expression

dz = df (xg,0) = (X0, ¥9) - Ax+ f1(X,10) - Ay . (18)
If we put z=x, then dz = x_ -Ax+x] -Ay =1-Ax+0-Ay = Ax, Ax = dx . By analogy

if z =y, then Ay =dy, and so the differential (18) can be written in the form
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dz = df (%, y9) = (X0, 90) dx+ £ (X, 3 ) -y (19)
Properties of differentials. If u, v be two differentiable functions then

- 2
v

Lodutv)=dutdv. 2. du-v)=u-dv+v-du.3. d(ﬁj—w

v

and therefore d(Cu)= C-du (C —const), d(lj = —d—;}..
%

v

mIf for example u = u(x),v = v(x) be two differentiable functions of one vari-

able, then d(u-v)=(u -v)'dx =vu'dc+uv'dx=v-du+u-dvm
4 (differential of composite function of one or several variables).
a)If y = f(x), x =¢(t) then
dy = f'(x)dx .
b) If for example z = f (x, y), x=x(t), y = y(¢) then
dz = fi(x,y)dx+ f(x,y)dy.
These results mean that the differential has the same form no matter if arguments of a

function are independent variables or functions (invariance of the differential form).
ma) dy =y -dt=y. -x'(t)dt = f'(x)dx;
b)dz=z -dt=z, -x'+2,-y)dt =z, -Xdt+2,-y'dt =2, -dx+z, -dym
Differentials can be used in approximate calculations.

A) On the one hand we can use the next approximate formulas
Fx) = f g+ Ax) = fxg)+ f'(xp)- Ax (20)
S y) = flxg + A%, + &)= [, 30 )+ £1(x5 30) - Ax+ £ (X, ) - Ay (21)

B) On the other hand we can put for a function of one variable
f@) = flg +Ax) > f(x,) (22)

with the absolute error
‘f(xo +Ax)—f(x01 ~ ‘f'(xo)-Ax‘ =
for a function of two variables we can put

f(xay):f(x0+Ax9y0+Ay)zf(x09y0) (23)

S '(xo X‘Ax

b
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with the absolute error
£ (e y)= £ (g 20 ) = | £ (G yo)AX + £1(X0, 10 )MV < | £ (g, 0 )| AX] +

Ex. 24. Let’s find an approximate value of 3/8.003.

131G 30)| A

A) Taking into account the formula (20) we’ll have

f(x)=¥x, f'(x):#,xo =8.000, Ax =0.003, £ (x, + Ax) =i/x, + Ax =
X

1 .
=1/2.000+0.003 ~ f(x,)+ /"(x,)Ax =/8.000 + ————-0.003=2 + 0.003

33/8.000°

B) Taking into account the formula (22) we’ll have

£ (xo +Ax) =3/x, + Ax =3/2.000 +0.003 ~ f(x,) =3/8.000 ~ 2.000

with the absolute error

~2.000

S(x0)]Ax| = L 0.003=0.00025.
3

/8.000°

Compare this result with more precise value of the root:

1/8.003 =~ 2.000249969... .

1.98

Ex. 25 Find approximate value 1.03
A) Using the formula (21) we have

Oy =x", fl(x,y) =", fy'(x,y) =x"Inx, x, =1, y, =2, Ax=0.03, Ay =-0.02,
S (g + A%, v +Ap) = (xg + Ax)* ™ = (1+0.03)7 7" = (x5, 30) + 1 (x5 ¥ )Ax +
+ f1(x9s¥0)Ay =17 +2-1°7.0.03+1% - In1- (- 0.02) =1+ 0.06 = 1.06.

B) Using the formula (23) we have
F(xg +Ax, vy +Ay) = (1+0.03) " = £(x,,9,) =1 =1.0
with absolute error not greater than
fx’(x09y0)”Ax‘+

Def. 5. Differential of the second, third, ..., nth order of a function is called the

£, yo) A< 2-177-0.03+1 - 1n1-(-0.02) = 0.06 < 0.1.

differential of the differential of the first, second, ... (n - 1)-th order,

df=ddf)d’f =dd’f)...d"f =dld""f) (24)
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If y = f(x) is a function of one independent variable x, then dx = Ax is an
arbitrary increment of the argument and so it is an arbitrary constant. Therefore
d* f(x)=d(df (x)) = d(f"(x)dx) = dx-d(f(x)) = dx- f"(x)dx = f"(x)dx’.
Similary we can prove that
4 fx) = f"(x)dx>, ... d" f(x)= O (x)dx". (25)
If z = f(x,y) is a function of two independent variables x, y then dx = Ax,
dy = Ay are arbitrary increments of the arguments and so they are arbitrary constants.

Assuming continuity of the second order partial derivatives (and therefore equality of

the mixed partial derivatives) we’ll have

d*f(x,y)=d(df (x,y))=d(fldx+ fidy) =dx-df | +dy-df | =
= dx-(fhdx+ fl,dy)+dy-\fdx+ fy';dy = fx';dxz +2 f7 dxdy + fy';dy2

2
/4 " " a a
d* f(x,p) = fhdx® +2 f} dxdy+ fyzdyz = (adx+§dyj f(x,y)  (26)

Analogously

3
d’f(x,y)= frdx® + £ dx*dy+ f",dxdy* + fhdx’ = 3dx+§dy f(x,y)
X x“y Xy X ax ay

4" f(x,y) = ({%dx%dyj £(5,9) (27)

Formula (26) indicates that the second order differential of a function f (x, y) of
two independent variables is the quadratic form with the matrix
oS
H:[f;; f;zj e
Ex. 26. Find the second order differential of the function z = x° y®°.
The partial derivatives of the function are equal
z! =5x"y%, z', = 8x°y’, z, = 20x°y®, zy, =z, = 40x*y’, 2;2 =56x"y°,

and by virtue of the formula (26) we’ll get
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d*z=20xy%dx* +80x*y  dxdy + 56x° y°dy”.

POINT 5. THE DIRECTIONAL DERIVATIVE. THE GRADIENT

Let some direction / on the plane xOy be determined by the unit vector
Z_°=(cosa,cosﬂ), (29)

and M ,(x,,y,), M(x, y) be two points such that M M M (see fig. 2).

Def. 6. The derivative of a function of two variables
L/ N
£° M /x ;5% z=f(M)= f(x,y) in the direction / (the direction deriva-
% ‘ tive) at the point M (x,, y,)1s called (and is denoted) the
m next limit
| | ofMy) _f(xoo30) _ pp SM)= /(M)
xo /) = - hm 30
M, 5/ ol ol MoMy (M M| (39)
7 -
Fig. 2 Def. 7. The gradient of the function of two variables

z=f(M)= f(x,y) at the point M (x,, y,) is called (and is denoted) the next vector

gmdf(MO):gradf(xoayo):(éf(;‘:[())’ 5f(a];)/[o)J :(5f(3g)xayo)’ 5f(3g)yayo)J (31)

Theorem 7. The derivative of the function z = f(M )= f(x, y) in the direction

[ at the point M (x,, y,) equals the scalar product of the gradient grad f (M 0 ) and

the unit vector /° of the direction /,

8f(M0): 8f(x0,y0):WM—0)_l_o: af(Mo)COSOH_ af(MO)cosﬁ (32)
ol ol Ox %

mLet ‘MOM‘ =t and so

M M =t-l_°=(tcosa,tcosﬂ)z(x—xo,y—yo);
X—X,=tcosa, y—y, =tcos ff;x =x,+tcosa,y =y, +tcosf.
The given function f(M )= f(x,y) can be considered as a function ¢(¢) of one vari-

able # namely
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S(M)=f(x,y)= flx, +tcosa, y =y, +tcos f) = p(t) = f(My)= f(x,5) = 9(0).
The formula (30) yields that
¢(1)-(0)

8f(M0) — lim f(M)_f(MO) =lim———"——+= (0'(0)
ol M—M, MoM t—0 t

and so we must find ¢'(0). But by virtue of the formula (3)
@e)= fixp)-xi+ £7(x,9)-vi = filx, p)eosa+ £ (x, y)eos B =

= f!x, +tcosa, y, +tcos B)cosa + f'(x, +tcosc, vy, +1cos [3)cos
x \7M0 Yo y\7*0 Yo

and therefore
of (M) _ o (xg,0)
ol ol

It follows from the definition of a scalar product that the direction derivative

(32) equals

= fx'(xo,yo)cosa +fy'(x0,y0)cosﬂl

¢'(0)=

of (M, ) of ( xo>y0 \WM_)( COS(WM_O),I j (33)

ol

So it possesses the greatest value if RN grad f(M 0 ) that is if the derivative of the
function z = f(M)= f(x,y) at the point M (x,, y,) is taken in the direction of the

gradient of this function at the same point. It can be written as follows

o (M,) _ afxo,yo
e Garad FM \gmd fM,). (34)

One can say that the gradient of the function z = f(M )= f(x, ) at the point

M, (x,, y,) 1s the vector which in magnitude and in sense represents the greatest rate

of growth of this function at this point.
Ex. 27. Partial derivatives of a function z = f(M )= f(x, y) with respect to x or

y are its derivatives in the directions of the Ox- and Oy-axes respectively.

Ex. 28. Find the derivatives of the function z = x> + y* at the point M (1;-2)
in the direction of: a) a given vector @ = (—3; 4); b) the gradient of the function at the
same point M ,(1;-2); c) the gradient of the function at the point N(2;3) distinct

from the point M, (1;—2).
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Solving. grad z(M )= grad z(x,y) = (Z; (x, ) z, (x, y)) =(2x;2y) and so
grad z2(M,) = (21 (1,-2); 2 (1;-2)) = (2:-4), grad z(N) = (z.(2; 3); 2, (2;3)) = (4; 6)..
Unit vectors of the vector @ = (—3; 4) and the gradient of the function z = x* + y* at

the point N(2; 3) are equal correspondingly

e (G ) )

Therefore on the base of the formulae (32), (34)

%M()):gmdfiMoi-E:Z( j (4) 252
a

_oW,) _ . 2 a8
oerad f(N )—gradf(MO) grad f(N) =2 \/_+( 4) \/_— N

st —erad 710, =2+ (4] =20 =245

ograd f
Theorem 8. The gradlent rad [ (M 0 ) is perpendicular to the level line of the

function z = f (M ) =f (x, y) which lies in the xOy-plane and passes through the point

MO(XOaJ’o)-

mLet the level line /: f (x, y) = C (for certain value of
C) passes through the point M, (xo, yo) (fig. 3). The slope of
the tangent to the line at the point M ,(x,, v, ) equals
y'(xo) = _fx'(xODyO)/f);(xODyO)7
and the equation of the tangent is

Fig. 3 y—yo:_fx'(xmyo)/fy'(xmyo)‘(x_xo)

or
fx,(xODyO)(x_xO)_F fy'(xODyO)(y_yO): 0.
It follows that gradf (M, )= ( METE 1 (x0, ¥4 )) 1s perpendicular to the level line /

because of it is perpendicular to the vector of the tangent M M = (x—x,,y—y,)m

Analogous definitions and facts are valid in the 3-dimension space for a func-

tion of three variables u = f(M )= f(x,y,z), namely:
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af(Mo) _ 8f(xo»J’o»Zo) — lim
ol ol MM, IMM|

l_° = (cosa, cos [3,cos ;/),

grad (M, )= grad f(x,,,,2,)= (@f(xoéi’oazo)’ 5f(xoé;’0920)’5f(xoéi’oazo)j’

O 000) ) g, o arad 108, T ).

al
8f( ) afx09y0920
d70,).
A T ograd f(M ‘gm /

Theorem 9. The gradient grad f(M,)= grad £ (x,, v4»2, ) is perpendicular to

the level surface f(x, y,z)=C of the function z = f(M )= f(x, y,z) which passes

through the point M ,(x,, y,,z,)-
POINT 6. DERIVATIVES IN ECONOMICS. THE ELASTICITY
Tempo of changing of a function

Relative rate of changing [tempo of changing, rate of changing, speed of

changing, pace of changing] of a function' y = f (x) it’s its logarithmic derivative

~(n 1) =1 (39)

Limiting quantities

Economics deals with lots of so-called limiting quantities which are based on
the notion of the derivative: marginal costs of production [marginal production (ma-

nufacturing) costs, marginal expences of production]®, marginal gain [return, prode-

' OtHOCHTENBHAS CKOPOCTh M3MEHEHHUS [TEMIT H3MeHeHH s | (hyHKIMM
2
[IpenenpHble U3IEPKKU TPOU3BOACTBA
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eds, receipts, takins, profit]', marginal income [marginal revenue, marginal return,
marginal yield]*, marginal product’, marginal utility* and so on.

We’ll dwall upon the notion of the marginal costs of production. The rest of
quantities are introduced analogously.

Let’s consider the costs of production as a function y = f (x) of a quantity x of
the output. If Ax is an increment of the output, then the increment of the function
Ay = Af (x)= f(x+ 4x)- £ (x)
is the increment of the costs of production, and

Ay _Af(x) _ flr+ dx)- f(x)

Ax Ax Ax

is the average increment of the costs of production per unite of production. The de-

rivative

y,:f,(x): llmﬂ: ZZmL(x): lim f(x“‘AX)—f(x)

Ax—0 Ax Ax—0 Ax Ax—0 Ax

is the marginal costs of production. It characterizes approximately additional costs for
making the unite of additional production.

Limiting [marginal] quantities don’t characterize a condition [position, state,
status], but a process, a changing of some economic(al) ofject. Therefore the deriva-
tive 1s the rate of changing of this economical ofject (that is the rate of a process) with

respect to a time or to some factor to be studied.

Elasticity of a function

Def. 8. Relative increment ¢z of a given positive quantity z > 0 is called the
ratio of a usual increment Az and the initial value z of this quantity,

&=

z

Let a function y = f(x) and its argument be positive: x >0, f(x)>0.

' [IpenenbHas BoIpydKa

? TpeaenbHbIH JOXO0/

? IpeaenbHbI IPOTYKT

* ITpenenbHas MONE3HOCTH
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By definition their relative increments be

A
5x=g,5f(x)=M (40)
x /()
Def. 9. Elasticity £ ( f ) of given (positive) function y = f (x) with (positive)
argument x is called the limit of the ratio of the relative increment of the function to

the relative increment of its argument if this latter goes to zero,

E(f)= 1imM (41)

&—0  Ox
The elasticity determines the percentage increment of a function per one per-
sent of the increment of its argument.

Theorem 10 (elasticity and derivative).
, X
E(f)=1"(x) (42)

nE (f)= i YD) M) x Af(x):f'(x)-%l
; e

= lim = .
Ax—0 Ax/x Ax—0 Ax - f(x) f(x) A—0  Ax
Corollary (elasticity and tempo of changing). The elasticity of a function

equals the product of its argument and the tempo of changing,

E(f)=Ty, (43)
Ex.29. f(x)=x% E (f)= 2x-i2 =2; glx)=x",E (g)=5x""
x

Ex. 30. Let f(x)= Ax“ where 4, a be arbitrary real numbers. Then
E(f)=E (4x*)=a (44)

because of by virtue of the formula (37)

e

=da

Ex. 31. Let f(x)=e™ where a be an arbitrary real number. Then

Ex(f):Ex(e"x):ax (45)

lEx(f):Ex(eax)z(eax) : )jx =aeax-%=axl
e e
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Properties of the elasticity

1. signE_(f)=signf"(x) (because of x >0, f(x)>0).

2. Elasticity is dimensionless function that is its dimension [E_(f)]=1.

X

.[Ex(f)]:[hm 5f(X)}:[J(X)}:{Af(ﬂ/f(xq [ ()] [x]

&0 Ox Ox Ax/x [Ax]-[£(x)]

foranya,0<a#1

=1m

1 '
.d(lnf(x)) _ (lnf(x))'dx — f(x).f (X):f'(x)-L=Ex(f)'

dinx) (a1 )

X

4. Elasticity of a product (of a quotient) of two functions equals the sum (corr.

the difference) of their elasticities,

E(fg)=E(f)+E(2) E/(f/e)=E.(f)-E.(g).

= X fe R E (2),
nE (f2)=(f2) - f fgf +fg'- fg =/ f+g . (f)+E.(g)

_ X fg x fg X _ o XX _ i
E(f/g)=(f/g) e e Tla o Tla =f e E.(f)-E.(g)




LECTURE NO.16. MAIN THEOREMS ON DIFFERENTIAL

CALCULUS OF FUNCTIONS OF ONE VARIABLE

POINT 1. FERMAT AND ROLLE THEOREMS
POINT 2. LAGRANGE THEOREM. CAUCHY THEOREM
POINT 3. BERNOULLI - L’HOSPITALE RULE FOR REMOVAL INDE-

TERMINACIES
POINT 4. TAYLOR AND MACLAURIN FORMULAS

POINT 1. FERMAT AND ROLLE THEOREMS

Theorem 1 (Fermat'). If a function y = f(x) is defined in interval (a, b) and
takes on the greatest or the least value at some (inner) point x,, of this interval then
the derivative of the function at this point equals zero f”(x,)= 0 if it exists.

m To fix the idea let the function y = f(x) take on the greatest value at the

point x, € (a, b) and so its increment at this point is negative, Ay = f(x)— f(x,) <O0.
a) Let Ax >0 and Axbe so small that x = x, + Ax <b. Then %<O and by

virtue of the theory of limits

M 7o) = Alim()%éo.
/J' { b) Now let Ax <0Oand Ax be so small that x =x, +Ax>a .
l - |
! ’ ' Ay . Ay
% f Then — > 0 and by the same reason f”(x,)= lim = >0.
a ':r, £ x Ax Ar—0 Ax
Fig. 1 We’ve got f'(x,)<0and f'(x,)>0 whence it fol-

lows that f'(x,)=0m
Geometric sense of Fermat theorem: tangent to the graph of the function at the

point M (x,, f(x,)), which is highest or lowest point of the graph over the interval

! Fermat, P. (1601 - 1665), a famous French mathematician
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(a, b), is parallel to the Ox - axis (fig. 1).

Theorem 2 (Rolle'). If a function y = f (x):

a) is continuous one on the segment (closed bounded interval) [a, b];

b) has a derivative on the interval (open bounded interval) (a, b);

c) takes on equal values at the end points of the segment [a, b],
then there exists at least one point x, in the interval (a, ) at which the derivative of
the function takes on zero value, f'(x,)=0.

mWe can suppose that f(x)# const on (a, b) (otherwise f'(x)=0 at all points

of (a, b)). By virtue of the condition a) the function f(x)

7 Lo

takes on its greatest and its least values in some two

points of the segment [a, b]. According to the condition

c) at least one of these points lies inside the segment. If

X, 1s such mner point then by Fermat theorem and by

ola x, € x N
| the condition b) f"(x,)=0m

Fig. 2 Geometric sense of Rolle theorem is analogous to

that of Fermat theorem: if the graph of the function y = f(x) is continuous curve
with equidistant from the Ox-axis points A(a, f(a)), B(b, £())(f(a)= f(p)) and
possesses the tangent at every its point over the interval (a, b) then there exists at
least one point M, (x,, f (xo )) of the graph at which the tangent to the graph is paral-
lel to the Ox- axis (fig. 2).

Ex. 1. Prove that the derivative of the function
flx)=x*—2x" —8x* +18x-9
has at least one root in the interval (-3, 3).
Solution. The function f(x) is continuous and differentiable one for any x and

the points x = +3 are its zeros. By Rolle theorem for the segment [ 3, 3] there exists

" Rolle, M. (1652 - 1719), a French mathematician
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at least one root of the derivative f'(x) in the interval (-3, 3).
Verification. The derivative f”(x) equals
f(x)=4x> —6x" —16x+18
and has for example a root x =1 which belongs to the interval (-3, 3).
Ex. 2. Prove and test yourselves that the derivative of the function
fl)=x*+3x" +x* -3x-2
has at least one root in the interval (-2, 1).
Note 1. It follows from Rolle theorem that between two zeros x,, x, of a func-
tion which is continuous on any segment [a, b] 2 [x,, x, | and differentiable on corre-

sponding interval (a, b) 2 (x,, x, ) lies at least one root of its derivative.

Ex. 3. The function f(x)= 9V ¥ is continuous and differentiable one in every
segment [-7/2+2m, n/2+2m](ne Z), f(-n/2)= f(x/2)=1. By Rolle theorem
the derivative f”(x) at least once vanishes in the interval (—7/2, 7/2).

sin x

2+/cosx

Ex. 4. Check the validity of Rolle theorem for the function y =+12—x—x? in

Testing. f'(x)=-9"""". ‘In9 and f'(x)=0if x=0e(-7x/2, 7/2).

the segment [—4, 3]

g Note 2. All the conditions of Rolle theorem are essential for its
Ay

validity that is for existence of the tangent to the graph of the function
y=f (x) which is parallel to the Ox - axis. On the other hand they

o e * ¢ . are those sufficient but not necessary for existing of such the tangent.
Fig. 3 Ex. 5. There is no tangent which is parallel to the Ox - axis for
the function represented on the fig. 3. This function satisfies the
~ 4, 7/|  conditions a) c) of Rolle theorem but not the condition b) being

nondifferentiable one at unique point x, of the interval (a, b).

x

YL Ex. 6. None of conditions of Rolle theorem are satisfied for a

Fig. 4 function represented by the fig. 4 (namely: a) it has discontinuity
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point d € [a, b]; b) it isn’t differentiable at the point ¢ € (a, b); ¢) f(a)# (b)) but

there is a point x, € (a, b) for which the tangent M ,T HOx.

POINT 2. LAGRANGE THEOREM. CAUCHY THEOREM

THEOREM 3 (LAGRANGE). If a function y = f (x): a) is continuous on

the

segment [a,5]; b) has the derivative in the interval (a, b), then there exists at least one

point ¢ € (a, b) for which the next equality holds

JOZID _ pe), (1)
or
f®)=f(@) = f(e)b-a) (2)
mlet 's denote
[O-1@ _g

and so

f(b)~f(a)=0(b-a), f(b)~ f(a)-O(b—a)=0. (3)
Substituting b by x in (3) we introduce auxiliary function

F(x)= f(x)- f(a)-0(x-a). (4)

It satisfies all the conditions of Rolle theorem: it’s continuous on the segment [a, 5],
possesses the derivative

F'(x)=f"(x)-0
in the interval (a, b), because of properties of the function f(x), and takes on equal
zero values at the points a, b (F (a) =0by @), F (b) = 0by (3)). Therefore by virtue

of Rolle’s theorem there exists a point ¢ € (a, b) at which F'(c)=0 that is

! Lagrange, J.L. (1736 - 1813), an outstanding French mathematician and astronomer
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Fle)=11(e)-0=0, f(c)=0, /(c)=7 (”b):c{ (@) 1 (bb):f @_ ()

Geometric sense of Lagrange’s theorem consists in the following (fig. 3): if

Ay . the graph of the function y = f (x) is continuous curve and pos-
I C
sesses the tangent at every its point over the interval (a, b) then
4 there exists at least one point C(c, f (c)) of the graph at which
ol a ¢ £ x

- the tangent to the graph is parallel to the segment 4B joining
Fig. 5 end-points A(a, f(a)), B(b, (b)) of the graph.
Corollary. If in conditions of Lagrange’s theorem the derivative of the func-

tion f(x) equals zero, f'(x)=0, than the function is constant one on the segment
[a, b].
mFor any x € [a, b] there exists a point ¢ € (a, x) such that by virtue of the

formula (2) one has

f(x)=fla)=f"(cfx-a)=0-(x=a)=0= f(x)= f(a)=constm

2 ¥ / < A Note 3. Both conditions of Lagrange theorem are essential
- -,I\\k"\ for its validity that is for existence of the tangent to the graph of
7 J; i} the function y = f(x) which is parallel to the segment AB. On
a ¢ ¢ the other hand they are those sufficient but not necessary for
Fig. 6 existing of such the tangent.

Ex. 7. There is no tangent which is parallel to the segment 4B for the function

represented on the fig. 6. This function being continuous one on the segment |[a, 5]
B doesn’t possesses the derivative at the point c € (a, b).

Ex. 8. A function determined by the fig. 7 doesn’t satisfy the

conditions of Lagrange theorem but its graph has two tan-gents

¢ parallel to the segment AB.
Fig. 7 Ex. 9. With the help of Lagrange theorem prove that for
any a, b such that 0 < a < b the next inequality holds
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b—a b—a
o < arctan b—arctana < >
1+b l+a

mThe function f (x) = arctan x satisfies conditions of Lagrange theorem for any

segment [a, b](0 < a < b) and so there exists a point ¢ € (a, b) such that

7(5)- f(a)= f'(cXb-a), arctanb —arctana = U a)' (*)

1+c?

After the next chain of estimates

0<a<c<b,a’><c*<b* 1+a” <l+c* <1+b*, 12< P
1+b° l+c

we get the inequality

b—a < b—a < b—a
1+b* 1+c¢* 1+a°
which by (*) is equivalent to the inequality in questionm

Ex. 10. Prove the inequalities

b— <lnb<b

a a

for 0<a<b;

a)

b) ﬂ—za <tan 8 —tana < ﬂ—za for 0<a<pB<n/2;
cos” a cos” fB

b—a ) ) b—a
<arcsinb —arcsin a <

° Ji-a® N1-b

Ex. 11. Using Lagrange theorem form double-ended estimate and find ap-

for 0<a<b<l.

proximate value of the number 482
Solution. Let f (x) =4/x,a=81,b=82. By Lagrange theorem there exists a
point ¢ € (81, 82) such that

£(82)- £(81)= f'(c)82—81), 4/82 —4/81 =4/82 -3 =

1
#e
The next estimates yield

34 <8l<c<82<3.01* <82.085,3* <c<3.01*, 32 < * <3. 0112 3 <43 <300,
! Pt 1 ! 1 .0.00916 < ———— < 0.00926

——<—<—, < <
3.01° 43 3743010 4.4 43 4f
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and therefore 0.00916 < /82 —3 < 0.00926,3.00916 < 4/82 < 3.00926, 4/82 ~3.009.
All the digits are correct.

Ex. 12. Find approximate value of the number V4.02 .

Remark. Lagrange theorem permits to prove sufficient condition of differenti-
ability of a function of several independent variables. We’ll give the proving of the
Theorem 1 of the lecture No. 12 (Point 4, formula (16)) concerning a function of two
variables.

Let in accordance with the theorem a function z = f(M )= f(x, y) has partial
derivatives in some neighbourhood of a point M (x,, ¥, ) which are continuous at this
point. Representing total increment of the function at the point M (x,, y, ), that is the
expression

Az =f(M)=f(Mo)=f(x,5) = f (o, yo) = [ (3o + A%, o + AV) = (X, ) »

in the next form

Az = f(xg+ A%,y +AV) = (X0, Yo + M)+ f (x4, v0 + AV)— f(x,10) =
= (f(xo +Ax,y, +AY) = f(x4, ¥ +Ay))+(f(x0,y0 +Ay)—f(x0,y0)),

we apply Lagrange theorem to two expressions in the parentheses in the second row
pply Lagrang p p

namely

Az = flcr, yo +AV)AX + £ (x0, 05 )Ay, ¢; € (xg, Xy +AX), ¢, € (g, ¥ +AV).
On the base of continuity of partial derivatives of the function at the point M(x,, )
we can write

Fi(ers yo +A9)= £, o)+ e, £7(x05¢2) = f1(x05 0)+ B

where a = a(Ax,Ay), B = B(Ax,Ay) are IS as Ax — 0, Ay — 0. Therefore
Az = (110> yo )+ a)Ax + (£ (g0 30 )+ B)AY = (05 6 )Ax + £1 (0, )+ ahx + BAY
what it was required to be proved.

THEOREM 4 (Cauchy"). If functions f(x), g(x)

1. are continuous on the segment [a,b];

! Cauchy, A.L. (1780 - 1859), a famous French mathematician
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2. have the derivatives in the interval (a, b);
3. gla)# g(b)(= g'(x)# 00on (a,b));
then there exists a point ¢ € (a, b) for which the next equality holds
J®)=f(a) _ f(©) (5)
gb)-gla) g0

Prove the theorem yourselves putting

fb)-f(a) _ 0
g(b)—g(a)

and introducing auxiliary function F(x)= f(x)- f(a)-0(g(x)- g(a)).

POINT 3. BERNOULLI - L’HOSPITALE RULE FOR REMOVAL INDE-
TERMINACIES

Finding limits we dealt with various types of indeterminacies [indeterminate
forms, indeterminate expressions]:

0 o

b

0 o O‘OO, 100) Ooo, OOO) 009 (i OO)_(i OO), (i OO)_’_($ OO)
o0

Differential calculus gives some methods to remove them.

Indeterminacies of the types 0/0, o0/

THEOREM 5 (Bernoulli' - L’Hospitale” rule). Limit of a ratio of two IS or
IL (in every type of passage to limit) equals the limit of the ratio of their derivatives if
this latter exists. Schematically
£ _ (9 gj i S0
glx) (0 o g'(x)
mWe’ll study the simplest case namely if x — a+0, f(a)= g(a)=0 and func-

lim

tions f(x), g(x) satisfy the conditions of Cauchy theorem. Let there exist the limit

! Bernoulli, Johann (1667 - 1748), the famous Swiss mathematician

* L’Hospital, J.F.A. (1661 - 1704), a French mathematician
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K = lim M
x—a+0 g'(x)
Then by Cauchy theorem
. Lx)_(gj o SO Q) e S e )
x1—1>1;1rJ1rO g(x) B B x1—1>1;1rJ1rO g(x)—g(a) B x1—1>1;1rJ1rO g'(c) =K, x1—1>1;1rJ1rO g(x) =k= x1—1>1;1rJ1rO g'(x)

because of ¢ € (¢, x)and ¢ > a if x >a+0m

Note 4. Bernoulli - L’Hospitale rule can be combined with other methods of

evaluation the limits. For example we can use the table of equivalent /S.

Ex. 13.

. 1—cosl6x (Oj
lim o510 [T
-0 sin9xtg24x \ 0

!

sin9x ~ 9x
tg24x ~24x

1—cosl6x 1 .. 1-coslbx
m = lim 5 =
x>0 9x.24x 216 x>0 X

_ 1 hm(l—cosll6x) _ 1 hm16sm16xzihmsm16x:Sinl6x~l6x‘zﬁ
216 0 (xz) 2160  2x 27 x50 x 27
, 1
Ex. 14. limlnjz(gjzlimwzlim sx ~ _ 1 lim ! :(ljzo
xow ) 00 ) xoe (2) -02%In2  In2x>ox-2% o

Remark. Bernoulli - L’Hospitale rule can be applied several times (repeatedly)
by necessity.
Ex. 15. For any natural n

lim % = (fj = lim (x) LT (fj =" lim () =) fim - —
o0 In5 x> (5x

x>0 57 x> (Sx) In5xoe 57

!

_nln-1) (e2)  om i—(ljzo

= e — m =

(In5) o (5) (In5)" x> 5"

Some other types of indeterminacies
are reduced by various transformations to two first types. We’ll regard some parti-

cular examples.

Ex. 16.

x—0 x—=0 x~ 00 x—0 ( 1 )’ x—0 _x_2 x—0
X

limxIn x = (0-o0) = imln—xz(fj im0 iy VE iz

Ex. 17. Using the result of preceding example we get
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; x _[n0O)_ 1 Inx }\ _ 1: xlnx _ lin}r xlnx [ .00} _ 0 _
Im x*=10")= lim l|e = lim e = 00 =\e =e =
x—0+0 x—0+0 x—0+0

Ex. 18. lim _1 — 1 :(oo—oo)zlim _1 — 1 =
x>0\ sin2x  2sinx x—>0\ 28inxcosx 2sinx

:liml—cosx:(gj . 1-cosx 1 .m(l—cczsx) L nsing =0

x—0 sin 2x x—0 2x 2 x—0 X 2 x—0

POINT 4. TAYLOR AND MACLAURIN FORMULAS

Maclaurin and Taylor formulas for polynomial
Let be given nth degree polynomial

P(x):a0+a1x+a2x2+a3x3+...+anx”. (6)

Differentiating it n times we get

P'(x) =1-a,+2a,x+3a;x* +4a,x’ +..+na x"",

P'(x)=1-2a, +2-3a;x+3-4a,x* +4-5x° + ..+ (n—na,x" 2,
P"(x)=1-2-3a;+2-3-4a,x+3-4-5x* +..+(n-2)n—-na,x",

~

(7)

Putting x = 0 in the formulas (6), (7) we can express the coefficients of the polyno-
mial in term of its value and the values of its derivatives at the point x = 0, namely
P(0)=a, =1-a, = 0la, (by definition 0!= 1, zero - factorial),
P'(0)=a, =1-a, = !a, (by definition 1!= 1, one - factorial),
P"(0)=1-2-a, =2'a,(2!=1-2, two - factorial),
P"(0)=1-2-3-a; = 3la,(3!=1-2-3, three - factorial),

(0) 0 ' 0 " 0 " 0 (n) 0
aOZP(O):PO'( )7a1:P'(O):%!)9a2:P2(! )9a3:P3(! )9--')an:Pn!( )9(8)
" m (n) n ( )
P(x)= PO)+ PO+ T2 7O sy PPNO) S PEO)
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Def. 1. Formula (9) is called Maclaurin (or Taylor' - Maclaurin®) formula for
the polynomial (6). We’ve proved the next theorem.

Theorem 6. Every polynomial of the form (6) can be represented by Maclaurin
(Taylor - Maclaurin) formula (9) (with coefficients (8)).

If nth degree polynomial is written as development with respect to powers of a

difference x — x,, namely

P(x)=a,+a,(x—x,)+a,(x—x,) +a,(x—x,) +...+a,(x—x,), (10)

then by the same way one can get

(0) , " (n)
a, = P(x, =PT(!XO),a1 = P'(x,)= P(ITO),aZ _P gCO),...,an _P n(!XO)’ (11)
" (n)
P)= Pl Pl w)w D e P e ) ey 1)
. n
n P(k) .
P)=3 b))

Def. 2. Formula (12) is called Taylor formula for the polynomial (10).

Theorem 7. Every polynomial of the form (10) can be represented by Taylor
formula (12) (with coefficients (11)).

Note 5. Maclaurin (Taylor - Maclaurin) formula (9) is particular case of Taylor

formula (12) for x, =0.

Binomial expansion
Def. 3. Newton binomial is called the next expression

P(x)=(a+x)" (13)
We’ll expand Newton binomial (13) with the help of the formulas (6), (9).
P(x)=n(a+x)",P"(x)=nn—1)a+x)",P"(x)=n(n—-1)n-2)a+x)"....,

P(k)(x) =n(n-1)n-2).(n—(k=1)a+x)",..., P(”)(x) =n!

: Taylor, B. (1685 - 1731), an English mathematician

? Maclaurin, C. (1698 - 1746), a Scotch mathematician
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P(O) =a" ,P'(O) =na"" ,P"(O) = n(n — l)a”_z,P"'(O) = n(n — 1)(n — 2)a”_3,...,
PO0)=n(n—-1)n-2).(n—(k=1))a""*,..., P"(0)=n!

MQH—ZXZ n n(n-1 '(”—2)an—3x3

(a+x)' =a" +na""x+ +..t

21

! 3
+ nln = 1)~ 2k)'(n ~ (k- 1))a”_kxk +... +—n(n2'— l)az)c"_2 +nax"" +x".

Coefficients of the expansion (14) (binomial coefficients) are denoted as follows

(14)

C’=1,C! =n,C} =#,...,C5‘2 =C; =#,Cg—l =C,=nC, =C, =1.

In general

ck = ”(”_1)(”_2)16';" '(”_(k_l)), k=0,1,2,.n-2,n—1,n (15)

Note 6. Coefficients (15) possess the next property (prove it yourselves)

ck=crt* (16)
Note 7. Binomial coefficients can be easy calculated with the help of so-called

Pascal' triangle

1
1 1
1 2 |
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

3
(a+x) =a’ +3a’x+3ax® +x°,
4
(a+x)" =a* +4a’x +6a°x* +4ax® +x*,

5
(a+x) =a’ +5a*x+10a’x* +10a° x> +5ax™ + x°.

' Pascal, B. (1623 - 1662), a French mathematician, physicist, and philosopher
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Taylor formula for arbitrary function of one variable

Let be given arbitrary function y = f (x)
Def. 4. nth degree Taylor polynomial corresponding to the function y = f (x) is

called the next polynomial

f(n)(xo)

n!

(x—xo)'Z (17)

(x—x,) +...+

T, (x)= f(xg)+ /" (0 Nx —xp )+

Def. 5. Difference of n times differentiable function y = f(x) and its nth de-

S "(xo)
o)

gree Taylor polynomial 7, (x) is called a remainder [remainder term, residual mem-
ber] and is denoted by R, (x),
R,(x)=f(x)-T,(x) (18)
It follows from the formulas (17), (18) that
R, (x,)=R)(x))=R!(xy)=...= R,(l”)(xo): 0and R,(Zk)(x): f(k)(x)for k>n (19)
Theorem 8. For (n + 1)-times differentiable function y = f (x) the remainder

can be represented in the next form (Lagrange form)

(n+1)
R )= (20)

where c 1s some point between x and x,,.

mLet for definiteness x, <x and

plx)=(xr—x, )" (21)
be auxiliary function which satisfies conditions
(D(xo) = (Dl(xo ) = (D”(xo) == ¢(n)(x0) =0, (0(n+1)(x) = (” + 1)! : (22)

Applying n times Cauchy theorem (with consecutive appearance of points ¢, c,,...,

c,,c suchthat x, <c<c, <..<c, <c¢; <x) we get

R,(x) _ R,(x)-R,(x,) _Ri(c,) _Ry(c))-Ry(x,) _Rile,) . _RV(c,)_
o(x) ()f/()(x;—(p%o() ) (p’((cl))( )@’(cl()—)fxz’())co) (p”(cz)( y )(0(”)(%)
~R"(e,)-RW(x, _Rn"+lc_f”+lc:> x:fn+1c )
~ o)) ) Gy = Gy o)



98

Note 8. Depending upon the way of reasoning there are many other forms of
remainder (for example in the form of Cauchy, of Peano' etc.).

Knowing the remainder R, (x) we can represent the function y = f(x) in the
next form

f(x)=T,(x)+ R, (x) (23)

Def. 6. Formula (23) which represents the function y = f (x) through its Taylor
polynomial 7,(x) and the remainder R, (x) is called Taylor formula for this function.
In particular case x, =0 it 1s called Maclaurin formula.

Let’s write Taylor and Maclaurin formulas with Lagrange’s form of remainder:

£06)= o S o oo L0 e e L) e

2! n!

(n+1) n (k) (n+1) (24)
’ f(n +1(;)(x—x0 )" ; ’ k(!XO)Xk ' f(n +1()C!,)(x_x0 )™, e (xg,x),
" ('Z) (n+1)
F)= £0)+ fopes L@ 2 SO L S i _
n plk) > (n+1) & (2 +1) (25)
— P (O)xk + f (c)an, ce (O,x)
i~ K (n+1)

Ex. 20. Expand a function f (x) =¢" by Maclaurin formula.
Solution. f(x)= f"(x)=£"(x)= f"(x)= .= f")(x)= f"(x) =", £(0)=
= 1'0)=£"(0)= £"(0)=...= "(0) =1, 1" (c) = ¢* and so by (25)

N T( ) R ( ) 1 x2 3 X4 xn xn+1 . (O ) 26
e =1,\xX)+ K \xX)= +X+?!+§+T!+...+;+(n+l)!e ,ce\U,Xx). ( )
If we’ll put
¥ X X! x"
e m T (x)=1+x+"+ "+ (27)
20 31 4 n!

! Peano, G. (1858 - 1932), an Italian mathematician
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we’ll find for approximate value of e with absolute error

n+1

R, (x){ = h e’. (28)

e’ —Tn(x)(z

o =

Ex. 21. Let’s find approximate value of e putting x =1 and » =8 in the for-

mulas (27), (28). We have

a =‘e—T8(1){=‘R8(1){=$e",0<c<1, e <3, a <%<0.000008=8-10‘6,

T8(1)=1+l+l+l+l+l+l+lz2.718278,
20 31 4 5 6! 7! 8

T,(1)-8-10° <e < T;(1)+8-10°°, 2.718278 — 0.000008 < e < 2.718278 +0.000008,
2.718270 < e < 2.718286, e = 2.7182 and all digits are exact.

Ex. 22. Expand functions f(x)=sinx, f(x)=cosx by Maclaurin formula.

Let for example f(x)=sinx. Derivatives of the function are

f'(x)=cosx, f"(x)=—sinx, /"(x)=—cosx, f¥(x)=sinx, /¥ (x)=cosx,
FO(x)=-sinx, f7(x)=—-cosx, f®(x)=sinx,...,

in general (see lecture No. 15, Ex. 19)
f(”)(x) = sin(x +n %j
Values of the function and its derivatives at the point x =0 are equal to
£(0)=0, 7'(0)=1, £"(0)=0, £"(0)=—1, f9(0)=0, £*(0) =1,
£90)=0, F70)=-1, f®(0)=0....,

76r(0) = sin((Zn _ 1)%) _ sm(ﬂn _gj _ —sin(%—MJ = —cosm = (~1)"",

£(0)= sin(Zn-%) =sinnz =0,

The value of the (27 +1)-th derivative at a point ¢

Fe(e)= sin(c +(2n+ 1)%)

Now on the base of the formula (25) we'll get
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2n-1 2n+1
X3 xS n X n+

. _ . X X . n—lx— gy X z
sinr= =2 L ) 2 ) (2n+1)!sm(c+2(2n+l)j.(27)

By the same way we can obtain the expanding of the cosine in Maclaurin formula (do

it yourselves)

2 4 6 2 2n+2
X n n

I I S )X o z
cosx =1 2!+4! 6!+...+( 1) (2n)!+( 1) (2n+2)!cos(c+2(2n+2)j.(28)

Ex. 23. It follows from (27) that sin x ~ 7 (x) = x with absolute error

3
o =|sinx— T( X IR, x){ ‘— —sm(c+3 2)

Therefore with an accuracy to 0.001 sinx =~ x if ‘x‘ <0.180or ‘xo‘ <10°.

3
< % <0.001if |x| <3/0.006 < 0.18

Note 9. Putting dx = Ax = x —x, we can write Taylor formula (24) in terms of

differentials (see lecture 13, Point 4, (25))

1 2 1 n 1 n+l
Alxa) = f0)= o) = oo J oy oo J ot oo J+ (g d ™ 1 le) (29)

Taylor formula for a function of several variables

Taylor formula (29) for a function of one variable can be easy extended on the

case of several variables.

Let x = (x,,X,,...,x, ) € R", x4 = (X0, Xg5--» X, o) € R"and a function y = f(x) =
= f(x,,X,,...,x, ) be (k +1)-fold continuously differentiable function of n independ-
ent variables. Its total increment at the point x, = (x,g,Xy,...,X,,) can be represented

in the next form (Taylor formula with remainder in Lagrange form)

Ay = Af(x0)= f(x)_f(xo): f(xDxZ?""xn)_f(x107x207“‘7xn0):

:df(x0)+%d2f(x0)+...+%dkf(xo) ( )dk+1f()c=(cl,cz,...,cn). (30)

k+1)
For the case of two independent variables z = f (x, y) Taylor formula is writ-

ten in the next form
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82 = f )= £ (000 30) = d (i 0 )+ 3 @™ e )+ 5 F 50030+t

1 1 N
+Edkf(x0,y0)+mdk lf(cl,cz),

(31)

where

df(Xano): f)c'(xwyo)dx*‘fy'(xwyo)dy = gradf(xo,yo)-(dx,dy),

dzf(xo,y0)= f;;(xo,yo)dxz +2fx';(x0,y0)dxdy+fy"y(x0,y0)dy2, (32)

k
0 0
d* f(xg, v, )= (adx+§dyj Flxgsyoh k=1,2,3,... (33)

The second order differential of a function of two variables z = f(x,y) is a

quadratic form with symmetric matrix (so-called Hesse' matrix) of the second order,

fx;(xoayo) fx;(xoayo) " "
H(f)(x()?yo)):(fyr;(xo’yo) fy';/(x07y0)j’ fxy(x07y0):fyx(x07y0)' (34)

In the case on n independent variables the second order differential of a func-

tion y = f(x)= f(x,,x,,...,x, ) is quadratic form

dzf(xo): dzf(xloaxzm---»xno): fo':x] (XO)dxidxj (35)

i,j=1
with nth order symmetric matrix (Hesse matrix)
fx':x] (‘XO) fx']'xz (‘XO) fx']'x3 (‘XO) fx']'xn (‘XO )
fx';x] (XO) fx,;xz (XO) fx';x3 (XO) fx,;xn (XO)
H(faxo): fx';x] (‘XO) fx';xz (‘XO) fx';x3 (‘XO) fx';xn (XO) ’ (36)

fx';x] (‘XO) fx';xz (‘XO) fx';x3 (‘XO) fx';xn (‘XO)

Sl (o) = £ (e ki =1,2,m,j =1,2,00m.

J

'Hesse, L.O. (1811 - 1874), a German mathematician



DIFFERENTIAL CALCULUS: basic terminology

1. Accuracy of approxi-
mate calculation/evalua-
tion

2. Angle between two in-
tersecting curves

3. Angular point of a
graph

4. Approach [tend to, go
to] smth (about a point of a
graph/curve)

5. Approximate calcula-
tion/evaluation of a mag-
nitude/quantity

6. Approximate value

7. Auxiliary finction

8. Be spécified [represen-
ted, defined, detérmined]
explicitly, by an explicit
equation; be explicit(ly)
represénted

9. Be spécified [represen-
ted, defined, detérmined]
implicitly, by an implicit
equation; be implicit(ly)
represénted

10.Be spécified [represen-
ted, defined, detérmined]
paramétrically, by pardme-
tric equations, be parame-
triccally represénted
11.Calculate smth to the
third décimal place, to wi-
thin 0,001, up to 0,001
12.Coémposite  flnction,
finction of a finction, su-
perposition [coOmposition]
of flnctions
13.Compnute/evaluate/cal-
culate/find a derivative/
differéntial

14.Compnting [evaluating,

TouHICTh HAOJIMKEHOTO
00YMCIIEHHS

Kyt mMixx n1BOMa KpuBHMH,
10 MIEPETHUHAIOTHCS
KyrtoBa Touka rpadika

HabGnmxatucs no woeocs
(mpo Touky KpuBOi, rpadi-
Ka)

HabGnmxene obunciieHHs
BEJIMYMHU

Hab6amxeHe 3HaYeHHS
JlonoMixkHa QyHKILIS

bytu 3amanum [3a1aH010 |
SIBHO, SIBHUM PIBHSTHHSIM

Bbytu 3amanum [3a1aH0I0 |
HESIBHO, HESIBHUM PIBHSIH-
HSM

bytu 3amanum [3a7aHOI0 |
napaMeTpuyHo, mapameT-
PUYHHMH PiBHIHHAMU

OOGUHUCTUTH WOCh 3 TOUHI-
ctio 10 0.001

Cxknanena QyHkiis, GpyHK-
uist Bix QyHKIIII, cynepmo-
3ULLIS PYHKIIN

3HaitTu/BiamykaTta/o0uuc-
JUTH NOX1AHY/ nudepeHii-
ai
3HaXOMKEHHsI/BIIITyKaH-

TouynocTh MpUOIMKEHHO-
IO BBIYUCIICHUS

VYron mexay AByMs nepe-
CEKAIOIUMHUCS KPUBBIMU
VYrnoBas Touka rpaduka

[pubmuxaThes K uemy-mo
(o Touke KpuBoOiA, rpadu-
Ka)

[MpubnuxEHHOE BBIUUCIIC-
HHUE BEJTMYUHBI

[TpubnuxEnHoe 3HaUCHHE
BcenomorarenbHas QyHk-
st

bbITh 3a1aHHBIM [3a7aH-
HO1] SIBHO, SIBHBIM ypaB-
HEHUEM

buITh 3a1aHHBIM [3a/1aH-
HOM | HESIBHO, HESBHBIM
ypaBHEHUEM

BbITh 3ajaHHBIM [3a/1aH-
HOH | mapamMeTpu4eCcKH, mna-
pPaMETpUYECKUMU ypaBHE-
HUSAMHA

Beraucautp 4To-1udo ¢
ToyHOCTHIO 710 0,001

Cnoxnast yHkuus, QyHK-
s OT PYHKIUH, CyTep-
no3uuus QyHKIui

Haiitn/oThIcKaTh/BEIYHC-
JUTH POU3BOIHYIO/ AU Pe-
peHnuan

Haxoxne-



evaluation, calculation,
finding] a derivative/dif-
ferrenttial

15.Derivative of a flanc-
tion in a given diréction;
diréctional derivative of a
finction

16.Derivative of the first/
second/third/higher order;
first/second/third/higher
order derivative
17.Derivative (of function
at the point a)
18.Derivative in a diréc-
tion; diréctional derivative
19.Derivative of a compo-
site finction

20.Derivative of an impli-
cit function

21.Derivative on the right,
right [right-hand] derivati-
ve

22.Derivative with respéct
to x

23.Diffentiation

24 . Differentiability of a
finction

25.Differéntiable finction

26.Differéntial
27.Differéntial of the first
[second, third, higher] or-
der; first-[second-, third-,
higher] order differéntial;
first [second, third, higher]
differéntial
28.Differéntial calculus

29.Differéntiate (with res-
péct to x)
30.Differentiation rule, ru-
le of differentiation
31.Diréction

32.Diréction defined by

Hs1/00UYHMCIIEHHS TTOX1AHO1/
nudepeHiiana

[MoxinHa QyHKIIT y 1aHo-
My HanpsIMKY [3a TaHUM
HaIPSIMKOM |

[ToximHa nmepioro/apyro-
ro/TpeThoro/BUILOTO MO-

PAIAKY

[ToxinHa (dhyHKLIT B TOY-
11i)

[loxigHa y HanpsAMKY [3a
HaIPSIMKOM |

[loxigHa ckiageHoi pyHk-
i

[loxigHa HesaBHOT PyHKIIIT

[IpaBa noxigHa

IToximHa 110 x

HudepeniitoBaHus
HudepeniiioBHicTh QyH-
KIi1

HudepenniioBHa ¢yHKIIis

HNudepenitian
Judepenirian nepuoro
[Apyroro, TpeTbOro, BU-
1I0r0 | NOpAIKY

HudepeniiaibHe YnciaeH-
Hs
HudepentitoBat/mpoam-
bepenuioBaTH (110 X)
[TpaBuno audepeniriro-
BaHHS

Hanpsim, Hanpsimox
Hanpsim [HanpsimMok], BU-
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HHE/OTBICKAHUE/BBIYUCIICH
ue npousBoiHON/ nudde-

peHnuana

[IpousBosiHast GyHKIIUU B

JTAHHOM HaIpaBJICHUU

[IpousBoanas neporo/
BTOPOTO/TPETHET0/BHIC-
IIETO MOPsIIKa

[IpousBoanas (pyHkuu B
TOYKE)

[IpousBoaHAas MO HaINpaB-
JICHUIO

IIpon3BoaHas CI0KHOU
byHKIIIHN

IIponsBoaHAas HEABHOU
byHKIIIHN

[IpaBasi mpousBoaHAS

IIpownsBoaHas 1o x

HuddepenunpoBanue
HuddepenunpyemMocTb
byHKIIIH
Hudbdepennupyemas GyH-
KIIMS

Hudbdepenman
Huddepenuuman nepBoro
[BTOpOro, TPETHETO, BBIC-
1Iero | mopsiaka

HuddepenumanbHoe Uc-
YUCJICHHUE
HuddepenuumpoBars/ mpo-
muddepenurpoBats (110 Xx)
[TpaBuno aguddepeniupo-
BaHUS

Hanpasnenue
Hanpasnenue, onpeaenén-



104

two given points (from the
point 4 to the point B)

33.Diréction of a given vé-
ctor

34.Draw a sécant through
a point

35.Elasticity

36.Equation of the nérmal
[nérmal line] to a curve [to
a surface] (at its given po-
int)

37.Equation of the tangent
[tangent line] to a curve (at
its given pdint)
38.Equation of the tdngent
plane to a surface (at its
given point)

39.Error

40.Expansion [develop-
ment, expanding] of a fin-
ction by (méans of) Ma-
claurin(‘s) formula
41.Explicit finction

42 .Finite derivative

43.For a fixed x (y) with y
(x) as a variable

44.Geométric(al) sense/
méaning/significance
45.Get/obtain an incre-
ment

46.Give an increment to
an argument

47.Gradient

48.Héssian matrix
49.Implicit finction
50.Implicit fanction defi-
ned/detérmined [function
defined/detérmined impli-
citly]: a) by an equation;
b) by a system of equa-
tions

51.Increment of an argu-

3HaYEHUHN JBOMA JaHUMU
TOYKaMH (B17 TOUKHU A 10
TOYKHU B)

Hanpsm [Hanpsmox] aa-
HOT'O BEKTOpa

[IpoBectu ciuHy yepes To-
YKy

Enactuunicth

PiBHSIHHS HOpMaJTi 1O KpHU-
BOi [/10 moBepxHi| (B AaH1i
ii TOUII)

PiBHAHHSA TOTUYHOI 10
KpuBOI (B AaHi# ii TOYII1)

PiBHSIHHS TOTUYHOI ILJIO-
IIMHU JI0 TIOBEpXHi (B J1a-
HIH 11 TOYIT1)

ITomunka, moxuoka
PozBunenHs ¢pyHkii 3a
nornomororo Gpopmynu Ma-
KJIOpeHa

SIBHa dyHKIIIS
CkiHuYeHHa MoxigHa

[Ipu dpikcoBanomy x (¥) 1
¥ (x) SIK 3MIHHOMY

I'eomeTpruuHUl CEHC
OTpumyBaTu NpUpIcT

JlaBaTu apryMeHTy HpH-
picT

Ipaxgient

Marpuus ['ecce

HesiBHa QyHkIis

HesBna dynkiis, 3agana/
BHU3HAueHa [(QyHKIiA, 3a-
JlaHa/BU3HAYCHA HESBHO |:
a) OJTHUM PIBHSIHHSIM; 0)
CUCTEMOIO PIBHSIHb

[Ipupict aprymeHTy/QyHK-

HO€ JIByMs JaHHBIMU TOY-
KaMmH (OT TOYKU A 10 TOU-
Ku B)

Hanpasnenue nanHoro
BEKTOpA

IIpoBecTH cexyiyro uepes
TOUKY

DacTUYHOCTh
YpaBHEeHHE HOpMAJHU K
KPHBOM [K TOBEPXHOCTH |
(B maHHOM e€ TouKe)

YpaBHEHUE KacaTEIbHOU K
KpuBOH (B JaHHOU €€ Tou-
Ke)

VYpaBHeHUE KacaTeabHON
MJIOCKOCTHU K MOBEPXHOCTH
(B maHHOM e€ TouKe)
Ommbka, NOrpenHoCTb
Paznoxenue pyHKIuu ¢
noMoIbI0 popMyIibl Mak-
JopeHa

SIBHas QyHKIMS
KoneuHast npousBogHas
[Ipu pukcupoBaHHOM X (1)
1 y (X) B KauecTBe mepe-
MEHHOU

['eomeTpuueckuit CMbICTT

[TonyyaTh npupaiieHue

JlaBaTh aprymMeHTy Mpu-
parieHue

I'paguent

Marpuna I'ecce

HesiBHas ¢pyHkuums
HesBuas ¢ynkiis, 3anan-
Hasi/onpenenénnas [(pyHk-
11151, 3aJ]aHHas/onpe1eNEH-
Hasl HESABHO|: @) OJHUM
ypaBHEHUEM; 0) CUCTEMOi
ypaBHEHUH

[Ipupaienue aprymenTa/



ment [of a flnction] at a
point
52.Infinite derivative

53.Intérior/inner flnction
54.Intermédiate drgument

55.Interséct [cut, cross]
smth

56.Interséct [cut, inter-
cross, meet] at a pdint
57.Interséct [cut, interc-
ross, meet] with smth
58.Interséction [intersect-
tion, concurrence, Cross,
crossing, intercept, meet]
of smth with smth
59.Interséction/cross
point, point of intersect-
tion

60.Invariant property,
property of invariance of
the form of a differéntial
61.Invérse function
62.Left [left-hand] deriva-
tive, derivative on/from
the left

63.Left [left-hand] tan-
gent (line)

64.Limit of the ratio of the
increment of the finction
to corresponding incre-
ment of the &rgument
when/as the latter tends to
[approaches] nought/zéro
65.Limiting position of the
sécant, tangent (line)
66.Logarithmic derivative

67.Logarithmic diffentia-
tion, diffentidtion by mé-
ans of taking the loga-
rithm

68.Maclaurin(‘s) féormula

1ii (B TOYII)
Heckinuenna moxigHa

Buytpimasa ¢yHKiis
[IpoMixkHMIA apryMEHT

Ilepetunaru woco
[lepeTuHaTuCs B TOULI
Ilepetunarucs 3 uumco

HepeTI/IH 4020Cb 3 HUMCDH

Touka nepeTuHy

BrnacTtuBicTh iHBapiaHT-
HOCT1 popMu qudepeHiia-
na

O6epHena QyHKIIis

JliBa mmoximHa

JIiBa motuuHa

['panuig BiTHOIIEHHS
npupocTy PyHKIT A0 Bij-
MOBIAHOTO MPUPOCTY apry-
MEHTY MpHU NpsIMyBaHH1
OCTaHHbBOTO JI0 HYJIS

['panndHe MOMOXKEHHS C14-
HO1, TOTUYHA
Jlorapudmiyna noximgHa

HudepeniitoBaHHs 3a J10-
MOMOT010 AU(EPEHIII0-

BaHH:A

®opmyna Maknopena
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¢byHKUIMHU (B TOUKE)

beckoneunas npousBon-
Hasl

BuyTtpennsist pyHKuus
IIpomexyTOUHBIN apry-
MEHT

Ilepecexaty umo-mo

ITepecekatbcs B TOUKE
Ilepecekatbes ¢ uem-mo

Ilepeceuenue ueco-mo c
yem-mo

Touxka MMEPCCCUCHUA

CBOWCTBO MHBAPUAHTHO-
cTi popMbl 1P depeH--
nuana

OO6patHas QyHKIUSA
JleBas npousBoaHAs

JleBasa xacareibHasa

IIpenen oTHOLIEHUS IIpU-
pamieHust GyHKIUHU K CO-
OTBETCTBYIOIIEMY IIPHpa-
LIEHUIO apTryMEHTa MpU
CTPEMJIEHUU MTOCIEAHETO K
HYJIIO

[IpenenbHOE MOJIOKEHNE
CEKyILIEH, KacaTelibHast
Jlorapudpmuyeckas npouns-
BOJHAs
HudbdepennmpoBanue npu
MOMOIIH JorapupmMupoBa-
HUS

®opmyna Maknopena
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69.Mechanical sense/méa-
ning/significance (of a de-
rivative/differéntial)
70.Mixed partial derivati-
ve

71.Noérmal (line) to a cur-
ve at a given pdint
72.Note [mark (off), trace,
outline] (critical) pdints on
the axis and get [obtain,
derive] séveral/some inter-
vals

73.n-th (order) derivative,
derivative of the n-th order
74.n-th (order) different-
tial, diferéntial of the n-th
order

75.n-th (order) partial de-
rivative, partial derivative
of the n-th order
76.Parameter

77.Partial derivative of
the first [second, third,
higher] order; first-[se-
cond-, third-, higher] order
partial derivative; first
[second, third, higher] par-
tial derivative

78.Partial derivative with
respecttox, y, ...
79.Partial differéntial with
respecttox, y, ...
80.Partial increment with
respecttox, y, ...

81.Pass through the point
82.Physical sense/méaning
/significance

83.Point of tAngency/con-
tact, tangency/contact/ad-
hérent point
84.Principal/dominant
linear part of the incre-
ment of a finction
85.Rélative érror

Mexaniunuii ceHc (moxiz-
HOT/AudepeHiiiana)

Mimrana 4acTHHHA OXI1I-
Ha

Hopmais 1o xpuBoi B na-
HIA TOYIl

Bigknactu, BIAIMITUTH, Ha-
HeCTU (KpUTHYHI) TOUKH
Ha OC1 i OTpUMATH JI€KLIb-
Ka IHTepBaJiB

[ToximHa n-rO MOPAAKY

Hudepentiian n-ro nopsa-
Ky

YacTuHHA MOX1AHA 1-TO
MOPSIAKY

ITapametp

YacTtuHHA MOXiAHA Tep-
1I0T0 [ApYroro, TpETHOrO,
BUILIOTO| TOPSIAKY

YacTuHHa MoxijHa 1o X, ),

Yactunauii nudepenuian
o x, Yy, ...
YacTUHHMI TPUPICT 1O X,

Vo
IIpoxoauTtu yepe3 TOUKy

®di3uyHMl CEHC

Touka 1OTUKY

I"'onoBHa JTiHIMiHA YacTHHA
IpUPOCTY PYHKITIT

BinHocHa moxubka

MexaHu4YeCcKui CMBICI
(mpowusBogHOI/ MU Pepen-
1aa)

CwmemanHas yacTHasi Ipo-
W3BOJIHAS

Hopmais k KpuBOU B 1aH-
HOU TOYKE

OTHOXNUTh, OTMETUTH, Ha-
HECTH (KpUTHUYECKHUE) TOYU-
KM Ha OCH U MOJIy4YHTh HeE-
CKOJIBKO UHTEPBAJIOB

[IpousBoaHast n-ro nopsi-
Ka

Huddepenuunan n-ro no-
psaKa

YacTHas npousBoHAsA 1-
ro MopsaKa

ITapametp

YacTHas npou3BoaHAS
IIEPBOTO [BTOPOTO, TPETHE-
0, BBICILIETO | MOPsIAKA

YacrtHas nmpousBoAHas 110
Xy Yy e

Yactubiit auddepenumat
o x, Yy, ...

YacTHOE npupaleHue 1no
Xy Yy ..

IIpoxoaute yepes TOUKy
PU3NYECKUN CMBICI

Touka kacaHus
I';1aBHAg MuHEWHAd YacTh
npupaiieHus: GyHKIuu

OTHOCHUTENILHAS nmorpeuni-



86.Relative increment

87.Remainder (term)
88.Répresént (for example
a curve)
89.Representation (for
example of a curve)
90.Right [right-hand] tan-
gent

91.Sécant

92.Spécify [répresént, de-
fine, detérmine] (a finc-
tion/curve) explicitly, by
an explicite equation, im-
plicitly, by an implicite
equation, paramétrically,
by paramétric equations,
in polar coordinates, by a
polar equation
93.Subno6rmal
94.Subtangent

95.Table of the derivatives
96.Tangency/contact
97.Tangent [contact, be
tangent to, touch | smth
98.Tangent (line)
99.Téangent (line) to a
curve at a given point

100. Taylor(‘s) formula
101. To be approximate-
ly équal [to approximate]
(to)

102. Total [exact, ordina-
ry, pérfect] differéntial
103. Tétal derivative of a
composite fiinction

104. Toétal increment

BinnocHuit mpupict

3aNUIIKOBUN YJI€H
3o00paxkatu/300pazuTu
(Hanp. xpuUBY)
3o00pakeHHs (Hanp. KpH-
BOi)

IIpaBa notuyHa

Ciyna

3anaBatu/3anaTi (PyHK-
1110, KPUBY) SIBHO, SIBHUM
PIBHSIHHSIM, HESIBHO, HESIB-
HUM PIBHSIHAM, ITapaMeT-
PUYHO, TapaMETPUYHUMU
PIBHSIHSIMH, PIBHSTHSAM B
MOJIAPHUX KOOpAMHATAX,
MOJISPHUM PIBHSHHSIM

[TintHOpM™Manb
[lignornuna
Tabauid MOX1IHUX
Jlotnk

JloTukatucs wozoco

JlotTnuna

JloTnuHa 10 KpUBOI B J1a-
HIA TOYIl

®opmyna Tenmopa
Ha6mxeHo nopiBHIOBATH

[ToBHu# audepeniian
IToBHa mOX1gHA CKJIAIEHOT

byHKITIi
[ToBHU# mpupict
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HOCTb
OTHOCHUTENBHOE TpUpaIe-
HUE

OcTaTouHbIN YiIeH
N306paxkaTb/n300pa3uth
(Hanp. KpUBYIO)
N3o6paxxenue (Hanp.,
KpUBOH)

IIpaBas kacarenbHas

Cexymas

3anaBaTb/3a1aTh (QyHK-
IIUI0, KPUBYIO) SIBHO, SIB-
HBIM ypaBHEHHEM, HESIBHO,
HESIBHBIM ypaBHEHUEM, T1a-
paMeTpuYecKH, mapameT-
PUYECKUMU ypaBHEHUSIMH,
ypaBHEHUEM B TOJISIPHBIX
KOOpAWHATAX, MOJSIPHBIM
ypaBHEHUEM

ITogHOpM™MAanb
ITonkacarenbHas

Tabnuia Tporu3BOIHBIX
Kacanue

Kacarbcst ueco-mo

Kacarenpnas
KacarenpHas kK KpuBOi B
JTAHHOM TOYKE

®opmyna Tenopa
[TpuOnuxEHHO paBHATHCS

[Monueit nuddepenman
[lonnast mpon3BogHAs

CJIOXHOU (PYHKITUU
[TonHoe npuparieHue



APPLICATIONS OF DIFFERENTIAL CALCULUS

LECTURE NO.17. INVESTIGATION OF FUNCTIONS
OF ONE VARIABLE

POINT 1. CONDITIONS OF INCREASE AND DECREASE

POINT 2. LOCAL EXTREMA

POINT 3. ABSOLUTE EXTREMA

POINT 4. CONVEXITY, CONCAVITY, INFLEXION POINTS

POINT 5. ASYMPTOTES

POINT 6. GENERAL SCHEME FOR INVESTIGATION OF FUNCTIONS
POINT 7. EXTREMAL PROBLEMS

POINT 1. CONDITIONS OF INCREASE AND DECREASE

Theorem 1 (necessary condition of increase of a function). If a differentiable
function of one variable y = f(x) increases on an interval (a, b), then its derivative is
nonnegative one on this interval.

mlet a function y = f (x) increases on the interval (a, b), x is an arbitrary point
of the interval and an increment Ax of the argument x is
so small that a point x + Ax lies on (a, b) (fig. 1). If the
increment Ax > 0, that is x < x + Ax < b, then the incre-
ment of the function at the point x is positive,

a xax X ArAXE Af (x) = flx+Ax)= £ (x)> 0,
Fig. 1 and so Af(x)/Ax>0.1f Ax <0, thatis a <x+Ax < x,

then the increment of the function at the point x is negative,
Af (x)= fla+Ax)= f(x) <0,
and so Af(x)/Ax > 0. Thus in both cases (Ax >0 and Ax < 0) the ratio Af(x)/Ax is

positive. By virtue of the limit theory the derivative of the function at the point x is

non-negative, that is
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£'(x)= lim y) >0m

Ax—0  Ax
Note 1. By analogy the inequality f '(x) <0 on the interval (a, b) is the neces-
sary condition for décrease of a function y = f (x) on (a, b).
Theorem 2 (sufficient condition of increase of a function). If f'(x) >0 on an
interval (a, b) then the function y = f (x) increases on (a, b).

mLet /'(x) > 0 on the interval (a, b) and x,,x, be two arbi-

& % T 8 X trary points of (a, b) such that x, < x, (fig. 2). By Lagrange theo-

Fig. 2 rem there exists a point ¢ € (x1 ,xz) such that
fx,)- f(x,)= f'(c)x, —x,)> 0 because of f'(c)>0, x, —x, >0.
Therefore f(x,)< f(x,) that is the function y = f(x) increases on (a, b)m
Note 2. By analogy the inequality f '(x) < 0 on the interval (a, b) is sufficient
condition for décrease of a function y = f (x) on (a, b).

Ex. 1. Prove that a function represented implicitly by an equation of an ellipse

x2 y2
—+==1
a’> b°

decreases in the first quadrant.

Solution. By the rule of differentiation of implicit function

' 2
yy _ X ' b x
= =-—,y'=———<0forx>0,y>0.

2x 2y
— T b2 27
a a’y

2 2
a b

=0,

Ex. 2. Prove that implicit functions represented by canonical equations of a hy-

perbola and a parabola

2y
S T = 1, y = 2px
a” b
increase in the first quadrant.
POINT 2. LOCAL EXTREMA

Def.1. A point x, is called a point of a local maximum of a function y = f (x)
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if there exists some neighbourhood U, of x, (onthe fig.3 U, = (m,n)) such that

forany xeU, =U, \ {x,} the inequality

S(x)< f(xg)or Af (xg) = £(x)= ()< 0
holds. The value of the function at the point x,, that is
£(x,), is called a local maximum of the function.

By analogous way a point of a local minimum

[

l

I
r.
rn

|

l

|

I
-
e and a local minimum of a function are defined (points

Fig. 3 X,,x, on the fig. 3 and corresponding values f (x1 ),
f(x,) of the function).

The terms a local maximum and a local minimum are united by the common
term a local extremum.

Theorem 3 (necessary condition for existence of a local extremum). If a func-
tion y = f (x) has a local extremum at a point x, then f'(x,)=0 or f'(x,) doesn’t
exist.

Correctness of the theorem follows from Fermat theorem.

Def. 2. A point x, € D(f) of the domain of definition D(f) of a function f (x)
is called its critical point if f'(x,)=0 or f'(x,) doesn’t exist.

In particular

Def. 3. A point x, is called a stationary point of a function y = f (x) if its de-
rivative at this point equals zero: f'(x,)=0.

Note 3. It follows from the theorem 3 that a function can take on a local extre-
mum only at its critical point. But a critical point is not necessary a point of a local
extremum, that is the necessary condition for existing of a local extremum isn’t that
sufficient.

Ex. 3. The point x =0 is a critical one (namely a stationary one) for a function
flx)=x> (f'(x)=3x*, f'(0)=0) but it isn’t a point of a local extremum because of
f(x)< £(0)=0if x<0 and f(x)> £(0)=0 if x>0.
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Theorem 4 (the first sufficient condition for

existence of a local maximum). If a function f(x) is

V4 el x continuous at its critical point x,, f'(x) >0 in an in-

[ x, T terval (a,x,), f'(x) <0 inaninterval (x,,b) (fig. 4),
Fig. 4 then the function has a local maximum at the point x,.
mProving follows from the theorem 2 and the Note 2: the function y = f (x) in-
creases in the interval (a,x,), decreases in the interval (x,,0) and it’s continuous at
the point x,m
Note 4. One can get the sufficient condition for existence of a local minimum
substituting the inequalities of the theorem 4 by the next: f'(x) <0 in an interval
(a,x,), f'(x)>0 in an interval (x,,b). A function represented on the figure 5 has a

local minimum at the point b.
Theorem 5 (the second sufficient condition for existence of a local extremum

at the stationary point). Let a function y = f (x) be continuous at a stationary point x,
(definition 3) and f”(x,) # 0. The point x, is that of a local maximum if f"(x,) <0
and a local minimum if f"(x,) > 0.

mLet for example

f”(xo): lim f (xo +A)C)—f (XO) = lim f (xo +Ax) <0.
Ax—0 Ax Ax—0 Ax
It follows from the theory of limits that
f'(xo + Ax) <0
Ax

for sufficiently small Ax. It means that f”(x, + Ax)> 0 for Ax <0Oand f”(x, + Ax)<0
for Ax > 0. So the function increases from the left of the point x, and decreases from
its right. Being continuous at the point x, the function takes on a local maximum at
this pointm

Note 5. It follows from the theory of limits that if some function @(x) is conti-

nuous at a point a ( lim ¢(x) =¢(a)) and takes on positive value at this point, then
Ax—a
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the function is positive in certain neighbourhood of the point a.
mOn the base of the Note 5 we can prove the theorem 5 in additional suppose-

tions of existence of the second derivative of the function y = f (x) in some neigh-
bourhood U, , of the point x, and of its continuity at this point.
Let f"(x,) <0. By virtue of the Note 5 we have f"(x)< 0 in some other neigh-

bourhood U, , of the pointx,. By Taylor formula the increment of the function at

the point x, can be written, in the commonpart U, =U, . UU, . of U, and U
p 0] p X 1,xq 2,xg L,xg

2,X0 5
as follows

A ()= ()4 .2 £(0)= £ JAx - F (AR = f(c)aw
(f'(x,)=0, £"(c)<0). It means that Af(x,) has the sign of f"(c) namely is negative
in U, . Therefore

Af (xg)= f(xg +Ax)= f(xg) <0, f(xy +Ax)< f(xp),

and the function has local maximum at the point x,m

Ex. 4. Find intervals of increase, decrease and

+ &fﬂ ?/){ @ local extrema of the function

NN

Solution. The domain of definition of the fun-

%’

is

Fig.5 ction is R = (—oo,+o0). Its derivative equals
S1(x)=@x) - (x=6)+x - (x—6) =
1 4x—6
= (x-6)+ix = ;
3Vax? 3Vx?

f'(x)=0 for x=3/2, f'(x) doesn’t exist at the point x = 0

and so the points x =0, x =3/2 are those critical of the func-

tion. We find the intervals of constant sign of the derivative
by the interval method (fig. 5). The distribution of signs shows that the function in-

creases on the interval (3/2,o0) and decreases on the interval (—o0,3/2). It has a local
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minimum at the point x =3/2 which equals

Vo = f(3/2)=-9/24/3/2 = -5.15.
Remark. The function y = f(x)= /x(x—6) is positive on (—0,0)U(6,0), ne-

gative on (O, 6), its limit on + oo equals +oo. Approximate graph of the function is

represented on the fig. 6. It passes through the points O(0; 0), 4(6; 0), 8(3/ 2;%@} .

POINT 3. ABSOLUTE EXTREMA

Let a function y = f(x) is continuous on a segment

—d—

-~
~X

[a, b]. By virtue of the theorem 4 of the lecture No. 11 it ta-

kes on the least m and the greatest M values on [a, b] that is

s f/g] there are points x, € [a, b], X, € [a, b] such that
. x _ x
Fig. 7 Sx)=m=min f(x), /(x;) =M =max/(x)

3

Numbers m, M are called absolute extrema of the function y = f(x) on the
segment [a, b]. It’s necessary to find m, M .

Solving the problem of finding m, M we take into account that at least one of
the points x,, x, can lie inside the segment or can be an end point of the segment. In

the first case by Fermat theorem the derivative at such the point equals zero or does-
n’t exist. For example a function represented by the fig. 7 takes on the least value m
at the inner point x, (and f '(x1 ) = 0) and the greatest value M at the end point a (that
s x, =a).

On the base of these remarks we can state the next

Rule. To find the greatest and the least values (absolute extrema) of a function
which is continuous on a segment it’s sufficient to do as follows:

1. To find all inner critical points of the function (that is critical points which

lie inside the segment).
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2. To calculate the values of the function at all these points and at the end po-
ints of the segment.

3. To choose the greatest and the least of these values.

Ex. 5. Find absolute extrema of the function f(x)= ?{/;(x —6) on the segment
[-1,4].

Solution. The function has two critical points x = 0,x =3/2 (see example 2)

which are those interior. The values of the function at these points and at the points

x =-1, x =4 are equal to
£0)=0,73/2)=-933/2/2~-5.15, f(-1)=7, f(4) = 234 ~ 3.17.
Therefore mz[rgi?]f( x)=f(3/2)=-9/2-3/3/2 ~ -5.15,M = maxf( )= f(-1)=17.

POINT 4. CONVEXITY, CONCAVITY, INFLEXION POINTS

Def. 4. A curve L is called convex one if it lies below a tangent to L at any its
point M(x;y) (fig. 8 a).

Def. 5. A curve L is called concave one if it lies above a tangent to L at any its
point M(x;y) (fig. 8 b).

Def. 6. A point M (x,;,) is called inflexion point of a curve L if it separates

the parts of convexity and concavity of the curve (fig. 8 c).
Theorem 6 (sufficient condition of convexity of a graph of a function). If the

second derivative f"(x) <0 on an interval (a,b) then the graph of the function f (x)

1s convex one over this interval.
a) ¢ ¢/
Mg L7 -
2 ; )
7 X4 , M (2, )

Fig. 8
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function y = f(x), M,N be the tangent to the graph which
equa-tion is y = yyn, = f (xo)+ f"(xo Xx—x, ). To prove con-
™ vexity of the graph in the case f"(x) <0 we must prove that
™ for any x € (a,b) BM —BN = f(x)=yq, <0 (fig. 9). We'll

do it in supposition x, < x. Applying two times Lagrange

X, ¢ & X
theorem we
Fig. 9 get
S0 = Viang = S 06)= 1 (xg) = 1o Nox = x0) = £ (e Ne =9 )= f (oo e = x0 ) =
=(f"(c;)= (o Nx=x4) = £"(c, N, = x4 Nx = X, ), where x, < ¢, < ¢;.

By virtue of "(c,)<0, (¢, —x, \x—x,)>0 we have f(x)=y,, <Om

Note 6. Sufficient condition of concavity of the graph of a function y = f(x) is
f"(x)>0.

Note 7. Convexity of the graph of a function y = f(x) in some neighbourhood

of a point x, in condition f"(x) <0 can be proved with the help of Taylor formula

for n =1. Indeed,

f(x)= flx)+ f’(xo)(x—xo)+%f”(c)(x—xo)z, ¢ & (xp,%)

1

f(x):ytang +%fﬂ(c)(x_x0)29 f(x)_ytang ZE!fH(C)(X—XO)Z <0.

Theorem 7 (necessary condition of existing of an inflexion point). If some po-
int M,(x,;,) is an inflexion point of a graph of a function y = f(x) and the first de-
rivative f”(x) of the function is continuous in some neighbourhood of the point x,,
then f"(x,)=0 or f"(x,) doesn’t exist.

Theorem 8 (sufficient condition for existing of inflexion point). Let: a) a func-

tion y = f(x) is continuous at a point x,; b) f"(x,)=0 or f"(x,) doesn’t exist;
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c) f"(x)<0 (or f"(x)>0) for x <x,;d) f"(x)>0 (corresp. f"(x) <0) for x > x,,.

In these conditions the point M (x,;y, ) is inflexion one of the graph of the function.

mCorrectness of the theorem is simple corollary of the theorem 6m

Y . ﬂ Ex. 6. Investigate the function y = lx4 —2x” and plot
NN 4
¢ e ¢ 2% * its graph.
2 ¥ ? ) . . . .
- /N/:\“*./ 4o Solution. 1) Domain of definition of the function is the

-2 0 2
J Y\ ! set of all reals [of all real numbers] D(y)=9R.
~s—37 |
Y Y xi 2) The function is positive on (— 00,-2~/2 )U (2\/5,00)
Fig. 10 and negative on (— Zﬁ,O)U (0,2\/3) (see fig. 10 a).

3) The graph of the function passes through the points A(Z\/E ; 0), B(— 242; 0),
0(0; 0).

4) lim y = lim (lx4—2x2j: lim L x* = 4oo.

x—>+o0 x—two\ 4 x>t 4
5) y' = x> —dx = x(x+2)(x—2); y'=0if x=0, x =-2,x =2. The derivative is

e positive on (-2, 0)U(2,+0) and negative on (-0, —2)U(0, 2)
\5 4 /2 /;J (fig. 10 b). Therefore the function increases on (— 2, O)U(2,+oo),

Sk *| decreases on (o0, —2)U(0, 2), has a local minimum — 4 at the

points x =*2, a local maximum 0 at the point x =0. Its graph

k passes through the points C(2;—4), D(-2;-4), 0(0;0).

Fig. 11 6) y"=3x"—4,y"=0if x = J_rZ/\/g. The second deriva-
tive 1s positive on the set (— 00,— 2/ V3 )U (2/ J3 ,+oo) and negative on the interval
(— 2/ V3, 2/ J3 ) The graph of the function is concave over the union of intervals
(— 00,— 2/ V3 )U (2/ J3 ,+oo), convex over the interval (— 2/ J3 , 2/ J3 ) (fig. 10 ¢), it has

two inflexion points, namely E(Z/\/g;— 20/9) and F(— 2/\/5;— 20/9).
The graph of the function is represented on the fig. 11.
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Ex. 7. Investigate for convexity and concavity the graph of the function which
we’ve studied in Ex. 4, that is of the function y = f (x) = {/;(x —-6).
4(x + 3)

=, "=0if x=-3, y"doesn'texistif x=0. y" >0 on

Solution. y" =
9x3/ x

(—o0,-3)U(0,+), y" < 0 on the interval (~3,0). So the graph of the function is con-

vex over (—3,0), concave over (—o0,-3)U(0,40) and has two inflection points name-
ly 0(0;0).C(-3;93/3).

2 2
1, the hyperbola x_z —y—z =1
a” b

Ex. 8. Prove convexity of the ellipse x_ + Z—Z =
a’
and the parabola y2 = 2 px in upper half-plane (for y > 0).

2

X
-— (see Ex. 1). The second

Solution. In the case of the ellipse we have y' = —

derivative
b3x 52 2
y_x- —_—— 7+y7
. b b2 (azyj bt 2 2 bt 1
y== Y- 2y =—— - :__2.%:——2-—3<0f0ry>0.
a y a y a y a 'y

Consider two other cases yourselves.

POINT 5. ASYMPTOTES

Def. 7. Let a current point M (x; y) of a curve L retire in the infinity and si-

multaneously approache some straight line /. This straight line / is called an asymp-
tote of the curve L (fig. 12).
We’ll deal with asymptotes of the graphs of functions. One distinguishes three

types of asymptotes namely those vertical, horizontal and oblique.
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! M% 1) If a function y = f(x) 1s in-
N finitely large for x tending to a point
¢ a(x—>aorx—>a—-0,or x >a+0)
A x ‘ then the straight line
* < x x=a (1)
Fig. 12 Fig. 13 is the vertical asymptote of its graph
(fig. 13).

Ex. 9. Graphs of functions In x, tan x have correspondingly the vertical asympto-

tes x=0,x=7/2+m(ne ») because of

Inx > -w0if x>0+0,

) T
tanx‘—>+oo1fx—>5+7zn.

2) If there exists a finite limit lim f(x)=b(lim f(x)=5)then a straight line

X—>+00
y=b (2)
is the horizontal asymptote for the right part (corresp. for the left part) of the graph

of the function.

Ex. 10. Left parts of the graphs of the functions y =¢* and y =a” fora >1 ha-

ve the horizontal asymptote y =0 (Ox — axis) because of lim e¢* =0, lim a* =0. On

X—>—00 X—>—00

the contrary for 0 < a <1 the horizontal asymptote y =0 possesses the right part of

the graph of the function y = a” because of in this case lim a* =0.

X—>+00

3) Equation of an oblique asymptote of the graph of a function y = f (x) we
find in the next form
y=kx+b (3)
with unknown £, b.

For the right part of the graph we must have (see fig. 12)
NM —0or f(x)—kx—b—0if x — +o0.

Dividing by x we have in addition
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@—k—é—>01fx—>+oo
X X

and therefore

k= lim @, b= lim (f(x)- k). (4)

X—>+00 X X—>+00
Oblique asymptote of the left part of the graph one seeks in the form (3) but

finds parameters k, b by the formulas

k= lim @, b= lim (f(x)—kx) (5)
X—>—0 X X—>=0

If at least one of limits (4), (5) is infinite or doesn’t exist then corresponding

asymptote doesn’t exist.

3

Ex. 11. Find asymptotes of the graph of the function y = 2x 5"
N

Solution. Straight lines x =—3, x =3 are vertical asymptotes because of y — «

for x » #3. To find an oblique asymptote y = kx+b we get

2 2
k= lim 23 = fim = lim  =1; k=1,
x>t x x—>to x© — 0 x—to0
x? 9x X
b= lim (f(x)—kx)= lim (— —x)= lim — =9 lim —=0; b=0
Xx—>t00 x—>to xy< -0 x—>to x© — 0 X% x

Answer: both parts of the graph have the same oblique asymptote y = x.
Ex. 12. Graph of the function f (x) = 3arctan x — x hasn’t vertical asymptote

but its left and right sides have different oblique asymptotes. Indeed

k= tim %) fim (3M—1j:0—1:—1;

x—>too X X—>*o X

b=bg = xl_i)n}oo(f(x)— k)= lim (3arctan x —x —(~1)x)= lim 3arctanx = —377[;

x—>—0 xX—>—0

b=bygy = xl_i)ngoo( f(x)—kx)= xl_i)ngoo(?a arctan x — x — (= 1)x) = xl_i>n+100 Jarctanx = 377[
R4 RY/4 . :
Answer. y=—x— EX y=—x+ EY for the left and the right sides correspon-

dingly.
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POINT 6. GENERAL SCHEME FOR INVESTIGATION OF FUNCTIONS

Investigation of a function and plotting its graph can be often fulfill by the next
general scheme.

I. The first part. Preliminary sketch of the graph of a function.

1. Determination the domain of definition and continuity of the function, fi-
xing the points of infinite discontinuity and corresponding vertical asymptotes.

2. Determination intervals of constant sign of the function that is intervals
where it is positive or negative.

3. Evaluation the left-hand and right-hand limits of the function at the points of
infinite discontinuity.

4. Finding intersection points of the graph with coordinate axes.

5. Finding limits of the function as x — oo, fixing eventual horizontal asymp-
totes and their intersection points with the graph.

6. Determination oblique asymptotes of the graph in the case of infinite limit
of the function on —oo or + oo and their intersection points with the graph.

It’s useful (as the rule from the beginning) to bring to light the next two ques-
tions.

7. Whether the function is even or odd one. Evenness or oddness of the func-
tion means symmetry of its graph with respect to the Oy-axis or the origin of coordi-
nates respectively and permits to regard the function only in the interval [0,0).

8. Whether the function is periodic or non-periodic one. Periodicity of the fun-
ction permits to graph it only on some one period.

9. Tracing a preliminary sketch of the graph with the help of results of prece-
ding study.

I1. The second part. Investigation of the function for monotonicity and local

extrema (with the help of the first derivative y’'= f'(x)) and as result the first correc-

tion of the preliminary draft of the graph.



121

I11. The third part. Investigation of functions for convexity, concavity, infle-
xion points (with the help of the second derivative y" = f”"(x)). Second correction of
the graph.

IV. The fourth part. Final plotting the graph of the function.

Ex. 13. Investigate and graph a function

3

= X
x2-9

I. The first part.

1. The function is defined and continuous for all values x # +3 . The domain
of its definition and continuity is the union of the intervals (—o0,~3)U(=3,3)U(3,).
Points x = +3 are those of infinite discontinuity of the function and the straight lines

x =23 are the vertical asymptotes of its graph.
2. Obviously

B
T e NG,

Therefore the function is odd one and its graph is symmetric with respect to the origin

M/f otr///:r/ of coordinates. It’s sufficient to investigate the function

5 3 x only in the interval [0,c0).

Fig 14 3. Determination intervals of constant sign of the
function.
The function equals zero for x =0, it doesn’t exist for x = 3. By the interval

method we ascertain that the function is positive in the interval (3,00) and negative in
the interval (0,3) (fig. 14).
4. Evaluation the left-hand and right-hand limits of the function at the point

x =3 corresponding to vertical asymptote. We have

f(3-0)= lim f(x)=—00, f(3+0)= lim f(x)=+o

x—3+0
because the function is negative from the left of the point x =3 and positive on its

right.
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5. There exists unique cross point of the graph with coordinate axes. It’s the
origin of coordinates 0(0:0).

6. Limit of the function on + o0,

3 3

lim f(x)= lim —— = lim == = lim x = +o0.

X—>+0 x40 x° — 0 x40 X—>+00

It follows that it’s necessary to find out oblique asymptote of the graph.
7. We seek an oblique asymptote of (the right part of) the graph in the form

y=hkx+b
getting
2
k= tim 7 fim =1,
X—>+o X x40 x4 — 0

b)) i [ 1) 2o
Thus (the right part of) the graph of the function possesses the
oblique asymptote of the equation

y=Xx.
8. To find out whether there are intersection points of

the graph with the oblique asymptote we must solve the sys-

tem of equations

3

e X
x> -9’
y=x,

Y]
)

It has unique solution (O, O) and so the asymptote y =x cros-

ses the graph of the function only at the origin O(O;O).
Fig. 15 9. Now we can plot preliminary (very approximate)
sketch of the graph (see for example fig. 15).
I1. The second part. Investigation the function for increase, décrease, local ex-
trema by means of the first-order derivaive.

10. Making use of the rule of diffentiation of a ratio we get
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_ ?))cz(x2 —9)—2x-x3 B xt = 27x? B xz(x2 —27)

(N ) S ey

7 ‘ " The derivative turns into zero for x =0,x = 34/3~5.2
¢ H9n @
T 7%/ (33 approximately equals 5.2). It doesn’t exist for

E

Fig. 16 x =3. The points 0, 3./3 are

those critical of the function. We seek intervals of constant sign

|
|
I
A
BIE%] x of the derivative using interval method and taking into account

the discontinuity point x =3 of the function. The derivative is

positive in the interval (3\/3 , oo) and negative in the intervals

(0,3) and (3,3\/3 ) (see fig. 16). It follows that the function in-
creases in the interval (3\/3 ,oo) and decreases in the intervals (0,3) and (3,3\/3 ) At

the point x = 343 it has a local minimum

Yun = /(343)= iﬂ ~1.8
(3v3) -9
Corresponding point of the graph is A(3\/§ 3 f (3\/5 )) :
11. We can do the first correction of preliminary sketch
Fig. 17 of the graph (see fig. 17).
III. The third part. Investigation the graph of the function for convexity, con-
cavity, finding inflexion points making use of the second-order derivative.
12. The second-order derivative of the function equals
()= 18x(x? + 37) |
b -9)

It vanishes at the point x =0 and doesn’t exist for x =3. It’s negative in the in-

R 3 terval (0,3) and positive in the interval (3,).
‘/’Wfﬂ 0; / / 7(/ Therefore its graph is convex one over the in-
b 3 jﬁ X terval (0,3) and concave over the interval (3,00).

Fig. 18 For x €(0,0) it doesn’t possess the inflexion
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points. But in view of its symmetry with respect to the origin the graph has single in-
flexion point namely the origin O(0,0).

13. The slope of the tangent to the graph at inflection point O(0,0) equals zero
because of f'(0)=0. Therefore the graph touches the Ox-axis at the point 0(0,0).

14. At will one may form a table of variation of the function using all results
(that is tabulate the results of done investigations).

Now we can fulfill the second correction of the graph and pass to final part.

IV. The fourth part. Final plotting the graph of the function (see fig. 19).

4 Ex. 14. Investigate and graph the function

8

A 2
B , y=e"

(this graph is called Gaussian curve).

o5 ‘ 0 | ' I. The first part.

1. Domain of definition and continuity of

the function is R = (— oo,+oo). Its graph hasn’t ver-

tical asymptotes.

2. The function is even one and therefore its

graph is symmetric with respect to the Oy -axis.
Fig. 19 We can investigate the function only over the in-
terval [0,400).
3. The function is positive for all x € [0,4+0).
4. The point A(O; 1) € Oy 1s unique common point of the graph with coordinate

axces.

5. lim f (x) = lim e =0 and therefore (the right part of ) the graph has the

xX—>+0 X—>+0

horizontal asymptote y =0 (Ox-axis). It doesn’t intersect this asymptote.
I1. The second part.
2

6. The first derivative of the function y'=-2xe™ =-2xy <0 for x €[0,400).

Hence the function decreases on the interval [0,+c0) and hasn’t local extrema.
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II1. The third part.
g

7. The second derivative of the function
y'= —2(y + xy') = —2(y + x(— 2xy)) = 2y(2x2 - 1).

It equals zero at the point x = l/ V2, s negative

Fig. 20 over the interval (0, l/ V2 ) and is positive over
the interval (1/ J2 ,+oo). The graph of the function is convex over the interval
(0, l/ V2 ), concave over the interval (1/ V2 ,+oo) and has an inflexion point for
X= l/ /2 that is the point

B/NZ; £(1V2)= B/NZ; 1/ Ve).
IV. The fourth part. Graph of the function is represented on the fig. 20.
Ex. 15. Investigate and graph the function
y =3arctanx —x.

I. The first part.

1. Domain of definition and continuity of the function is R = (- oo, +o0). Its
graph hasn’t vertical asymptotes.

2. f(~x)=3arctan(-x)—(— x)= —3arctan x + x = —(3arctan x — x) = — f(x).

The function is odd one and therefore its graph is symmetric with respect to the
origin of coordinates. We’ll investigate the function only on the interval [0,4c0).

3. It’s known one zero of the function on the interval [O,+oo), thatis x=0, and
the graph of the function passes through the origin O(O; O). We don’t know whether
there are other zeros and hence we can’t find intervals of fixed signs of the function
and intersection points of the graph with Ox-axis on (O,+oo).

4. We must seek oblique asymptote of the graph because of

lim f(x)= lim (3arctanx—x)=3 lim arctanx— lim x =37/2— lim x=—o0
X—>+00 X—>+00 X—>+0 X—>+00 X—>+00

5. Finding the equation of oblique asymptote in the form y =kx+b we get (see
Ex. 12)
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2

6. The graph of the function doesn’t intersect oblique asymptote because of
corresponding system of equations
y =3arctan x — x,

= x4+
Y 2

has no solutions.

7. Let’s plot a preliminary sketch of the graph in supposition that there aren’t
] d‘[ intersection points with Ox -axis distinct from the origin
0(0;0) (fig. 21).

I1. The second part. The first derivative of the

function equals

| 3? , 3 _1_2—x2
' 7 1+ x? 1+x2

Critical (stationary) point is x = 2. On the interval (0, V2 )

Fig. 21 y' >0, and the function increases. On the interval (\/E,+oo)

y' <0 and the function decreases. It means that the function has a lo-cal maximum at
the point x = 2 which equals y, .. = f(\/z): 3arctan~/2 —/2 #3-0.96-1.41~1.45

Corresponding point of the graph is A(\/E 3 f (\/E )) and therefore the graph crosses the

Ox -axis in some point with abscissa lying in the interval (\/E ,377[)

II1. The third part. The second deriva-tive of the function

- —2x(1+x2)—2x(2—x2): —6x <0

S (Y (1+2F
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¥ 4 * for any x >0, hence the
graph of the function is con-
vex on the interval (0,+00). It

has an inflexion point O(0; 0)

with the slope of the tangent
x f'(O) =2 at this point.

The fourth part. Final

graph of the function is repre-
sented on the fig. 22.

Fig. 22
POINT 7. EXTREMAL PROBLEMS

There are many word problems that ask for the maximum or minimum value of
a certain quantity. Solving such problems consists of the next tree parts.

A. Translation a problem to a purely mathematical one.

Typically, we can follow a three-step procedure:

(1) Drawing a picture with the quantities given in the problem and with as ma-
ny unknowns as we need.

(2) Finding an expression for the quantity to be maximized (or minimized).
This expression as usually involves two or more variables. Using the picture, we find
equations relating these variables to each other to eliminate all but one variable in the
expression in question.

(3) Notation any restrictions on this variable that are imposed by the problem.

Now the problem is entirely translated to a mathematical extremum problem.

* Usually the translation process is the most difficult task.

B. Solving a mathematical problem on extremum.

Suppose we find the maximum (or minimum) value of a differentiable function

£ (x) on a certain interval. We find its critical points on this interval. If there is only
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one such a point x = a and if f (x) has no vertical asymptotes, then it’s well to take
into account the following:

If the function has a local maximum (minimum) at this point, it is its absolute
maximum (minimum).

We study the function for a local extremum at the point x = @ by examining the
sign of the first derivative f”(x) on both sides of x = a or the sign of the second de-
rivative f"(a) at this point.

Instead investigation a function on a local extremum we often can seek the ab-
solute maximum (or minimum) of the function in question if we’ll define it as con-
tinuous one on some segment (bounded closed interval).

C. Answering the question asked in the problem.

Ex. 16. A cone with a slant height [a generator, a genera-trix, a ruling] / is to be
constructed. What is the largest possible volume of such a cone?

Solving. Let’s label the slant height AB =/, the height of the cone OB = H , the
radius of its base OA4 = R (fig. 23). The volume of the cone equals

V=1/32R*H
and depends on two variables R, H . But by Pythagorean
theorem we express R in terms of H from the triangle OAB,
R* =1*—H?*. So we get Vas a function only of one variable
H,
v = f(H)=1/3x(* - 1 )i =1/32(2H - H*),

where 0 < H < /. Putting f(0)= f(l)z 0 we define f(H) as
Fig. 23 continuous function on the segment [O, [ ] The problem in

question is translated to mathematical problem of finding the greatest value of this

function on this segment.
But f'(H)= 1/37r(l2 —3H2) f'(H)=0if I =3H* =0, whence H = 1/~/3;

FUIN3) =1/32(> =12 313 = 22°33 127> 0, £(0)= £(1)=0
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and therefore the maximal volume of the cone equals

Vnas = 1pax f (H) = 7/3)= 27 \3/27.

Note. We can not put f (O) =f (l ) =0 but prove that the point H =1/ / /3 is that
of local maximum of the function V = f(H)= 1/37[(12 - Hz)H = 1/37[(le - H3).
Indeed, its first derivative is positive of the interval (0, [ / J3 ) and negative on the in-
terval (l / V3,1 ) On the other hand the second derivative of the function at the point
Z/\/g is negative: f"(H)=-2rH, f”(l/\/g): 2 Z/\/g <0 . Because of uniqueness
of the critical point a local maximum of the function is that absolute.

Ex. 17. Find the dimensions of the rectangle of largest area that can be inscri-

bed in a circle of radius R.

Solution. Let (fig. 24) AB =x,BC =y, AC =2R. The

C" area of the inscribed rectangle ABCD equals

S=xy
and depends on two variables x and y. From the triangle ABC

by Pythagorean theorem

X0
A y=BC=+AC? - AB* =4R*> - x>,

Fig. 24 and

S=f(x)=xv4R* —x*,0<x < 2R.
We’ll define the function f(x)=S as continuous one on the segment [0, 2R] if we

put 7(0)= f(2R)=0 and we must find its greatest value on [0, 2R].

2 2
f'(x)=V4R*> —x* +x- —2x 4R~ 2x : f(x)=0 if x=R2;

AR —x*  J4AR? -
7(0)=£(2R)=0 and f(RN2)=RV2-\4R> —2R*> =2R> >0.
Thus the area in question takes on the largest value if

x=RN2,y=+4R*—x* =R\2

that is if the rectangle ABCD 1is a square with the length of its sides RA2.
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Note. Point x = R+/2 is that of local maximum of the function
S=f(x)=xV4R* —x*,0<x < 2R
(why?) which is unique one. Therefore a local maximum at this point is that absolute.
Ex. 18. Solve yourselves the next problem. A cylindrical can with a top and
bottom is constructed using S in® of tin. What is the largest volume such a can might
contain?

Ex. 19. One needs to transport a cargo along the path ABC (see fig. 25 where
AO L OC, AO =9 km, OC =15 km ). The expenses of transportation of the unit of a

cargo per unit of distance are in the ratio 5 : 4 along AB and BC correspondingly.
Where B must be situated the expenses to be least?

Solving. Let OB = x, then

A AB =81+ x>, BC=15—x,
and the expenses of transportation of 7
units of the cargo along AB and BC are
g equal respectively to
S, =SkT ~N81+x2, S, =4kT-(15-x),
0 % 9 3] € where k is some proportionality coeffici-
53 ent. So the function
Fig. 25 f(x)= Sip+ Spc =

=5kT -N81+ x> +4kT-(15-x),0< x <15,

gives the expenses along ABC and it’s required to find its minimum. The derivative

)T (5x— 481+ 7

—4kT = kT -

V81+ 22 V81+x2

For x =12 the function f(x)=S,, + S, reaches the minimum because of f'(x)<0

: f(x)=0if 5x— 4481+ x* =0, x =12.

4 for 0<x <12, f'(x)>0 for 12< x <15 and the critical

\ point is unique one.
N el 72 AN/
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Ex. 20. Inscribe the rectangle of the greatest area in a triangle with a base a and
an altitude % if one side of the rectangle lies on the base of the triangle.

Fig. 26 Solution. Let BC =a, AD=h, x=MQ, y = PQ
be the sides of the inscribed rectangle MNPQ (fig. 26). It follows from the similitude
of the triangles ABC, APQ that

PQ:BC=(h—x):h,y:a=(h—x):h,PQ=y=a/h-(h—x)
whence the area of the rectangle MNPQ is represented by the next function
S=f(x)=a/h-x(h—x),0<x<h.
Its derivative f"(x)=a/h-(h—2x) turns into zero for x = 4/2 which is a point of the
maximum of the function f(x) (why?).

Ex. 21. A ray of light travels from point 4 to point B, where 4 and B are in dif-
ferent media (fig. 27). Suppose that the common boundary of the two media is a
plane. Fermat's principle in optics states that the light will travel along the path for
which the time of travel is a minimum. Show that if v, and v, are the velocities of
light in media 1 and 2, respectively, then the light will travel a path that crosses the
boundary in accordance with Snell's law:

sinf, v,
sinf, v,

4('“ ” / where 6, and 0, are the angles noted in fig. 27.

)
N

In short words we have to prove that for a

J
| J;; 0
Medium 2 1,

| b
Fig. 27 and 2, respectively.

Solution. Let (fig. 27) A4, L A,B,, BB, L A, B,, A4, =a,BB, =b, 4B, =c and

1 to a point B of the medium 2 in shortest time

ol

=X rgl ﬁﬂ“"ﬂé’?? ray of light, to pass from a point 4 of the medium
|
|
'IE (see fig. 27), Snell’s law must be satisfied where

v, and v, are the velocities of light in media 1

x=A,0.Then OB, =c—x, AO=~a* +x*,0B =~/b* +(c—x)’ . If T is the time of

travel of a ray from 4 to B then



AO OB Aa*+x* b+ (c—x)2 , X c—X
T = + = + , I'=
Vi V2 V1 V)

ZL.M_L.OBI :i.sinel _L.Sinez = Sln@l _Sll’l@z =01f

sinf, v
vy AO v, OB v Vv, 12 Vv, sinf, v,

Obviously, this gives the minimum for 7.
Ex. 22. Prove that for x >0
In(1+x)< x
mLet’s introduce a function
f(x): ln(l +x)—x
with the domain of definition D(f)=(~1, + o) and investigate it for monotonicity
and local extrema.

_x .

flw=—

1+x B l+x’
f'(x)=0if x=0;f'(x)>0 on (~1,0), f'(x) <0on (0,4+c0).
It follows that the function

f(x): 1n(1+x)—x

132

vVa® +x? . v,/b* +(c—x)2 B

has a local maximum at the point x = 0 which equals £, = f(0)=In1—-0=0. The-

refore f(x)<0 for —1<x# 0 and so
1n(1+x)—x<0, ln(l+x)<x,

in particularly for x > 0.m

Ex. 23. Prove that
2xarctanx 2 ln(l +x? )
mFor a function
f(x) =2xarctanx — ln(l + xz)

we have

2 2 .
f'(x)=2arctan x + x2 — xz =2arctanx; f'(x)=0 if 2arctanx =0, x=0;
I+x% I+x

2

f"(0)=2>0.
I+x

f'(x)=

2 b
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Thus the function

f(x)=2xarctanx — ln(l + xz)
has the minimum at the point x =0, which equals f(0)=0, and so f(x)>0 for any
x that 1s
2xarctanx — ln(l +x° )2 0
and
2xarctanx > ln(l +x° ) n
Ex. 24. Prove yourselves that for x # 0

e" >1+x.

Ex. 25. Using the result of preceding example prove that for x > 0

2
X

e’ >1+x+—.
2

Solution. A function

2
X

flx)=e" —l—x—j
possesses the derivative
f(x)=e" -1-x
which equals zero at the point x = 0 and is positive for x # 0 because of Ex. 24. It

means that the function f(x) increases on its domain of definition. But f(0)=0 and
therefore f (x) > (0 for x >0 and so the inequality in question is fulfilled.

Ex. 26. Solve the equation x* +4x> +6x” +4x++/x”> +2x+37 =5.

Instructions. Represent the derivative of a function

Flx)=x*+4x" +6x7 + 4x+ /x> +2x +37

in the form

f(x)=(x+ 1)(4()6 1) + mJ

and prove that the function possesses a local (and an absolute) minimum 5 at the

point x =—1. As result you’ll get x =—1.



APPLICATIONS OF DIFFERENTIAL CALCULUS:

1. Absolute (extrémum,
minimum, maximum)

2. Angular péint of a do-
main [région]

3. Approach [tend to]
smth (about a point of a
graph/curve)

4. Approximate value

5. Ascend/rise (from left
to right) (about a graph,
about a curve)

6. Ascénding/rising (from
left to right) (about a
graph/curve)

7. Asstimed [proposal,
presupposed] extrémum
(pl extréma)

8. Asymptote (horizontal,
vértical, oblique/inclined)

9. Be [lie, be found, situa-
te, be situated]

10.Be [lie, be found, situa-
te, be situated] from/on
the right of smth

11.Be [lie, be found, situ-
ate, be situated] lower/be-
low/under of smth

12.Be [lie, be found, situa-
te, be situated] from/on the
left of smth

13.Be [lie, be found, situ-
ate, be situated] over/abo-
ve smth

14.Be situated [located,
disposed, arranged], be
15.Behavior (of a finc-
tion, curve)

16.Concave

17.Concave (graph, part/

basic terminology

AOGCOMIOTHHM (EKCTpEMyM,
MIHIMYM, MaKCUMYM)

KyrtoBa Touka oGmacTi

Hab6mmxatucs 1o yvozocs
(mpo Touky KpuBOi, rpadi-
Ka)

HaGnmxene 3HaueHHs
CxoauTu/migiimaTucs
(3:11Ba Hamparo) (Mpo rpa-
¢bIK, po KpUBY)
Bucxinnuii (311Ba Hamnpa-
BO)

[lepenbauyBaHu/MOXKIIH-
BHUM EKCTPEMYM

AcumnToTta (ropu30HTa-
JbHA, BEPTUKAJIbHA, TOXU-
7a)

3HaxXOAUTHCH, OyTH po3Ta-
IIOBAHUM

Jlexxatu cripaBa/mpaBopyd
BIJl 4020Cb

JlexxaTtt HUOKYE yo2och

Jlexxatu 31iBa/niBOpyY Bif
Y020Ch

Jlexxatu BUIlIE w020CH

PosmimtyBatucs, 6ytu
pPO3TalllOBaHUM
[loeninka (hyHKIil, KpH-
BOi)

YrHyTui

VYruyruii [yrayra] (rpa-

AGcomoTHBIN (IKCTpe-
MyM, MUHUMYM, MaKCH-
MyM)

VYrnoBast Touka 00acTu

[TpubnuxaTbcs K yemy-mo
(0 Touke KpuBOH, rpadu-
Ka)

[IpubnuxEnHoe 3HaUCHHE
Bocxoaute/mogaumarses
(cneBa HampaBo) (o rpadu-
K€, O KpUBOI1)
Bocxoasmumii, mogHuMaro-
uics (caeBa HalpaBo)

IIpeanonaraemslii [BO3-
MOXHBI | SKCTPEMYM

AcumnToTa (rOpU30HTAIb-
Hasl, BEpTUKaJIbHasI, HAK-
JIOHHAs)
HaxonuThcsi/pacmnonaraTh-
cs1, OBITh PACTIONIOKEHHBIM
JlexxaThb cripaBa om uezo-
aU60

JlexxaTb HUXE ueco-mo

Jlexxatb ciieBa om ueco-
aubo

Jlexxatn/ HaXOIHUTHCs BBILIC
yeco-mo

Pacnonaratecs, ObITh pac-
MTOJIO’KEHHBIM

[loBenenue (PpyHkiuwy,
KpUBOH)

Boruyrsiii

BoruyTslii [BoruyTas|
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piece of a graph, curve)

18.Concavity
19.Conditional (extré-
mum, minimum, maxi-
mum

20.Construct [plot, trace,
sketch] a ctrve, a graph
point by pdint
21.Construct [plot, trace,
sketch] a graph of a flinc-
tion, graph a function
22.Construction [const-
ricting, tracing] graph of
a finction [graphing a
finction]

23.Constraction a graph
point by pdint

24.Conveéx [convex|
25.Convéx [convex]
(graph, part/piece of a
graph, of a curve)
26.Convéxity
27.Correspond to the ex-
trémum (about a point of a
curve, of a graph)
28.Critical pdint
29.Cuspidal point
30.Decrease

31.Décrease
32.Decréasing/decay
33.Dependence (linear,
nonlinear/curvilinear, qua-
dratic, parabolic(al) etc)
between variables ...

34.Descénd/drop (from
left to right) (about a
graph, about a curve)
35.Descénding/dropping
(from left to right) (about
a graph, about a curve)
36.Design [draft, draw-
ing, fréehand/rough draw-

¢bik, yacTUHA/IUISTHKA Tpa-
¢bika, KpuBa)

YTHYTICT

YMoBHUH (EKCTpEMyM, Mi-
HIMYM, MaKCUMYM)

bynysatu, noGynyBatu
KpHUBY, Tpadik MO TOUKaX

bynysatu, noGynyBatu
rpadix pyHKIIT

[ToOynoBa rpadika ¢pyHK-
il

[ToOynoBa rpadika mo To-
YyKax

Onyxknui

Onyxnuii [onykia] (Tpa-
¢bik, yacTUHA/IUISTHKA Tpa-
¢bika, KpuBa)

OnykJicTh

Binnosinatu ekcrpeMymy
(mpo Touky KpuBOi, rpadi-
Ka

Kpurnuna Touka

Touxka 3B0poTYy

Cnanatun

Cnananus

Cnapnarounii

3anexHicTh (JTiHIAHA, HE-
JiHIHA, KBaJIpaTUYHa, Ta-
paboJiiuHa i m.iH.) MK
3MIHHUMM. . .

Cnanaru/onyckatucs/
cryckaTucs (311Ba Harpa-
BO) (1Ipo rpadik, KpUBY)
Husxinauit, Toi, 1mo omyc-
KaeTbed (3J11Ba HAMPaBo)

Ecki3 rpadika ¢pyHkuii

(rpaduk, yacTs/y4acTok
rpaduka, KpuBas)
Borunyrocts

VY cnoBHBIN (3KCTpEMYM,
MUHHUMYM, MAaKCUMYM)

CrtpouTth, IOCTPOUTH KPH-
BYIO, I'papuK 10 TOUKaM

Ctpoutb, MOCTPOUTH I'pa-
bux GyHKIIIN

[TocTpoenue rpaduka
byHKIIIH

[TocTpoenue rpaduka mo
TOYKaM

Breimykibii

BoInyKIibii [BBITyKJIas |
(rpaduk, yacTh/y4acToK
rpaduka, KpuBas)
BrinmykinocTs
CoO0TBETCTBOBATH IKCT-
pemymy (0 TOUKE KPUBOH,
rpaduka)

Kputnyeckas touka
Touka Bo3Bpara
YO6nIBaTH

YObIBaHuE

Y 6biBaromumii
3aBUCUMOCTH (JIMHEIHAS,
HeJIMHeHas, KBaipaTuie-
cKas, nmapabonauyeckas u
m.0.) MEXy NepeMEeHHbI-
MH. ..
Hucxonute/onyckatbes
(cneBa HarpaBo) (o rpa-
¢uke, 0 KpUBOiN)
Hucxopsammi, omyckato-
uiics (caeBa HapaBo)

Ocku3, Habpocok rpaduka
byHKIIIHN



ing, sketch, vérsion] of a
graph/plot of a finction
37.Design, drawing, figure
38.Disposition [situation,
location] (for example of a
line)

39.Draft [a:] , do a draft

40.Drawing, figure, draft
41.Drop/descénd (from
left to right) (about a
graph/curve)

42.Dropping/descénding
(from left to right) (about
a graph/curve)
43.Empiric(al) relation
[de-péndence,connéction,
corre-lation] (betwéen
variables ...)

44 Establish (a relation
[depéndence,connéction,
correlation] between varia-
bles ...)

45.Establish a condition
46.Exact design/drawing/
figure/draft

47.Existence

48.Existence condition,
condition of existence
49.Extrémum (p/ extréma)
of a function of one [two,
three, n, séveral] variables
(l6cal, rélative, absolute,
conditional)

50.Extrémum problem
51.Extrémum, pl extréma
(16cal, rélative, absolute/
global, conditional)

52.Find smth in the best
way

Pucynox
ITonoxeHHs, po3ramyBas-
H (Hanp. JNiHI1)

Pobutu pucyHox

Kpecnenns
Cnanaru/onyckatucs/
cryckaTHcs (311Ba Harpa-
BO) (11po rpadik, mpo Kpu-
BY)

Huzximauit [Toi, mo omy-
CKa€eThCs | (3711Ba HAMPABO)
(mpo rpadik, mpo KpUBY)
Emmipuune cmiBBiIHO-
HICHHSA [eMITipUuYHa
3aJIEKHICTh, EMITIPUYHUMA
3B"s130K] (MK 3MIHHUMHU )

YcranoButH (CniBBiIHO-
IIEHHS, 3B" 130K MK 3MIH-
HHUMH)

BcranoButu yMoBYy
TouHul pUCYHOK

IcuyBanHs
YMoBa icHyBaHHS

Excrpemym QyHkuii oaHi-
€1 [1BOX, TPHOX, 7, AEKLJIb-
KOX] 3MIHHUX (JIOKQJIbHUH,
BIJHOCHHI, a0COIIOTHHH,
YMOBHHI )

Excrpemarnbha 3amaua

Excrpemym™m (J0KanbHUM,
BIJJTHOCHHMI, a0COJIFOTHUM
/rno6anbHUM, YMOBHUIA)

3HAWTH Wocy sIKHAUKpa-
e
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Pucynox
[Tonoxxenue, pacnosuoxe-
Hue (Hanp. TUHUN)

Jlenatb yepTEx, pUCYHOK

Yepréx
OnycKaThCs/HUCXOUTD
(cneBa HampaBo) (o rpadu-
K€, O KpUBOi1)

Onyckaromuiics, HUCXO-
nsni (caeBa Hampagro) (0
rpaduke, o KpUBOA)
OMIOUPHUYECKOE COOTHO-
HIEHUE [PMIIUpUYECKas 3a-
BUCHUMOCTb, YMIIUPHUYE-
CKasi CBA3b| (MeXIy mepe-
MEHHBIMH )

YcraHoBUTH (COOTHOIIIE-
HUE, CBSA3b MEX]Y Mepe-
MEHHBIMH )

Y CTaHOBUTH yCIIOBUE
TouHbll 4epTEXK/PUCYHOK

Cy1iiecTBoBaHuE
YcioBue CynecTBOBaHUS

OkcTpeMyM (QYHKIHMH OA-
HOH [IBYX, TPEX, 1, HECKO-
JbKUX | IEPEMEHHBIX (J10-
KaJIbHBIN, OTHOCUTEIb-
HBIH, a0COJIFOTHBIN, YCIIOB-
HBII)

DKcTpeManbHas 3aj1a4a
DKCTpeMyM (JIOKAJIbHBIM,
OTHOCUTEIBHBIN, a0COo-
JIOTHBIN/TTI00JIBHBIN, YC-
JIOBHBIH)

Haiit umo-n. Haunydmum
oOpazom



137

53.Find the (lécal, rélati-
ve, absolute, conditional)
extréma [minima, maxi-
ma)] of a given function

54.Géneral schéme/plan
for investigation/investi-
gating functions and cons-
tructing graphs

55.Glébal [absolute] (ex-
trémum, minimum, maxi-
mum)

56.Graph [chart, curve,
graphical chart, curve,
plot] ofa finction, plotted
fanction, finction graph
57.Gréatest and léast va-
lues of a flnction conti-
nuous over/in the béunded
clésed domain/région

58.Gréatest value of a
finction

59.Gréatest value of a fun-
ction which is continuous
one dver/in/on a ségment
[bounded clésed domain/
région] (absolute maxim-
um)

60.Héssian

61.Héssian matrix
62.Horizdntal 4symptote

63.Hypothesis (p! hypo-
theses)
64.Hypothesize

65.Increase

66.Increase

67.Incréasing
68.Infléction/infléxion (of
a graph of a finction)
69.Infléction/infléxion/

3HalTH (JIOKaJIbHI, BITHO-
CHI1, a0COIOTHI, YMOBHI)
EKCTPEMYMH [MIHIMYMH,
MaKCUMYMH | JaHOT (PyHK-
i

3arajgpHa cxema [3arajib-
HUM TUTaH]| JOCTIIKEHHS
¢byHKUIH 1 T0OYI0BU Tpa-
¢bikiB
['no6anbHmii/abcontoTHU I
(excTpemMyM, MIHIMYM, Ma-
KCHUMYM)

I'padix dpynkuii

HaiiGinbie i HaiimeHIIe
3HaueHHs (PyHKIIi1, Here-
pPEpBHOI Ha BiAPI3KY [B
3aMKHEH1! 0OMexeH11
obJacTi]

HaiiGinpie 3HaueHHS
byHKITIi

HaiiGinpie 3HaueHHS
¢byHK11i, HeTepepBHOI HA
BIJIPI3KY [B 3aMKHEHII 00-
MekeHii obmacti] (abco-
JIOTHUNA MaKCUMYM)

I'eccian, BU3HAYHUK (J1€-
TepmiHaHT) ['ecce
Marpuis ['ecce
['opu3oHTa)IbHA ~ ACKUMII-
TOTa

INmore3a

bynysatu [yTBOproBatu,
BHCJIOBJIIOBATH | T1OTE3Y
3pocTaTtu

3pocTaHHs

3pocTarounii

[leperun (rpadika pyHK-
i)

Touka neperuny

Haiitu (mokanbHbI€, OTHO-
CUTEJIbHbIE, A0COJIIOTHEIE,
YCIIOBHBIE ) 3KCTPEMYMBI
[MUHMMYMBI, MAKCUMYMBI |
JaHHOW QYHKIIUU

O6m1as cxema [001mIHiA
IJIaH]| HCCIIeI0BaHUS
GyHKUMN 1 TOCTPOEHUS
rpadukoB
['o6anbHbII/a0COMOTHBIN
(3KCTpEeMyM, MUHUMYM,
MaKCUMYM )

I'padux pynxum

Haubonbiiee u HauMeHb-
niee 3HayeHue QyHKIUH,
HENPEPHIBHON HA OTPE3KE
[B 3aMKHYTOIi OTpaHHYCH-
HOI o0JyacTu]
Haubonpiee 3HaueHne
byHKIIIHN

Haubonpiee 3HaueHne
(bYHKINH, HEMTPEePhIBHOU
Ha OTPE3KE [B 3aMKHYTOMN
OrpaHUYEHHON 00J1aCTH |
(aOCOIOTHBIN MAaKCUMYM)

['eccuan, onpeaenurenb
(nerepmunanT) I'ecce
Marpuua I'ecce
I'opusonTanbHas
TOTa

I'unoresa

ACHUMII-

Ctpoutsb [00pa3oBbIBATS,
BBICKAa3bIBaTh | TUTIOTE3Y
Bo3pacrars
Bo3pacrtanue
Bo3pacTarommit

[leperu6 (rpaduxa ¢pyHK-
11 )

Touka neperubda



flex point, pdint of inflect-
tion/infléxion [flex, inflé-
xion, point of contrary flé-
xure]

70.Interval of décrease of
a finction

71.Interval of increase of a
finction

72.Interval of monotonici-
ty [monotoneness, mono-
tony] of a function
73.Invéstigate [find out]

(a function, the behavior
of a function, a critical/
stationary point etc)
74.Investigation [finding
out] (of a function, of the
behavior of a function, of
a critical/stationary pdint
etc)

75.Léast value of a flnc-
tion

76.Léast value of a func-
tion which is continuous
one dver/in/on a ségment
[bounded clésed domain/
région] (absolute minim-
um)

77.Léast-squares méthod
[méthod of 1€ast squares ]
78.Line of regréssion of y
on x

79.Local (extrémum, mi-
nimum, maximum)
80.Maximization
81.Maximize smth
82.Maximum (p/ maxi-
ma) (16cal, rélative, abso-
lute/global, conditional) of
a finction

83.Méximum pdint, pdint
of maximum

84.Méthod of Lagrange’s
indetérminate/indetermi-

InTepBain cniaganus
byHKITIi

InTepBai 3pocTaHHs
byHKITIi

IHTepBa MOHOTOHHOCTI

byHKIIi

Hocniautu (PyHKILiTO,
NOBEAIHKY (YHKIIIT, KpU-
TUYHY/CTallIOHAPHY TOUYKY
i m.in.)

Hocmikenns (GyHKIIi,
NOBEAIHKU (DYHKIIIT, KpH-
TUYHOI/CTaIllOHAPHOT TOY-
KU [ M.IH.)

HaiimeHie 3HaueHHs
byHKITIi

HaiimeHiie 3HaueHHs
byHK11i, HeTepepBHOT Ha
BIJIPI3KY [B 3aMKHEHII 00-
MeeHii obnacti] (abco-
JOTHUN MIHIMYM)

MeTtoa HaMEHIIINX KBa-
TpaTiB
Jlinis perpecii y Ha x

JlokanbHUI (EKCTpEMYM,
MIHIMYM, MaKCUMYM)
Makcumizantis
MakcumizyBaTu
MakcumyM yHkIii (J1o-
KaJbHUH, BITHOCHUM, a0-
COJTIOTHHI/TI100aIbHUH,
YMOBHHI )

Touka MakcumMymy

Meto HEBU3HAYEHUX
MHOXHUKIB Jlarpanxa
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WNuTepBan yobiBaHUS
byHKIIMHN

WuTepBan Bo3pacTanus
byHKIIIHN

WNuTepBan MOHOTOHHOCTHU
byHKIIIH

Uccnenorats (pyHKIIHIO,
MoBeICHUE (PYHKITUHU, KPH-
TUYECKYHO/CTAIIMOHAPHYIO
TOUKY U m.0)
Uccnenosanue (pyHkimmy,
noBeACHUS (QYHKIIUH, KPHU-
TUYECKOW/CTaIMOHAPHOU
TOYKH U M.O)

Haumensbiuee 3HaueHue
byHKIIIHN

Haumensbiee 3HaueHue
(byHKIIUHU, HETIPEPBIBHOMN
Ha OTPE3KE [B 3aMKHYTOMH
OrpaHUYEHHON 00JIaCTH |
(aOCOMOTHBIM MUHUMYM )

Meton HaMMEHBILINX KBa-
IpaToB
JIuHus perpeccuu y Ha x

JlokanbHbIN (3KCTPEMYM,
MUHHUMYM, MAaKCUMYM)
Maxkcumu3zanus
MakcumMu3upoBaTh
MakcumyM pyHKIMH (J10-
KQJIbHBI, OTHOCUTEb-
HBIH, a0COJIFOTHBIN/TI00a-
JIbHBIN, YCIOBHBIN)

Touka MmakcumMyma

Meton HeonpeaeIEHHBIX
MHOXkUTEINEN Jlarpanxka
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ned maltipliers
85.Minimization
86.Minimize smth
87.Minimum (p/ minima)
(16cal, rélative, absolute/
global, conditional) of a
finction

88.Minimum pdint, pdint
of minimum
89.Monotone/monotonic
90.Monotonically (incréa-
se, decréase)
91.Monotonicity [mdnoto-
neness, monotony |
92.Nécessary condition
93.Nécessary condition of
existence

94 Négative définite quad-
ratic form

95.Noérmal system of (the)
léast-squares méthod

96.Not to decréase

97.Not to incréase
98.0blique [inclined]
asymptote

99.Part/piece of concé-vity

100. Part/piece of convé-
Xity

101. Pass through the
point

102. Point of (assumed/
proposal/presupposed) ex-
trémum

103. Point of a curve, of
a graph corresponding to
the extrémum, bénding
point

104. Point of extrémum,
extréme point
105. Positive
quadratic form

définite

Minimizanis
MinimMizyBaTu

Minimym ¢GyHK1iT (JJ0Ka-
JBHUM, BITHOCHHH, a0Cco-
JFOTHUI/TII00aIbHUM,
YMOBHHI )

Touka MiHIMYyMY

MOHOTOHHUI
MonoToHHO (3pocTaTH,
CIIaJIaTH)
MOHOTOHHICTE

Heob6xinHa ymoBa
HeobOxinHa ymoBa icHy-
BaHHS
Bin"emHoO-BU3HAUEHA KBa-
apatuyHa popma

Hopmainbna cucrema me-
TOAY HalMEHIIUX KBaJpa-
TiB

He cniagatu

He 3pocratu

IToxuna acumnrora

YacTuHa/IiIsiHKa YyTHYTO-
CT1

YacTuHa/IiIsIHKa OTYKII0-
CT1

[IpoxoauTu yepe3 TOUKy

Touka MOKIIMBOTO €KCT-
pEMyMy

Touka kpuBoi, rpadika,
sKa BIATIOBIIa€ EKCTPEMY-
My

ExkcTpeManibHa TOUYKa, TOU-
Ka EKCTPEMYMY
JlogaTtHO-BU3HAYEHA KBa-
apatuyHa popma

Munumuzanus
MUHMMU3HPOBATH
Munumym ¢yHKIMA (J10-
KQJIbHBI, OTHOCUTEb-
HBIH, a0COJIFOTHBIN/TI00a-
JIbHBIN, YCIOBHBIN)

Touka MUHUMYMa

MOHOTOHHBIN
MoHOoTOHHO (BO3pacTaTh,
yObIBaTh)
MOHOTOHHOCTb

HeoOxonumoe ycioBue
HeoOxonumoe ycioBue
CYILIECTBOBAHHUS
OTpunatensHO onpee-
NE€HHAsl KBaIpaTU4Has
dbopma

Hopmainbhnas cucrema me-
TOJa HAUMEHBIINX KBaJ-
paToB

He yOniBaTh

He Bo3pacrath
Haxionnas acumnrora

VYyacTtok/4acTb BOrHYTO-

CTH

VYyacTok/4acTh BBITYKJIIO-
CTH

[TpoxoauTs uepe3 TOUKy

Touka (BO3MOXHOTI'0) JKC-
TpemMyma

Touka kpuBoO#, rpaduxka,
COOTBETCTBYIOILIAs AKCTPE-

MyMy

DKCTpeMalbHasi TOUKa, TO-
YKa IKCTpeMyMma
[TonoxuTenbHO onpeie-
néHHas KBaJipaTUyHas



106. Preliminary/téntati-
ve design [draft, drawing,
freehand/rough drawing,
sketch, vérsion] of a graph
/plot of a finction (graph/
plot ad interim nam.)

107. Principal minor of
the first [second, third, n-
th] order; principal minor
of o6rder one [two, three,
n]; first-[second-, third- n-
th] order principal minor
108. Quadratic form

109. Rélative (extrémum,
minimum, maximum)

110. Represént (for
example a curve)

111. Representation (for
example of a curve)

112. Rise/ascénd (from
left to right) (about a
graph /curve)

113. Rising/ascénding
(from left to right) (about
a graph/curve)

114. Schematic design
[drawing, figure, draft]
115. Séparate a part/piece
of convéxity of a curve
and that of its concavity

116. Solve the problem
for a(n) (I16cal, rélative, ab-
solute, conditional) extré-
mum

117. Stage/step of invest-
tigation

118. Stationary point

119. Straight line of reg-
réssion of y on x

120. Strict (monotonicity

[Tonepenniii ecki3 rpadika
byHKITIi

["onoBHMIT MiHOP MEPIIOTO
[Apyroro, TpeThOro, 1n-ro|
MOPSIAKY

KBanpatuuna dopma
BinHocHuit (ekcTpeMym,
MIHIMYM, MaKCUMYM)

3o00paxkatu/300pazuTu
(Hanp. xpuUBY)
3o00paxkeHHs (Hanp.
KpHUBOI)
CxoauTu/migiimMaTucs
(3:11Ba HampaBo) (Mpo KpH-
BY, Mo Tpadik)
Bucxigauii, Toi, 1o
migiiMaeThes (3711Ba Ha-
npaso) (IIpo KpUBY, Ipo
rpadik)

CxeMaTUYHUI PUCYHOK

BinokpemioBaTH IUISIHKY
/4acTUHY ONYKJIOCT1 KpH-
BO1 B/l NUIIHKUA/9aCTUHM ii
YTHYTOCTI

Po3B"s3atu 3amauy Ha (J10-
KaJbHUH, BITHOCHUM, a0-
COJIFOTHMIA, YMOBHUI1) €KcC-
TpeMyM

Etan nocnimxenus

CraiionapHa Touka
[Ipsima perpecii y Ha x

Crporuii [cTpora] (MOHO-
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dbopma
IIpenBapuTenbHbIN 3CKU3,
HaOpocok rpaduka pyHK-
105051

I'maBHBIN MUHOD TIEPBOTO
[BTOpPOro, TPETHETO, 1-TO|
nopsiaAKa

KBangpatuunas popma
OTHOCUTENBHBIN (IKCTpe-
MyM, MUHUMYM, MaKCH-
MyM)
N306paxkaTb/n300pa3uth
(Hanp. KpUBYIO)
N3o6paxxenue (Hanp.,
KpUBOH)

[TogHUMATBCS/ BOCXOAUTD
(cneBa Ha-mpaBo) (o rpa-
¢uke, 0 KpUBOiN)
[Tognumaromuii-cs, BOc-
XOJIAIINN (CTIeBa HAIIPaBo)
(o rpaduke, 0 KpUBOH)

CxeMaTtudeckui uep-
TEXK/PUCYHOK

OTnensTh y4acToOK/4acTh
BBITTYKJIOCTH KPUBOM OT
y4acTKa/4acTu €€ BOTHY-
TOCTH

Pemuts 3anauy Ha (J10Ka-
JIbHBIM, OTHOCUTEIILHBIN,
a0COJIOTHBIH, YCIOBHBIN)
AKCTPEMYM

DTtan uccliie10BaHus

CranuoHapHas TOUKa
IIpsamas perpeccun y Ha x

Crporuii [cTporas] (mo-
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[monotoneness, monoto-
ny], increase, décrease, ex-
trémum, minimum, maxi-
mum)

121. Strictly (incréase,
decréase, monotone/mo-
notonic, incréasing, dec-
réasing/decay)

122. Sufficient condition
123. Sufficient condition
of existence

124. Suggést (a depén-
dence between variables
... of the form...)

125. Sum of squares of
(the) érrors

126. Tangent (line) at the
point of infléction/inflé-
xion

127. Test/invéstigate a
fanction for a(n) (local, ré-
lative, absolute, conditio-
nal) extrémum

128. Vértical 4symptote

TOHHICTh, 3pOCTaHHS, CIla-
JaHHS, EKCTPEMYM, MiHi-
MyM, MaKCUMYM )

Ctporo (3pocrtatu, cnaaa-
TH, MOHOTOH-HUM, 3pO-
CTalOUUM, criagarounii)

JlocTaTHs ymoOBa
JloctaTHsi yMoBa iCHY-
BaHHS

HaBoguTu Ha nymKy, mij-
Ka3yBaTH (3aJICXKHICTh MK
3MIHHUMH ... BUTJISIY...)

CymMma kBajsipaTiB MOMIJIOK/
HOXHUOOK
JloTrdHa B TOUII1 MIEPETHU-

Hy

JlocnianTi GyHKIII0 HA
(JiokasIbHUH, BITHOCHUM,
a0COIOTHUM, YMOBHHUI)
EKCTPEMYM
BepTukanpHa acuMmnrora

HOTOHHOCTb, BO3pacTaHHUE,
yObIBaHUE, IKCTPEMYM,
MUHHUMYM, MAaKCUMYM)

Crporo (Bo3pactarhb, yObI-
BaTh, MOHOTOHHBIN, BO3pa-
CTaroUINi, yObIBatOUIU)

JlocTaTouHOE yCJIO-BHE
JlocTaTouHOE yCIOBHUE
CYIIECTBOBaHHSI
HaBoauTth Ha MBICIIb, HOI-
CKa3bIBaTh (3aBUCHUMOCTH
MEXIY IEPEMEHHBIMH ...
BHJA...)

CymMa KBaJIpaToB OIIN
OoK/morpenrHocTen
KacarenbHas B TOUuke Iie-
perubda

UccnenoBath GpyHKIMIO HA
(JIOKaJIbHBIN, OTHOCUTEIb-
HBIN, a0COJIFOTHBIN, YCIIOB-
HBII) SKCTpEMyM

BeprukanbHas acumMnrora



LECTURE NO.18. EXTREMA OF FUNCTIONS

OF SEVERAL VARIABLES

POINT 1. LOCAL EXTREMA

POINT 2. LEAST SQUARES METHOD
POINT 3. CONDITIONAL EXTREMA
POINT 4. ABSOLUTE EXTREMA

POINT 1. LOCAL EXTREMA

Remark. In this lecture we consider only twice continuously differentiable

functions of several variables.

# Y @&a,ﬁo},’za))%: 22/0%)

Def.1. A point x, = (x,,,%,,...,X,,) € R" is called a point of a local maximum
of a function of 1 variables f(x)= f(x,,x,,...,x, ) if there exists some neighbourhood
U,, of x, such that forany xeU, =U, \{x,} the inequality

S(x)< f(xy)or Af (x,)= f(x)~ f(x,) <0 (1)

holds. The value of the function at the point x,, that is f(x, ), is called a local maxi-
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mum of the function.

By analogous way a point of a local minimum and a local minimum of a func-
tion of n variables are defined. The terms a local maximum and a local minimum we
as usually unite by common term a local extremum.

The case of a local maximum of a function on two variablesz = f(M )= f(x, y)
is represented on the fig. 1. A point M,(x,;,) is a point of a local maximum. The
latter equals z, = f(M,)= f(x,,y,)=M,P, where P,(x,;y,:z,) is the point of a sur-
face z=f (x, y) which is the graph of the function. Some level lines of the func-tion
namely f(x,y)=C,, f(x,y)=C,, f(x,y)=C, are shown of the same figure.

Def. 2. A point x, = (x,y,X,g,...,X,,) € R" is called that stationary of a function
of n variables f(x)= f(x,,x,,....,x, ) if all its first order partial derivatives equal zero
at this point,

S g)= 0,17, (%)= 0,00, 17 (0 ) = 0. (2)

Note 1. The differential of the function f(x)= f(x,,x,,...,x, ) equals zero at
the stationary point,

df (x,)= 11 (o )dx, + £, (xy )dx, +...+ f1 (x,)dx, =0. (3)

Theorem 1 (necessary condition of existence of a local extremum). If a func-
tion of n variables f (x), x € ‘R" possesses a local extremum at a point x, € R" then
this latter is a stationary point for the function, that is the equalities (2), (3) hold.

mlet X, = X,0,X, = Xy,...,.X, =x,, and @(x,)= f(x,,X,9,X5,....X,, ) be a function
of one variable x,. Ifa function f(x)= f(x,,x,.,...,x, ) has a local extremum at the
point x, = (x,,,X,,,....X,, ) then the function ¢(x, ) has a local extremum at the point
x,; and so ¢'(x,;)=0. It means that /e (Xo1> X395 X3grees X, ) = /e (x,)=0. In the same
way we can prove that f, (x,)=0,..., /o (x,)=0.m

Note 2. It follows from the theorem 1 that a (twice continuously differentiable)
function f(x)= f(x,,x,,...,x, ) can possess a local extremum only at a stationary

point. But a stationary point is not necessary a point of a local extremum that is the
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necessary condition for existing of a local extremum isn’t that sufficient.

Ex. 1. The point O(0;0) is that stationary for a function of two variables z =
:f(x,y):xy(fx' =y f,=x,f.=f, :Oifx:y:O) but it isn’t a point of a local
extremum because of f (x, y) <f (O; O) =0 for xy <0 (in the second and forth quad-
rants) and f(x,y)> £(0;0)=0 for xy >0 (in the first and third quadrants).

To state a sufficient condition for existence of a local extremum we’ll take into
consideration some facts of theory of quadratic forms.

Def. 3. The quadratic form of n variables x,,x,,...,x, is called an expression

F(x)z F(xl,xz,...,xn)z iayxixj, a; =a;. (4)
ij=

It’s easy to prove that it can be written in a matrix form

a,, 4ap a, | X a,, 4ap a,
a a a X a a a
21 2 2n 2 21 2 2n
F()c],xz,...,xn)z(x1 Xy X, , A= ,(5)
anl an2 ann xn anl an2 ann

and A4 is called the matrix of the quadratic form. It’s symmetric one with respect its

leading [main, principal] diagonal, that is a; =a .

Ex. 2. The quadratic form of two variables x,,x, is an expression

2
a a X
F _ 2 2 _ 11 12 1 _
(xlaxz)_ a; X +2a12x1x2 Tayx, = 2 A XX = (xl xz)( j( } ap, =dy (6)

= Ay Ay )\ X,

a a a a
11 12 11 12
A:( j:( j’am:am (7)
a, a4y a, a4y

Ex. 3. The quadratic form of tree variables x,,x,, x, 1s an expression

with the matrix

. 2 2 2 .
F(xl,xz,x3)— A, X; +a,X5 +a3,X; +2a0,X,X, +20,,X,X, +2a0,,X,x;, =

all a12 al3 xl

= Za_..x.x_. =(x, %, x,) ay, a, a,|x, A, =ay.
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Def 4. Quadratic form (4) if called positive (negative) definite if it takes on

only positive (negative) values for any x = 0, that is if x7 + x; +...+ x_ # 0, and unde-
termined if it can take on both positive and negative values.

Def. 5. Principal minors of the matrix (5) of the quadratic form (4) are called
its diagonal minors,

all alz al3
Ay =lay,  ay,  ayl.., A, =|d|=det 4. (8)

as; dz  dy

all a12

a21 a22

Theorem 2 (Sylvester'). Quadratic form (4) is positive definite if and only if
all its principal minors are positive,
A >0,A,>0,A,>0,..,A >0. (9)
It is negative definite if and only if these minors have alternating signs in the
next manner
A <0,A,>0,A,<0,A, >0,... (10)
If all principal minors are those non-zero and distribution of their signs differs
from (9), (10), then the quadratic form (4) is undetermined one.
Def. 6. Hesse” matrix for a function f(x)= f(x,,x,,...,x,) (at arbitrary point
x=(x,,%,,....,x,)) is called the next one
Lo fl, ) ) S ()
S () fo(
H(f,x)=| fo,&) £, (k) JASCONE (11)

=
N
Bes
—
=
N
§<
—
=
N

We’ll in the future suppose that at least one second order partial derivative of

the function f (x) doesn’t equal zero at the stationary point x, . It means that the mat-
rix H(f,x,) is supposed to be non-zero.

Theorem 3 (sufficient condition for existence of a local extremum at a sta-

! Sylvester I.J. (1814 - 1897), an English mathematician.
? Hesse, L.O. (1811 - 1874), a German mathematician
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tionary point). Let a point x, = (x,,,X,g,...,X,,) € R" be stationary one of a function
fx)= f(x,,x,,....x,), and H(f,x,) - is the value of Hesse matrix (11) at this point

with non-zero principal minors.

a) If all principal minors of the matrix H(f,x,) are positive,
A >0,A,>0,A,>0,..,A >0, (12)
then the point x, = (X,g,X,q»..,X,, ) is that of a local minimum;
b) If the signs of principal minors of the matrix H(f,x, ) are alternating such
that
A <0,A,>0,A,<0,A, >0,..., (13)
then the point x, = (x,q,X,q,...,X,, ) is that of a local maximum.

¢) No local extrema in the other cases.

m By Taylor formula the increment of the function at the point x, equals

Ay =1 ()= ()= £ x,) = )+ & ).

where ¢ = (c,,c,,...,c, ) is some point. By virtue of the condition (3) we have df(x, )=

=0, and so

1
A ()= )= flx) = d* fe). (14)
A sign of the right side in (14) coincides, in some neighbourhood U of the point x,

with a sign of d° f (xo) because of continuity of the second order partial derivatives
of the function /. But the differential d” f (xo) equals (see (35) in Lecture No.16)
dzf(xo): dzf(xloaxzm---»xno): fo':x] (xo )dxidxj (15)
i,j=1
therefore it’s a quadratic form of variables dx, with the matrix H ( f ,xo) (see (11)). It
is positive (negative) definite in U, because of the conditions (12) ((13)). In the first

case we have d”f(x,)<0 and so Af(x,)<0 in U « » and the function has a local

minimum at the point x,. In the second case the inequality d”f(x,)<0 holds, so
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Af(x,)<0in U « » and the function has a local maximum at the point x,. If the con-

ditions (12) (13) don’t fulfill (but A, # 0,7 =1, n) the quadratic form (15) is undeter-
mined one, therefore the differential @ f(x,) and the increment Af (x,) of the func-
tion don’t conserve their signs in any neighbourhood of the point x,. It means that
the function f(x) doesn’t have a local extremum at the point x,.m

Note 3. The proof of the theorem is relieved for the case of a function of two

variables f(x)= f(x,,x,). It doesn't require the theory of quadratic forms because

the sign of the differentiald” f(x,)=d” f(x,,, x,, ) at the stationary point x, is de-

termined by the theory of the quadratic trinomial. Indeed, in this case
dzf(x()): fxTxI (“)CO)A‘)CI2 + 2fx 1 X2 (xO)Ax Ax + XpXy ( O)Ax22

As usually Ax, =dx, = x, —x,,, Ax, =dx, = x, —x,,. For example if Ax, #0, then

2
Ax Ax
d’ AX; —L 1 +2f" (x,)—+ " (x,)].
()= [fmx ] var, e s o}
Quadratic trinomial (with respect to Ax, /Ax, ) is positive (negative) for every Ax,, Ax,
(Ax] +Ax; #0) if A, = f, (x,)>0 (respectively A, = S (x,)<0) and if its discri-

minant

=a(fr ()P =47 () £ () = 4l 77, ()P = 7 () £, ()=

f -4
fio(x) L (xo;‘__ P ALY A Cr
foxz (xo) fxsz (xo xlxz( ) x2x2 (xo

1s negative one (and therefore the main minor A,is that positive). The function has a

—4 1_—4detH(f, X,)=—4A,,

local minimum in the case A, >0, A, >0 and a local maximum in the case A, <0,
A, > 0. In the other cases (A, #0 but A, <0) it doesn’t have a local extremum at the
stationary point x, = (x1 09 xzo)

Note 4. Theorem 3 is valid if d” f(x,) doesn’t equal zero identically (with res-
pectto dx,,i= I,_n). Otherwise we must resort to more general theory which involves

higher order differentials.
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Note 5. In practice we often deal with cases when at least one main minor of
the matrix (11) equals zero. We consider such the cases as those doubtful. But it’s

possible to close the question completely for functions of two variables f (x) =
= f(x,%,).

It’s sufficient to study two possibilities for the stationary point x, = (x,,, x,, )
namely: a)A, =0,but A, #0;b) A, =0.

a)If A, =0, but A, 20, then f_ (x,)#0, A, <0, and the formula (15) takes
on the form

d’f (xo ) =2f xsz (xo )a’xl dx, + x'z'x2 (xo )dxzz.
It’s evident that d” f(x,) doesn’t conserve a constant sigh in any neighbourhood of
the stationary point, and so the function doesn’t have a local extremum at this point.
We’ve seen that it also doesn’t exist if A, #0 and A, <0.

b) The case A, =0, when the trinomial d” f(x,) has two real equal roots, is
that doubtful for each value of the minor A, (A, #0 or A, =0).

Now we can state sufficient condition of existing of a local extremum of the
function of two variables f(x)= f(x,,x,) at the stationary point x, = (x,,, X,, ) in
the form of the next theorem.

Theorem 4. Let x, = (x,,, x,,) be a stationary point of a function of two va-
riables f(x)= f(x,x,).

a) If

A =f (x0)>0 (Al :fx'l'xl(xo)<0) and A, :detH(f, xo):

RIR|

) L)
f):xz (xo) fxzxz (xo ’

then a function has a local minimum (respectively maximum) at this point.
b) In the case

f):xl (xO) fx,l,xz (X

AzzdetH(f,xo):f,, ) f (x°;‘<0

a local extremum doesn’t exist.
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c) The case
A, =detH(f,x,)=0

is that doubtful. One must resort to more general theory involving higher order dif-

ferentials.

Ex. 4. Find local extrema of the function z = x> + y° —9xy+27.

The first step: finding stationary points of the function.
z0=3x"-9y, [z.=0, [3x*-9y=0, [x*-3y=0, x,=0,»=0; 0O(0;0),
zl, =3y* - 9x; { {3y2 -9x=0; {yz —3x=0; x,=3,y,=3 M(3;3)

The second step: studying the stationary points O(O; O),M (3; 3). For this pur-
pose we can use both the conditions (12), (13) of the general theory and those (12 a),
(13 a) for the case of a function of two variables. We'll begin from the general theory.

Let's form at first Hesse matrix for the given function:

zy, =6x,z; =-9, (Z;c'x Z)'C'yj (6x —9}
v _ v H(z,(x,y)=| ,» . |= :
2 =2, =9, 2], =6; Zo2) -9 ey

a) For the point M (3; 3) the corresponding value of Hesse matrix is

18 -9
H(z,M(3,3)) =(_9 18}

all its principal minors are positive
18 -9

>0;
-9 18‘

A =18>0, A, =‘

by virtue of the theorem 3 the function has a local minimum at the point M (3; 3).

b) For the point O(0; 0) Hesse matrix and its principal minors are
H(z,0(0;0)) O a0 A 2Y Tl
z, 5 = 5 =V, = =
-9 0 ‘ -9 0
and by the theorem 4 a local extremum doesn’t exist at the point O(0; 0).

Ex. 5. Find local extrema of a function of three variables

u=-x"—y>"-10z" +4xz+3yz —2x— y+13z+5.
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1. Finding stationary points of the function. There is one stationary point be-
cause of

u,=-2x+4z-2,u, =-2y+3z-Lu, =-20z+4x+3y +13,

Cox+4z-2=0, [-2x ‘4z = 2,
2y432-1=0 2y +3 o ¥Er=z=l
- z—1=0, - z = 5
4 4 M, (1 1;1).
_20z+4x+3y+13; | 4x 43y —20z = —13;

2. Investigation the stationary point M(1;1;1). The second order partial deri-

vatives of the given function

uy, ==2,uy, =u;, =0,u =ul, =4u;, =-2,u; =u_ =3,u’ =-20

xx > “xy > “xz zx s Yy T > Pyz zy > Wzz
generate Hesse matrix with constant elements, so
H(”» M(x;y; Z)): H(”» Mo(xo;J’o; Zo)): H(”» Mo(l; I; 1)):
u)'c'x(MO) u)'c'y(MO) u),c'z(MO) _2 O 4
= u;x (MO ) u;y (MO ) u;z (MO ) = O - 2 3 5
”gx(Mo) u;;/(MO) ”;;(Mo) 4 3 -20

the principal minors of the value of Hesse matrix at the stationary point M (1;1;1) are

equal to
2 0 4
A1=—2<0,A2=‘_ ‘=4>0,A3= 0 -2 3 [=-30<0,
- 4 3 =20

and therefore the given function possesses a local maximum u,_=u(M,)=10 at the
point M, (1;1;1).

Ex. 6. Find local extrema of the function u =x+y/x+z/y+2/z.

Loul =1-y/x*,u, =1/x-z/y* u. =1/y-2/2*;

1—y/x2=0, =y, | x*=y, | x* =y, x* =y, [x=+2",
l/)c—z/y2 =0,{y’=xz,{ x" =xz, 1 x =z, x =z, y:2l/2,
1/y—2/z2 =0; |z>=2y; |z° =2x%; |2° =2x7; |x° =2x%; |z = 424

There are two stationary points M, (2'/4; 212 23/4), M, (—2'/4; 212 —23/4).
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2. Now we must study the stationary points for existing of a local extrema. The
second order partial derivatives of the function at arbitrary point (x; y;z) are equal to
w2l g =15, u =0,
U, =—1/x2, u,, :2z/y3, u, :—l/yz,
u, =0, u, =—1/y2, u_ :4/23.

a) Hesse matrix and principal minors for the point M, (2 Ve, 12, 0% 4) are

2% 27 0 4,=2" >0,
H(u, M, (21/4 ;21/2 ;23/4 )) | _p12 /4 _2 |, XA .
0 ol oyl 27| PRE /4 =2-2">0,

23/4 _ 2—1/2 O
Ay=l-277 2 =200 — (22 —2) =27 5 0,
o -2t 2
Hence we have a local minimum at the point M, (2'/ 4. V2. 934 )

b) Hesse matrix and principal minors for the point M, (— 214 V2, 0¥ 4) are

-2 27 A, =-2Y" <0,
H(u, M, (_ /4 ;21/2 ;_23/4 )): 92 _qld _y- ’ ¥4 oyl
O _2—1 _2—1/4 2 = _2—1/2 _21/4 > O’
_23/4 _2—1/2 O
Ay=l-277 o ot 0. 22 (2-27) =27 <0,
0o -2 -2

We have a local maximum at the point M, (— QU4 QU2 _ o4 )

Ex. 7. Functions

4

z=filoy)=x'+y'z= f(xy)=—x" 'z = filx,p)=x" -y
have the same stationary point O(0; 0). Their second order differentials
d’f, =12xdx* +12y*dy*, d’ f, = —12x*dx* —12y°dy?, d* f, =12x°dx* —12y°dy?,
identically equal zero at the stationary point and the theorem 3 is inapplicable one for

these functions. One can easily see that £;(x, y) has a maximum, f,(x,y) has a mi-
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nimum, f,(x,y) hasn’t a local extremum at the point O(0; 0). Indeed, f;(x,y)>0,

£,(x,y)< 0 at any point M (x; y)= O(0; 0) while f,(x,y)>0 as ‘x‘ > ‘y , fi(x,¥)<0

as ‘x‘<‘y‘ and f,(x,»)=0 as x‘:‘y‘.

POINT 2. LEAST SQUARES METHOD

Let we study two variables x, y and we seek the form of a functional dependen-

ce between them. For this purpose we fulfil n experiments on x, y and represent ob-
tained results by a table of pairs (x.; y.) and by corresponding points 4,(x;;y,) of the

x0y—plane (see the table 1 and fig. 2).

a/ Table 1
¥4 X X X, X, .. X,
HE= = Y T R
=t ] Point 4, A4, A 4
S 7 1 2 3 e n
IR x" The disposition of points
i

A4,,4,,...,A, sometimes helps
us to hypothesize concerning a form y = f(x,a,b,...) of dependence in question. For
example a fig. 2a leads to the hypothesis about linear dependence between x, y,

namely y =ax+b. On the other hand a fig. 2b generates the hypothesis about para-

bolic (of the second degree) dependence y = ax” +bx +c.
Our aim is to find parameters a, b,... by the best (in a certain sense) way. This
way is the least squares method (LSM).
Let in general we hypothesize
y=f(x,a,b,..). (16)
We introduce the next quantities (so-called errors)

& =f(x,ab..)-y, (17)
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which are the differences between theoretic and empiric results of experiments on the
variables x and y. Least squares method which was devises by Legendre' and Gauss®
and justified by Gauss consists in follows: we find a,b,... in such a way to make mi-

nimal (or to minimize) the sum of squares of the errors. It means that we have to find

a minimum of the next function of the variables a,b,...

n

@(a,b,...):igf => (f(x,a,b.)-y,) . (18)

i=1
To find a, b, ... we must solve the next system of equations
@' (a,b,...)=0,
@} (a,b,...)=0, (19)

which is called a normal system of least squares method.

We’ll limit ourselves to two hypotheses generated by dispositions of points
A(x;;y.) onthe fig. 1 a, b, namely y=ax+b and y=ax’ +bx+c.

If we suppose

y=ax+b (20)

then we have to minimize the next function

d)(a,b)zigf:i(axl.+b—yl.)2. (21)

P i1
Its partial derivatives with respect to a and b equal
P = i2(axl. +b—y)x, = 2[azn: X’ +bi X, — Zn:xl.yl.j,
P il il =l
D, = Zn:2(axl. +b-y,)= 2[aixi +bn — Zn:yl)
i P =l

and we have to solve the next normal system of linear equations in a, b

' Legendre, A.M. (1752 - 1833), a French mathematician
? Gauss, K.F. (1777 - 1855), a great German mathematician, astronomer, physicist, and land-surveyor
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o o, S #3 = S
a > i=l i=l i=l
b ale. +bn=Zyl..
i=1 i=l1
In the case of a hypothesis
y=ax’ +bx+c (23)
we must minimize a function of three variables a, b, ¢
CD(a,b,c):ng :Z(axl.2+bxl.+c—yl.)2 (24)
i=l1 i=l1

with the next partial derivatives with respect to a, b, ¢
D = i2(axl.2 +bx, +c—y,)x’ = 2[612 X!+ bi X+ ci x! — ixfyij,
i=1 i=1 i=1 i=1 i=1
D, = 22(61)@.2 +bx, +c—y,)x, = 2[612)@3 + bixf + cixl. — ixl.yl.j,
i=1 i=1 i=1 i=1 i=1
Q' = i2(axl.2 +bx,+c—y,)= 2[612)@2 +bixl. + cn—iyl.j.
i=1 i=1 i=1 i=1

Therefore a system of linear equations in a, b, ¢ to be solved

P =0,
@ =0,
D, =0;

aixf +bi:xl.3 + cixf = ixfyi,
i=1 i=1 i=1 i=1

aixf +bi:xl.2 +cixl. = ixl.yl., (25)
i=1 i=1 i=1 i=1

w.
m .
.l afo+bel.+cn=Zyi.
oy i=1 i=1 il
Jootr .
ool Ex. 8. Amount of goods x (in thou-
€0y sands of i.c.u.) and costs of circulation y (in
o7 : .
1.c.u) are given by the table 2.

Sop+ >

O so f00 /30 Lo XD 300 O 60 Disposition of points 4, B, C, D, E, F

Fig. 3 (fig. 3) permits us to hypothesize that
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y=ax+b,

that is costs of circulation y and amount of goods x are connected by linear depen-

dence. By virtue of (22) we must solve the next system of equations

Table 2

No X; v Points X;Y; xi2

1 60 551 A 33060 3600

2 80 576 B 46080 6400

3 140 628.5 C 87990 19600

4 160 673 D 107680 25600

5 240 768.5 E 184440 57600

6 320 863 F 276160 102400
> 1000 4080 735410 215200

215200a +1000b = 735410,

1000a + 65 = 4080.

The solution of the system is a =1.13, b ~489.71 and so the depen-dence in

question is given by the next equation

y=1.13x+489.71.

POINT 3. CONDITIONAL EXTREMA

Simplest problem on a conditional extremum:

Find extrema of a function of two variables

z=f(M)= f(x,y)

(26)

provided that x and y are connected by the equation [condition, constraint, relation]

o(x,y)=0

(27)

Geometric sense of this problem consists in finding an extremum of the fun-

ction z = f(x, ) at the points of a curve of the equation (27).
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e (Z/J'Ju' Z,

P (%5 %)
20:7{(1"”%/

Fig. 4

A condition maximum of a function f(x,y) along a curve L: ABM ,CD is re-
presented on fig. 4. It equals z, = f(M,)= f(x,,v,)=M,P,, and the function achie-
ves it at the point M (x,; , ) € L . For comparison fig. 4 gives the local maximum of
the same function z, = f(M,)= f(x,,y,)= M,P

which differs from the condition maximum.

General problem on a conditional extremum:

Find extrema of a function of » variables
u=f(x)=f(x,x,...x,) (28)
provided that the variables x,,x,,...,x, are connected by the next & (k <) equations

[conditions, constraints, relations]
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(29)

A. Necessary condition for existing of a conditional extremum.

Case 1. The simplest problem (26), (27) on a conditional extremum.

Let a conditional extremum (26), (27) is attained at a point M (x,;y,) and at
least one of the first order partial derivatives of the function ¢(x, y)doesn't equal zero
at this point, for example

0,(M, )= (x,:,)%0. (30)

In this case the equation (27) determines y as an implicit function of x in some neigh-
bourhood of the point M, (x,; v, ).

y=y(x) (plx, ¥(x))=0, 0(xy, ,) =0, ¥, = ¥(x,)). (31)

If we can directly find y from the equation (27) we get a problem on usual local
extremum for a function z = z(x) = f(x, y(x)) of one variable x. The necessary con-

dition for existing of such the extremum is z'(x0 ) == 0, or in the full form
Flxo, v0)+ £1(x0, 30)- () = 0. (32)
In reality it isn’t necessary to express y through x from the equation (27). It’s
sufficiently only to take into account that y is a function of x implicitly defined by
this equation, and therefore to consider the equality (27) as identity with respect to x.
By its differentiation we get at the point M (xo; yo)
@1 (%05 o)+ 9; (x5, %) ¥'(,) = 0. (33)
Now from (32) and (33) we find
@1 (%0 7,) S, o) _ @L(x0,20) _ filxs 34)

y'(x0)=—m,y'(xo)=— = = )

) f):(XO’yO) (D;(xooyo) f):(XO’yO)

fx'(xo,yo):fy'(me’o) (34)

(P;(xoﬂ’o) (D;(xoﬂ’o)
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If we denote equal ratios (34) by — A, where 4 be some number which is called La-

grange’s multiplier, we’ll get

fx'(XOD yo) _ fy'(XODyO)
(P;(xoayo) (D;(xod’o)

fx!(XOD yo)"')*(P;(xo:yo): 0, fy,(xOD yo)"')*(P;(xo:yo): 0.

We have proved the next theorem.

=-1= fx'(x07 y0)=—l(p;(x0,yo), fy'(‘x07 yo): _lw;(xoayo)a

Theorem 4 (necessary condition of existing of the conditional extremum (26),

(27)). If a function z = f (M ) = f(x,y)of two variables attains the conditional extre-
mum (26), (27) at a point M (xo; yo), then its coordinates satisfy the next system of

equations in x, y, A :
) (35)

One can easy remember the system (35) by introducing the next auxiliary func-

tion (Lagrange function)

L=L(2,x,y)=f(x,y)+2p(x, ). (36)
The necessary condition of existing of a conditional extremum (26), (27) goes over
L (2,x,y)=0, Li(2,x,y)=0,
L;(/l,x,y) =0, or L;(/l,x,y) =0, (37)
o(x,y)=0; L (4,x,y)=0.

Def. 6. Every solution P =(A,,x,, y,) of the system (37) is called a stationary
point of the Lagrange function (36). Corresponding geometric point M (xo, yo) can
be named a stationary point of the function z = f (x, y) (for the simplest problem on a

condition extremum (26), (27)).
It follows from the definition 6 and the theorem 4 that a function z = f'(x, »)
can reach a condition extremum only at a stationary point of Lagrange function.
Case 2. The general problem (28), (29) on a conditional extremum.

In general problem (28), (29) on a conditional extremum one introduces La-
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grange function
L=L(A,%)= LA, Aysees Ay X,y X e X, ) = [+ 20, + 20, + oot 1,0, (38)
Theorem 5 (necessary condition of existing of a conditional extremum (28),

(29)). If a function of n variables u = f(x)= f(x,,x,,...,.x, ) attains the conditional ex-
tremum (28), (29) at a point x, = (x,,, X,,,....X,,) € R" then its coordinates satisfy the

next system of equations in 4,4,,...,4,,X,,%,,...,X,

{L;_o Q_iﬁlor{L;=0 (i =

0,=0 (=18 |1 <0 =Lk

) (39)

Def. 7. Every solution (4,,x,)= (Aig> Aygse-r Aegs Xigs XagseenX,o) OF the system

(39) is called a stationary point of Lagrange function (38). Corresponding geometric

pointx, = (X,y,X,9»-.-,X,,) is often named a stationary point of the function u = f(x)=
=f (x] ,xz,...,xn) (for the general problem on a condition extremum (28), (29)).

The function u = f(x)= f(x,,x,.,...,x,) can reach a condition extremum only at

a stationary point of Lagrange function.

B. Sufficient condition for existing of a conditional extremum

Case 1. The simplest problem (26), (27) on a conditional extremum.

Let P =(4,,x,,,) be some stationary point of Lagrange function (36) for a
function z = f(x, y), that is one of solutions of the system (37). Let's introduce Hesse
matrix for Lagrange function at arbitrare point P(1; x; y) for two cases:

a) in the first case, when L (4., x,, ¥,) =" (x,, ¥,)# 0, one has

L:{l X, ) L/'{x(xa y) L:{y(xa y)

(x, y
H(f, P(A,x,p)=H(f, 2, x,y)=| L, (x,y) LL(A4,x,y) L (Z,x, )
Ly (x,y) LL(A,x,y) Ly (2 x,y)

yA

or
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0 ollx.y) o)
H(f, P, x, y))=H(f, A x,9)=| ol(x.») LL(Axp) Li(Axy)|; (40a)
o, y) Li(Ax,y) LA x )

"

)

L:{l(/lﬁ X, y) L:{y(;t) X, y) L/bc(

H(f,P(A, x, y)=H(f, 2, y.x)=| LI,(A, x,y) Ll (2, x,y) L(
L;/I(/lﬁ X, y) L;x(;t) X, y) L;y(

0 o,(x,y)  ollx )
H(f,P(l,x,y))zH(f,l,y,x)z (0;(x,y) L;’y(}t,x,y) L;'x(/”t,x,y) . (40Db)
o.(x,y) Ly, x,y) LL(4x, )

The first main minor of Hesse matrix equals zero, A, =0, and the second one is nega-
tive, A, <0, at any point. Let's consider the value of the third main minor at the sta-
tionary point P = (A,,x,,, ), namely

0 (D:c(xmyo) (D;(xmyo)

A3(/10,x0,y0)=detH(f,/10,x0,y0)=¢;(x0,y0) Lgx()“o»xo»yo) Lgy(;to»xo»yo)
(D;(xmyo) L;x(;to»xmyo) L;y(2’09x07y0

for the matrix (40 a) and

0 0, (x,30) @, )
A3 (Rs %0, v0) = det H(f, Ays vo, %0) =0} (505 7o) L1, (R %05 70) L1 (Ros %0, 2
:(x0: v0) Lo (As x5 90)  LE (R, %o, 30 )
for the matrix (40 b).
Theorem 6. If
A, (A, x4, 1,)<0
that is sign of A,(4,, x,, ¥,) coincides with that of A,, then the function z = f(x, y)
possesses a condition minimum at the (geometrical stationary) point M, (x,, y, ).
If
A,(Ay, X, ¥,)>0,
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then the function reaches a condition maximum at the point M (x,, , ).

Ex. 9. Find conditional extrema of the function z = x? — y2 under the next con-

dition x* + y*> =4 that is on the circle with the radius 2 centered at the origin.

The first step: introduction of Lagrange function and finding its stationary
points.
Sloy)=x =y olx,y)=x"+ " — 4
L(2.x)= f(x.p)+ Ap(x.)=x" = y* + Alx” + y* -4}
LI(A,x)=2x+22x=2x(1+ 1), Ll (A, x) =2y + 24y =2y(-1+ 1), L} (A, x) = o(x, y);
L'(2,x)=0, x(1+2)=0,  (a)
L;(2,x)=0, y1+2)=0, ()
Ly(A,x)=p(x,y)=0; | x*+y*-4=0. (c)
On the base of the equation (a) we can study two cases.
1 case: x =0 in the equation (@); (¢)=> y=12,(b)=> A =1.
2 case: A =—1 in the equation (a); (b)= y =0, (c) => x=12.
We’ve got four stationary points of Lagrange function and of the given func-
tion, namely:
P (;x53,) = B(=1;2;0), M,(2; 0} P, (2,5 x,5 9, ) = B, (=15 =2, 0), M, (- 2; 0);
(A5 x5535) = P(1; 05 2), M, (05 2) P, (A5 x,5 v, ) = Po(1; 05 = 2), M, (0; - 2).
The second step: investigation the stationary points for existence of a condi-
tional extremum.

Second order partial derivatives of Lagrange function are
L/Ill/l(laxay) = (p/ll(xa y): 0, L,'{x(l,x,y) = (p;(x, y): 2x, Lzy(laxay) = (p;(xa y): 2y,

L (A,x,y)=2+2A, L (A,x,y)=L" (A,x,y)=0,L" (A, x,y)=-2+2A.

Xx > Hxy X >y
A. For points P,(~1;2;0), M,(2;0) u P,(~1;-2;0), M,(~2;0) we must take
Hesse matrix for Lagrange function in the form (40 a) because of the partial deriva-

tive L] (4,x,¥) =@’ (x, y)=2x doesn't equal zero at M,(2;0), M,(~2;0). We have

0 olx,y)  @llx ) 0 2x 2y
H(f, P(2,x,9))=| @i(x,y) LL(A,x,y) Li(A,x,y)|=|2x 2424 0
ol(x,y) LL(Axy) Li(4xy) (2y 0 -2+22

b
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or simply
L:{l(xa y) L;x(xa y) L:{y(xa y)
H(f, P(A,x, p))=H(f, 2, x,y)=| L, (x,y) LL(A,x, ) Ly(4 xy)|=
L;/I(xa y) L;x(;t) X, y) Lyy(;t) X, y)
0 2x 2y

=[2x 2+22 0 |,
2y 0 —2+22

a) For the point P (—1;2; 0) (respectively for M,(2;0))

04 0
A,(-1,2,0)=det H(f, P(~1,2,0))=det H(f,-1,2,0)=[4 0 0 |=64>0.
0 0 -4

6) For the point P,(—1; —2; 0) (respectively for M,(~2;0))

0 -4 0
A,(-1,-2,0)=detH(f, P,(~1,-2,0))=det H(f,-1,-2,0)=|-4 0 0 |=64>0
0 0 -4

On the base of the theorem 6 the given function has a conditional maximum at the
points M,(2;0) and M,(-2;0) which equals(+2) —0° = 4.
B. For the other pair of stationary points
P,(Ay;x,5,)=P,(1;0,2), M,(0;2) u P,(A,;x,57,)=PB,(1;0,—2), M,(0; - 2),
we take Hesse matrix in the form (40 b), because L] (4,x,y)=¢. (x, y) =2x equals
zero but Lj (A,x,y) =@, (x, y)=2y at the points M,(0;2) and M,(0;—2). We have

0 o, y)  ellxy) 0 2y 2
H(f, P4, x,9)=| ¢,(x,¥) L} (A,x,p) LL(A4x,y)|=|2y -2+24 0 |,

y

o (x,y) L'(Axy) Li(Axy)) (2x 0 2422
or simply

LZ/I(xay) LZy(xay) L;x(xay)
H(f, P, x,y))=H(f, A, p,x)=| L, (x,») L} (2, x,») Ly (Axp)|=
L;/I(xay) L;x(;t)x)y) L;y(;t)x)y)
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0 2y 2x
=12y =2+22 0
2x 0 2424

a) For the point P,(1;0;2) (and respectively for M,(0;2))

0 4 0
A,(1;0;2)=det H(f, P,(1;0;2))=det H(f,1,2,0)=|4 0 0/=—64<0.
00 4

On the base of the same theorem the function possesses a conditional minimum at the
point M,(0;2), namely 0° —2° = —4.
6) For the point P,(1;0; —2) (and respectively for M,(0;—2))

0 -4 0
A,(1;0;-2)=det H(f, P,(1;0;-2))=det H(f,1,—-2,0)=|-4 0 0/=-64<0.
0 0 4

So the function possesses a conditional minimum 0° —(~2)* = —4 at the point M, .
Thus the given function z = x? - y2 attains a conditional maximum 4 at the

points M,(2;0) and M,(—2;0) of the circlex* + y* =4 and a conditional minimum
—4 at its points M,(0;2) and M,(0;-2).

Case 2. The general problem (28), (29) on a conditional extremum.

Let (4,2, )= (Aigs Asgeees Ayg> X1» Xagr-s X, o) bE some stationary point of Lagra-
nge function (38), that is one of solutions of the system (39). To formulate the suffi-
cient condition for existing of a conditional extremum at corresponding geometrical
point x, = (x,,,X,,...,X,,) We’ll introduce two matrices.

a) The first matrix is that

CD(x)z CD(xl,xz,...,xn)

of partial derivatives of the functions (29) (see the formula (40) on the next page).
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Oox, ox, ox,
(I)(x)z(l)(x , X ,...,xn)z ............................................... . (40)
o op, (x) oo, (x) oo, (x)
ox, ox, ox,

Here £ is the number of conditions (29). It’s supposed that the value of the matrix at
the point x, = (x,,, X,,--.,X,,) , that is

CD(xo)= q)(xloaxzor"axno)a
has the rank k£ and so contains at least one non-zero k-th order minor. We’ll dwell on

the case when the next minor (so-called jacobian')

o, (xo) o0, (xo) o, (xo)

ox, Oox, Oox,
8(0(x) 8(0(x) 8(p(x)
D , yeers 2\"0 2\"70 2\"0
(01,0:..-.0,) = ox Ox, Ox, (41)

D(xl,xz,...,xk)

a(Pl;‘(-xo) 8(01;()50) a(pl‘c(XO)

ox, ox, T ox,

doesn’t equal zero.

c) The second matrix to be introduced is Hesse one for Lagrange function (38)

that is
H(L,A,x)=H(L, A\, Aoy Ay X,y Xy X, ). (42)
H(L,i,x)zH(L,il,12,...,ik,xl,x2,...,xn)=
" " " " "
L MM Lll Ay e Lxll A 2% e X, 0 0 " "
" " " " " e Xy e X,
M A2 Ay Ay ArX,
" "
B o S N I T T AR A
- s o v s Xy | T Lll Lll Lll Lﬂ
Lll Lll L" Lll Lﬂ x4 X1 X1X1 XXy
x4 x4, xi A XXy XXy
" " " "
L Lll Lll LH Lll anll an/ll\' anxl o anxn
xnll xnﬂQ o xnﬂ’/\' XpX1 o A’lxn

We have zeros on intersection of & first rows and columns because all first order par-

tial derivatives of Lagrange function with restect to 4,, 4,, ..., 4, are the functions

! Jacobi, K.G.J. (1804 - 1851), a German mathematician. We use a known notation of a jacobian from the left in (41)
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(29) which don't depend on A, 4,,..., 4, . First kX main minors of Hesse matrix are
equal to zero
A=A =.=A =0.

Theorem 6 (sufficient condition for existence of a conditional extremum). Let
for a stationary point (Ay,%,)= (A,4>Aygse-s Ay Xjg> Xag»-sX,o) Of Lagrange function:

1. The Jacobian (41) doesn’t equal zero;

2. A, i>k, is the first nonzero main minor of the value H(L,2,,x,) of Hesse
matrix (42) at the point (A,,X,)= (> Asgse-sAegs Xigs XagsersX,o ) ;

3. signd, = sign(—1)", where k is the number of conditions (29).

Then:

a) if all successive main minors A; of H (L, 2,,x,) have the same sign,
SignA ; = Sign(—l)k, j=i+1i+2,..,n,
then the geometrical point x, = (x,,,X,,,..-,X,,) 1S that of a conditional mimnimum;
b) if the principal minors A,,A.,A.,,,...,A  are alternating,
signA, = (=1),signA_, = (=1)", signA,, = (-=1),...,
then the point x, = (x,,,X,,,-...,X,,) 1S that of a conditional maximum;
c) if at least one of principal minors A ,i < j <n, equals zero, we get so-called

doubtful case which requires a more complicated theory;

d) no extrema in the other cases.

Ex. 10. Find conditional extrema of the function u = xyz with two constraints

X+y+z=35 (qol(x,y,z)=x+y+z—5),
xy+yz+zx=38 (qoz(x,y,z): Xy +yz+zx —8).

The first step: introduction of Lagrange function and finding its stationary
points. Lagrange function is
L=L(A,A,,%,9,2)=f + 2@, + @, =xyz+ A (x+y +2=5)+ A, (xy + yz + zx - 8).

Its first partial derivatives
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L, =¢=x+y+z-51L, =¢,=xy+yz+zx-38,
L =yz+ 2 +/12(y+z),L; =xz+ 0+ A, (x+z2), L =xp+ 4 + A, (x+ y),

Necessary condition for a conditional extremum is represented by the system

L =0, yz+/l]+/12(y+2)=0, (a)
L =0, xz+ A +4,(x+z2)=0, (b)
L =0, xy+/ll+/12(X+y)=0, (¢)
L, =¢,=0, |x+y+z-5=0, (d)
L, =¢,=0; |xy+yz+zx-8=0. (e)

Adding together the equations (a), (b), (c) and keeping in mind (d), () we get
34, +104, +8=0.  (f)
Subtracting the equation (b) from (a) and then (¢) from (b) we get
(y=xfz+4,)=0, (g)
(z—y)(x—l-/lz): 0. (h) '
Remark. One can obtain the equations (g), (h) by the other way. Namely we
have from (a), (b), (¢)
yz+ A, (y+z)=—4,
xz+/”tz(x+z)= -,
xy+lz(x+y)= -,

yz+ A, (y+z)=xz+ A (x+z2), (y—x)z+A,(y—x)=0,
xz+ A (x+z)=xy+ A4, (x+y), (z—y)x+14,((z-y))=0,

hence

(y-x)z+4,)=0, (g)
(z=y)x+2,)=0. (h)
We must study the next cases:
Dy=x,z=y;2)y=x,x=-4,;3)z=-A,,z=y4)z=-1,,x=—-4,.

1) This case x = y = z is impossible by virtue of the equations (d), (e).

2) In the case x = y = —A, the equation (c) gives A, = A2, hence the equation ()
leads to the quadratic 343 +104, +8=0 with roots 4,, =2, 4,, —g. It follows that

Ay = (2,21)2 =4, A, = (/122 )2 = % Corresponding values of x, y and z (by the equation
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(d)) are following: 2,2,1 and 4/3,4/3,7/3. Finally we get two stationary points of

Lagrange function P (4; -2;2;2;1), P. E;—i; i; i; ! and corresponding sta-
| 197737373 3 ponaine

tionary points of the given function M, (2; 2; 1), M 2( %; %; %) .

In the cases 3) and 4) we analogously get another four stationary points

P3(49_2919292)9P4(49_2929192)9P5 Ea_iazaiai 9P6 Ea_iaiazai
9 3 333 9 3333

(pairwise B, P; P, P,) and corresponding geometrical points (stationary points of the

given function)
7 4 4 4 7 4
ML 2;2), M2, 52) M| — —5— [ Mg| —5—5— |
(222 T k4 404

The second step: investigation the stationary points for existence of a condi-

tional extremum. The number of conditions & =2, so (—1) =(=1) =1>0.

A. The matrix of the first partial derivatives of the functions ¢,, ¢, is

op, 0@, 0¢,

CD(xyz)z ox 8y oz _ 1 1 1
e op, 0, 09, y+z x+z x+y)

ox oy Oz

Values of the matrix ®(x, y,z) at the stationary points M, — M, of the function and

corresponding Jacobians are represented below:

@(M)—Qi( )_ 1 1 1 _1 1 1
=L YA )= vtz x+z, x +Yy 13 3 4/

D(pnp,) 1 1 _ o e Plone) |11
D(x,y) |3 3 D(y,z) P 4

()= Dlxryz)=[ | 1 A YR
? 2% Yotz X +Z, X+, 11/3 11/3 8/3’

13 11/3 D(y,z) [11/3 §/3

D((p],coz)_‘ Lol ‘:0 butD(cop%):‘ 1 1‘7&0-
D(x,y)
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@(M3)=(1 : I}M:‘l

1 !
20, d(M,)= Dlone.)
4 3 3) D(x,y) |4 3

3 4 3) D(x,y)

I 1
8 11

3 3

3 3 3

s &1 A Pese)
@(MS)_[S 11 11}%_

I 1 1
coo(m,)=| 11 8 11| D)
3 3 3, D)

It follows that we must use Hesse matrix H, (L;i],iz,x, y,z) for the stationary
points P, — P, of Lagrange function, but investigation of the points F,, P, requires the
other Hesse matrix, namely H, (L;il,iz, y,z,x). For corresponding points M, — M

the rank of the matrix ®(x, y,z) equals 2.

B. Compiling Hesse matrices at arbitrary point (A,iz,x, y,z).
no_xm _Tmr  _Fn  _N.T" _ TN TN N TN _ TN _ 1. _ TN _ TV _ 0.
Ll]l] _Ll]lz - lel] _lelz - 07 Ll]x _Lxl] - Ll]y - Lyl] - Ll]Z _Lzl] - 17 Lxx _Lyy _LZZ - 07
no_rr _ .rn o _Tnr .rr _rn .
lex —Lx/12 =y+z ley —Ly/12 =X+z; lez —LZ/12 =x+Y;
L;'y =L;x =z4+A,; L =L" =y+/12;L;'Z =L;’y =z+4,.
HI(L’;{‘IJ;{‘ZJ‘XJ Y Z):

LZ./M L/'{./b L/,I,,x L/'I',y L/,I',z 0 1 1 1

0
L, Ly, L. L L. 0 0 y+z x+z Xx+y

— L;IAI L” L” L” L” — 1

1

1

i, - - - y+z 0 z+ A, y+A, |
L;,/l. L;ﬂa L;x L;y L;z Xtz z+ /12 0 X+ /12

n n n n n
Lzl, Lzlz L L Lzz

zx zy

xX+y y+A, x+4, 0

HZ(L,ll,lz,y,z,x):
LZI A LZI A LZI ’ LZIZ Lzlx 0 0 1 1 1
/'1'2,1, L/,{z/lz L;;y L,,{zz L}:x 0 0 Xtz x+y y+z
=\Ly, L, L, L. Lj|=|1
poownonorno ||
v,onn Lo L)

X+z 0 xX+4, z4+1,
X+y x+4, 0 y+ A,

y+z z+A, y+4, 0

C. Testing stationary points of Lagrange function for existing of conditional
extrema. There are k =2 conditions, so (-1)' =(=1) =1>0.

a) For the point P, (4,—2, 2,2, 1) (and the point M, (2; 2; 1))
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0 0 1 1 1
00 3 4 3| A-=o
H,(L;R)=H,(L;4,-2,2,2,1)=[1 3 0 0 -1} _‘0 0_,
1 4 0 0 oo
1 3 -1 0
0O 0 1 1 1
0 0 1 1
0 0 1 0 0 3 4 3
0 0 3 4
A=l0 0 3=0:A, = —1>0,A,=]1 3 0 0 —1=2>0.
1 3 0 0
1 3 0 1 4 0 0 O
1 4 0 O
1 3 -1 0 O
) 1 4 4 4 )
b) For the point P, —6,——,—,—,1 (and the point M, (4/3;4/3;7/3))
9 3333
0 1 1 1
oo 81
303 A=A =A,=0
11 1 =8, =43 =Y,
16 4 4 47 1 — 0
H\L;P)=H,|L,—,—,—,—,— |= 3 ;0 A, =1>0,
L 4
1 = 0 0 0| As=-2<0.
3
1 E 1 0 O
3

The function has a conditional minimum 4 at the point M, (2; 2; 1) and a condi-

tional maximum112/27 at the point M, (4/3;4/3;7/3).

.i.i.Zj
37373

, we should get

Note. If we tried to investigate the points

P(4;-2;2;2;1), Pz(%; =

USHINN

N—

with the help of Hesse matrix H, (L,il s Ay, X, ¥, 2
A =4,=4,=4,=0
and only
A, #0,4,>0 (SignA5 =sign(—1)", k = 2)
If we even asserted for the function to reach conditional extrema at these points, we

could say nothing as to their character.
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c) For the point P3(4,—2, 1,2, 2) (and the point M, (1; 2; 2))

001 1 1

0 0 4 3 3|A=A=A,=0,
H/(L;P)=H,(L;4-2,1,2,2)=[1 4 0 0 0] A,=1>0,

1 30 0 -1 A, =2>0.

1 30 -1 0

d) For the point P4(4,—2, 2,1, 2) (and the point M, (2; I; 2))

00 1 1

00 3 4 3|A=A,=A,=0,
H/(L;P)=H,(L;4-2,2,1,2)=|1 3 0 0 —1|, A,=1>0,

1 4 0 0 0 A, =2>0.

1 3 -1 0

The function has conditional minima 4 at the points M, (1;2;2), M,(2;1;2).

e), f) By the same way we ascertain that for the points

p(l6_4744) (16 4474
9 3333 9 3333

A=A, =A,=0,A,=1>0,A, =-2<0

: : .. . 112 :
and therefore the function attains condition maxima 7 at the points

M{Z)i,ij, Mﬁ(z,&,&j,
3373 3373

Answer. The given function achieves the conditional minimum 4 at the points

. . 112 .
M,,M,,M, and the condition maximum 7 at the points M,, M, M, .

POINT 4. ABSOLUTE EXTREMA

Let a function z= (M )= f(x,y) of two variables is continuous one in a clo-

sed bounded domain D. By virtue of the theorem 5 of the lecture 11 it takes on the
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greatest M and the least m values in D. There are points M, (x,, y,) € D,M,(x,,y,)e D

such that
f(M))= f(x,y,)=m=min f(M)=min f(x,y),
f(M,)= flx,,y,)=M =max /(M) =max f(x, y)
The numbers m, M are called absolute extrema of the function in the domain
D. It’s necessary to find them.
Solving the problem of finding m, M we must
take into account that each of
+ the points M, (x,,y,),M,(x,,y,) can lie as inside the
domain D as on its boundary. In the first case it is that
stationary of the function.

On the base of these remarks we can state the

Fig. 5 next
Rule. To find the greatest and the least values (absolute extrema) of a function

z=f(M )= f(x,y) of two variables, which is continuous in a closed bounded do-

main D, it’s sufficient to do as follows:

1. To find all inner stationary points of the function (for ex. points N, P on the
fig. 5).

2. To find stationary points of the function on the boundary of the domain (for
ex. points R, S, T on the fig. 5).

3. To calculate the values of the function at all these points and at angular
points of the boundary of the
domain if they exist (for ex. points 4, B, C on the fig. 5)

4. To choose the greatest and the least of these values.

Finding stationary points of the function on the boundary of the domain D is a
part of the problem on a conditional extremum and can be done by using of Lagrange
function.

If a boundary of the domain D consists of some separate parts (for ex. 48, BC,

CA on the fig. 5), it’s necessary to find stationary points of the function on every of
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9 A ' these parts.

1 Ex. 11. Find the greatest and the least va-lues
of the given function of two variables

4 4 z=f(x,y)=x"+y* —2x—4y

£ in the domain D which is determined by the ine-

2 ..

qualities x>0, y>0, x+y<7.
2 fg‘x The function is continuous in a closed boun-

ol 1 3 7

ded domain D which is a triangle OAB generated by
Fig. 6 the coordinate axes and a straight line

x+y=7 (fig. 6).

. zl=2x-2, (2x-2=0, x=1,
ClZ =2y-4 |2y-4=0; |y=2.

So the point C(I;2) is an inner stationary point of the function.
2. The boundary of the domain D contains three segments OA4, OB, AB.

a) On the segment O4, y=0=>z=x"-2x,z'=2x-2,2'=0if 2x-2=0,
x =1 and so the point D(l; O) is that stationary on OA.

b) On OB, x=0:>z:y2 —4y,z'=0if 2y—4=0, y=2, and we get a sta-
tionary point £(0;2).

c¢) On the segment AB
y=T-xz=x"+(T-x) =2x—47-x)=2x" —12x+21,z' =0 if 4x—-12=0,x=3,
and there is a stationary point F(3;4)e 4B .

3. Now we calculate the values of the function at the points C, D, E, F, O, A, B.

z(C)=z(1,2)=-5; z(D)=z(1,0)=-1, z(E)=2(0,2)=-4, z(F)=z(3,4) =3,
z(0)=12(0,0)=0, z(A4)=2(7,0)=35, z(B)=2(0,7)=21.
4. Answer: mgn z=2(C)=2z(1;2)=-5; max z = z(4)=2(7,0)=35.

Ex. 12. Find the greatest and the least values of the function z = x*> — y” in the

domain D defined by the inequality x* + y* <4.
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The function is continuous in a closed bounded domain D which is a circle of

radius 2 centered at the origin O(0; 0) (fig. 7).

P ,‘%_Q, . 1. The origin O(O; O) 1s unique inner stationary
point of the function
,[// ‘ jg (z,=2x,2,=-2y,z, =z, =0if x=y=0),
) 0 J 2 2. To find stationary points on the boundary of the
domain we deal with a problem on conditional extremum
=4 "é{') for the given function with a boundary condition
Fig. 7 x’+y’ =4,

Lagrange function of the problem is
L(Ax)= £ (x.9)+ Ap(x, y)=2" =y + Ax* + y* - 4),
and the corresponding system of equations, which represents the necessary existing
condition for a conditional extremum, is
L'(,x)=0, x(1+2)=0,
L'(2,x)=0, y(-1+1)=0,
L(4,x)=plx,y)=0; | x*+y*—4=0.
Solving the system (see Ex. 8) gives four stationary points, namely
M, (=2;0),M,(2;0),M,(0; -2),M,(0;2).
3. The values of the function at all found points
2(0)=2(0;0)=0,z(M,) = z(- 2; 0)=0,z(M, ) = z(2; 0) = 4,
z(M,)=2(0; -2)=—4,z(M,)=z(0; 2) = —4.

4. Answer: m =mgnz=z(M3)=z(M4)=—4;M =mgxz=z(Ml)=z(M2)=4.



APPLICATIONS OF DIFFERENTIAL CALCULUS:

129. Absolute (extré-
mum, minimum, maxi-
mum)

130. Angular poéint of a
do-main [région]

131. Approach [tend to]
smth (about a point of a
graph/curve)

132. Approximate value
133. Ascend/rise (from
left to right) (about a
graph, about a curve)
134. Ascénding/rising
(from left to right) (about
a graph/curve)

135. Assumed [proposal,
presupposed] extrémum
(pl extréma)

136. Asymptote
(horizontal, vértical,
oblique/inclined)

137. Be [lie, be found,
situa-te, be situated]

138. Be [lie, be found,
situa-te, be situated]
from/on the right of smth
139. Be [lie, be found,
situ-ate, be situated]
loéwer/be-16w/under of
smth

140. Be [lie, be found,
situa-te, be situated]
from/on the left of smth
141. Be [lie, be found,
situ-ate, be situated]
over/abo-ve smth

142. Be situated [located,
disposed, arranged], be
143. Behavior (of a func-
tion, curve)

144. Concave

basic terminology

AOGCOMIOTHHM (EKCTpEMyM,
MIHIMYM, MaKCUMYM)

KyrtoBa Touka oGmacTi

Hab6mmxatucs 1o yvozocs
(mpo TouKky KpuBOi, rpadi-
Ka)

HaGnmxene 3HaueHHs
CxoauTu/migiimaTucs
(3:11Ba Hamparo) (Mpo rpa-
¢bIK, po KpUBY)
Bucxinnuii (311Ba Hamnpa-
BO)

[lepenbauyBaHu/MOXKIIH-
BHUM EKCTPEMYM

AcumnToTta (ropu30HTa-
JbHA, BEPTUKAJIbHA, TOXU-
7a)

3HaxXOAUTHCH, OyTH po3Ta-
IIOBAHUM

Jlexxatu cripaBa/mpaBopyd
BIJl 4020Cb

JlexxaTtt HUOKYE yo2och

Jlexxatu 31iBa/niBOpyY BiA
Y020Ch

Jlexxatu BUIlIE w020CH

PosmimtyBatucs, 6ytu
pPO3TalllOBaHUM
[loeninka (hyHKIil, KpH-
BOi)

YrHyTui

AGcomoTHBIN (IKCTpe-
MyM, MUHUMYM, MaKCH-
MyM)

VYrnoBast Touka 00acTu

[TpubnuxaTbcs K yemy-mo
(0 Touke KpuBOH, rpadu-
Ka)

[IpubnuxEnHoe 3HaUCHHE
Bocxoaute/mogaumarses
(cneBa HampaBo) (o rpadu-
K€, O KpUBOI1)
Bocxoasmumii, mogHuMaro-
uics (caeBa HalpaBo)

IIpeanonaraemslii [BO3-
MOXHBI | SKCTPEMYM

AcumnToTta (rOpU30HTAIb-
Hasl, BEpTUKaJIbHasI, HAK-
JIOHHAs)
HaxonuThcsi/pacmnonaraTh-
cs1, OBITh PACTIONIOKEHHBIM
JlexxaThb cripaBa om uezo-
aU60

JlexxaTb HUXE ueco-mo

Jlexxatb ciieBa om ueco-
aubo

Jlexxatn/ HaXOIHUTHCs BBILIC
yeco-mo

Pacnonaratecs, ObITh pac-
MOJIOKEHHBIM

[loBenenue (PpyHkiuwy,
KpUBOH)

Boruyrsiii
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145. Concave (graph,
part/ piece of a graph,
curve)

146. Concavity

147. Conditional (extré-
mum, minimum, maxi-
mum

148. Construct [plot,
trace, sketch] a carve, a
graph point by point

149. Construct [plot,
trace, sketch] a graph of a
fanc-tion, graph a finction
150. Construction [const-
ricting, tracing] graph of
a finction [graphing a
finction]

151. Construction a
graph point by point

152. Conveéx [coOnvex]
153. Convéx [convex]
(graph, part/piece of a
graph, of a curve)

154. Convéxity

155. Correspond to the
ex-trémum (abdut a point
of a clrve, of a graph)

156. Critical pdint

157. Cuspidal pdint

158. Decréase

159. Décrease

160. Decréasing/decay
161. Dependence (linear,

nonlinear/curvilinear, qua-
dratic, parabolic(al) etc)
between variables ...

162. Descénd/drop (from
left to right) (about a
graph, about a curve)

163. Descénding/droppin
g (from left to right)
(about a graph, about a
curve)

VYruyruii [yrayra] (rpa-
¢bik, yacTUHA/IUISTHKA Tpa-
¢bika, KpuBa)

VYTHYTICT

YMoBHUH (EKCTpEMyM, Mi-
HIMYM, MaKCUMYM)

bynysatu, noGynyBatu
KpHUBY, Tpadik MO TOUKAX

bynysatu, noGynyBatu
rpadix pyHKIIT

[ToOynoBa rpadika ¢pyHK-
il

[ToOynoBa rpadika mo To-
YyKax

Onyxknui

Onyxnuii [onykia] (Tpa-
¢bik, yacTUHA/IUISTHKA Tpa-
¢bika, KpuBa)

OnykJicTh

Binnosinatu ekcrpeMymy
(mpo Touky KpuBOi, rpadi-
Ka

Kpurnuna Touka

Touka 3B0poTy

Cnanatun

Cnananus

Cnanarounii

3anexHicTh (JTiHINAHA, HE-
JiHIHA, KBaJIpaTUYHa, Ta-
paboJiiuHa i m.iH.) MK
3MIHHUMM. . .

Cnanaru/onyckatucs/
cryckaTHcs (311Ba Harpa-
BO) (1Ipo rpadik, KpUBY)
Husxinauit, Toi, 1mo omyc-
KaeTbed (3J11Ba HAMPaBo)

BoruyTslii [BoruyTas|
(rpaduk, yacTh/y4acTok
rpaduka, KpuBas)
Borunyrocts

VY cnoBHBIN (3KCTpEMYM,
MUHHUMYM, MAaKCUMYM)

CrtpouTth, IOCTPOUTH KPH-
BYIO, T'papK 10 TOUKaM

Ctpoutb, MOCTPOUTH I'pa-
bux GyHKIIIU

[TocTpoenue rpaduka
byHKIIIH

[TocTpoenue rpaduka mo
TOYKaM

Breimykibii

BoInyKIibli [BBITyKJIaS |
(rpaduk, yacTh/y4acToK
rpaduka, KpuBas)
BrinmykiocTs
CoO0TBETCTBOBATH IKCT-
pemymy (0 TOUKEe KpUBOH,
rpaduka)

Kputnueckas touka
Touka Bo3Bpara
VYO6nIBaTH

YObIBaHuE

Y 6biBaromumii
3aBUCUMOCTH (JIMHEIHAS,
HeJMHeHas1, KBaipaTuyie-
cKas, nmapabonauyeckas u
m.0.) MEXy NepeMEeHHbI-
MH. ..
Hucxonute/onyckatbes
(cneBa HarpaBo) (o rpa-
¢uke, 0 KpUBOiN)
Hucxopsammi, omyckato-
uics (caeBa HalpaBo)



164. Design [draft,
draw-ing, fréehand/rough
draw-ing, sketch, vérsion]
of a graph/plot of a func-
tion

165. Design, drawing,
figure

166. Disposition
[situdtion, location] (for
example of a line)

167. Draft [a:], do a
draft

168. Drawing, figure,
draft

169. Drop/descénd (from
left to right) (about a
graph/curve)

170. Drop-
ping/descénding (from left
to right) (about a
graph/curve)

171. Empiric(al) relation
[de-péndence,connéction,
corre-lation] (betwéen
variables ...)

172. Estéablish (a relation
[depéndence,connéction,
correlation] between varia-

bles ...)

173. Establish a conditi-
on

174. Exact
design/drawing/
figure/draft

175. Existence

176. Existence condition,
condition of existence

177. Extrémum (p/ ex-
tréma) of a flnction of one
[two, three, n, séveral]
variables (lécal, rélative,

Ecki3 rpadika ¢pyHkuii

Pucynox

ITonoxeHHs, po3ramyBas-
H (Hanp. JiHI1)

Pobutu pucyHox

Kpecnenns

Cnanaru/onyckatucs/
cryckatucs (3711Ba Hampa-
BO) (11po rpadik, mpo Kpu-
BY)

Huzxigauit [Toi, mo omy-
CKa€eThCs | (3711Ba HAMPABO)

(mpo rpadik, mpo KpUBY)

Emmipuune cmiBBiIHO-
HIEHHS [eMIipuyHa 3a-
JEXKHICTh, eMIIPUYHUN
3B"s130K] (MK 3MIHHUMHU )

YcranoButH (CiBBiIHO-
IIEHHS, 3B" 130K MK 3MIH-
HHUMH)

BcranoButu ymoBy
TouHul pUCYHOK
IcuyBanHs

YMoBa icHyBaHHS
Excrpemym QyHkii oaHi-
€1 [1BOX, TPHOX, 7, AEKLJIb-

KOX] 3MIHHUX (JIOKQJIbHUH,
BIJHOCHHI, a0COIIOTHHH,
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Ocku3, Habpocok rpaduka
byHKIIIHN

Pucynox

[Tonoxenue, pacroioxe-
Hue (Hanp. TUHUN)

Jlenatb yepTEx, pUCYHOK

Yepréx

OnycKaThCs/HUCXOIUTD
(cneBa HampaBo) (o rpadu-
K€, O KpUBOI1)

Onyckarnuncs, HUCXo-
nsui (caeBa Hamparo) (0
rpaduke, 0 KpUBOA)

OMIOUPHUIECKOE COOTHO-
HIEHUE [PMIIUpUYECKaAs 3a-
BUCHUMOCTb, YMITUPHUYEC-
Kas CBSI3b| (MEXIy mepe-
MEHHBIMH )

YcraHoBUTH (COOTHOIIIE-
HUE, CBSA3b MEX]Y Mepe-
MEHHBIMH )

Y CTaHOBUTH yCIIOBUE
TouHbll YepTEXK/PUCYHOK
Cy1iiecTBoBaHuE

YcioBue CymecTBOBaHUS
OkcTpeMyM QYyHKIMH OA-
HOH [IBYX, TPEX, 1, HECKO-

JbKUX | IEPEMEHHBIX (J10-
KQJIbHBI, OTHOCUTEb-
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absolute, conditional)

178. Extrémum problem
179. Extrémum, p/
extréma (local, rélative,

absolute/ global,
conditional)

180. Find smth in the
best way

181. Find the (l6cal, ré-
lati-ve, absolute,
conditional) extréma

[minima, maxi-ma)] of a
given function

182. Géneral
schéme/plan for in-
vestigation/investi-gating
finctions and cons-
tructing graphs

183. Global [absolute]
(ex-trémum, minimum,
maxi-mum)

184. Graph [chart, curve,
graphical chart, curve,
plot] ofa finction, plotted
fanction, finction graph
185. Gréatest and Iéast
va-lues of a function conti-
nuous over/in the bounded
clésed domain/région

186. Gréatest value of a
finction

187. Gréatest value of a
fin-ction which is
continuous one over/in/on
a ségment [bounded
clésed doméin/ région]
(absolute maxim-um)
188. Héssian

189. Héssian matrix
190. Horizontal
asymptote

YMOBHHI )

Excrpemainbha 3amaua

ExcrpemymMm (J0KanbHUM,
BIJTHOCHHMI, a0COJIFOTHUHN
/rno6anbHUM, YMOBHUA)

3HAWTH Wocy sIKHAUKpa-
e

3HalTH (JIOKaJIbHI, BITHO-
CHI1, aDCOJIOTHI, YMOBHI)
EKCTPEMYMH [MIHIMYMH,
MaKCUMYMH | JaHOT (PyHK-
i

3arajgpHa cxema [3arajib-
HUH TUTaH]| JOCTIIKEHHS
¢byHKUIH 1 T0OYI0BU Tpa-
¢bikiB

I'nmo0GanbHM/a0CcOMOTHUI
(excTpemMyM, MIHIMYM, Ma-
KCUMYM)

I'padix dpynkuii

HaiiGinbie i HaiiMeHIe
3HaueHHs (PyHKIII1, Here-
pPEpBHOI Ha BiAPI3KY [B
3aMKHEH1! 0OMexeH11
obJacTi]

HaiiGinpie 3HaueHHS
byHKITIi

HaiiGinpie 3HaueHHS
¢byHK11i, HeTepepBHOI HA
BIJIPI3KY [B 3aMKHEHII 00-
MekeHii obmacti] (abco-
JIOTHUNA MAaKCUMYM)

I'eccian, BU3HAYHUK (J1€-
tepmiHaHT) ['ecce
Marpuus ['ecce
['opu3oHTa)IbHA ~ ACHUMII-
TOTa

HBIN, a0COJIFOTHBIN, YCIIOB-
HBI)

DKcTpeManbHas 3a1a4da
DKCTpeMyM (JIOKaJIbHBIM,
OTHOCUTEIBHBIN, a0COo-
JIOTHBINA/TTI00QJIBHBIN, YC-
JIOBHBIH)

Haiitu umo-n. Haunydmum
oOpazom

Haiitu (mokanbHbI€, OTHO-
CUTEJIbHbIE, A0COJIIOTHEIE,
YCIIOBHBIE) 3KCTPEMYMBI
[MUHMMYMBI, MAKCUMYMBI |
JaHHOW QYHKIIUU

O6m1as cxema [001mIHiA
IJIaH]| UCCIIeO0BaHUS
GyHKUMN 1 TOCTPOEHUS
rpadukoB

I'no0anbHbII/a0CONIOTHBIN
(3KCTpEeMyM, MUHUMYM,
MaKCUMYM )

I'padux pynxun

Haubonbiiee u HauMeHb-
niee 3HayeHue QyHKIUH,
HENPEPBIBHON HA OTPE3KE
[B 3aMKHYTOIi OTpaHHYCH-
HOI o0JyacTu]
Haubonbiiee 3HaueHmne
byHKIIIHN

Haubonpiee 3HaueHmne
(GYHKITNH, HEMTPEPHIBHOU
Ha OTPE3KE [B 3aMKHYTOMH
OrpaHUYEHHON 00JIaCTH |
(aOCOIIOTHBIN MAaKCUMYM)

['eccuan, onpeaenurenb
(nerepmunanT) I'ecce
Martpuua I['ecce
I'opusonTanbHas
TOTa

ACHUMII-



191. Hypothesis (p/ hy-
pO-theses)

192. Hypéthesize

193. Incréase

194. Increase

195. Incréasing

196. Infléction/infléxion
(of a graph of a function)
197. Infléction/infléxion/

flex point, pdint of inflect-
tion/infléxion [flex, inflé-
xion, point of contrary flé-
xure|]

198. Interval of décrease
of a flnction

199. Interval of increase
of a flnction

200. Interval of
monotonici-ty [monotone-
ness, mond-tony] of a
finction

201. Invéstigate [find
out] (a fanction, the be-
havior of a function, a
critical/ stationary pdint
etc)

202. Invéstigation [find-
ing out] (of a function, of
the behavior of a function,
of a critical/stationary
point efc)

203. Léast value of a
fanc-tion

204. Leéast value of a
finc-tion which is
continuous one dver/in/on
a ségment [bounded
clésed doméin/ région]
(absolute minim-um)

205. Least-squares
méthod [méthod of léast
squares |

206. Line of regréssion

I'imoresa

bynysatu [yTBOproBatu,
BHCJIOBJIIOBATH | T1OTE3Y
3pocTaTtu

3pocTaHHs

3pocTarounii

[leperun (rpadika pyHK-
i)

Touka neperuny

InTepBain cniaganus
byHKITIi

InTepBai 3pocTanHs
byHKITIi

IHTepBa MOHOTOHHOCTI

byHKITIi

Hocniautu (PyHKILiTO,
NOBEAIHKY (YHKIIIT, KpU-
TUYHY/CTallIOHAPHY TOUYKY
i m.in.)

Hocmikenns (GyHKIIi,
NOBEAIHKU (DYHKIIIT, KpH-
TUYHOI/CTaIliOHAPHOT TOY-
KU [ M.IH.)

HaiimeHie 3HaueHHs
byHKITIi

HaiimeHiie 3HaueHHs
byHK11i, HeTepepBHOT Ha
BIJIPI3KY [B 3aMKHEHII 00-
MeeHii obmnacti] (abco-
JOTHUN MIHIMYM)

MeTtoa HaMEHIIINX KBa-
TpaTiB

Jlinis perpecii y Ha x
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I'unoresa

Ctpoutsb [00pa3oBbIBATS,
BBICKa3bIBaTh | TUTIOTE3Y
Bo3pacrars
Bo3pacrtanue
Bo3pacraromuit

[leperu6 (rpaduxa ¢pyHK-
11 )

Touka neperubda

WuTepBan yobiBaHUS
byHKIIIH

WuTepBan Bo3pacTaHus
byHKIIIHN

WNuTepBan MOHOTOHHOCTH
byHKIIIH

Uccnenorats (pyHKIIHIO,
MOoBeICHUE (PYHKITUHU, KPH-
TUYECKYIO/CTAIIMOHAPHYIO
TOUKY U m.0)

Uccnenosanue (pyHkmy,
noBeAeHUs GYHKLINUU, KpHU-
TUYECKOM/CTallMOHAPHON
TOYKH U M.O)

Haumensbiuee 3HaueHue
byHKIIIH

Haumensbiuee 3HaueHue
(GbyHKIUYU, HETIPEPBIBHOMN
Ha OTPE3KE [B 3aMKHYTOMH
OrpaHUYEHHON 00JIaCTH |
(aOCOIOTHBIM MUHUMYM )

Metoq HaUMEHBIITNX KBa-
IpaToB

JIuHus perpeccuu y Ha x
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of yonx

207. Loécal  (extrémum,
mi-nimum, maximum)
208. Maximization

209. Méximize smth

210. Maximum (p/
maxi-ma) (1ocal, rélative,
abso-lute/global,
conditional) of a finction
211. Maximum point,
point of maximum

212. Méthod of La-
grange’s indetérmi-
nate/undetermi-ned multi-
pliers

213. Minimizétion

214. Minimize smth

215. Minimum (p/
minima) (l6cal, rélative,
absolute/ global,
conditional) of a finction
216. Minimum point,
point of minimum

217. Monoto-
ne/monotonic

218. Monotonically (inc-
réase, decréase)

219. Monotonicity
[monoto-neness,
monoétony]|

220. Nécessary condition
221. Nécessary condition
of existence
222. Négative
quad-ratic form

définite

223. Normal system of
(the) 1éast-squares méthod

224. Not to decréase
225. Not to incréase
226. Oblique [inclined]
asymptote

227. Part/piece of conca-

JlokanbHU (EKCTpEMYM,
MIHIMYM, MaKCUMYM)
Makcumizantis
MakcumizyBaTu
MakcumyMm yHkIii (Jio-
KaJbHUH, BITHOCHUM, a0-
COJTIOTHHI/TI100aIbHUH,
YMOBHHI )

Touka MakcumMymy

Meto HEBU3HAYEHUX
MHOXHUKIB Jlarpanxa

Minimizanis
MinimMi3zyBaTu

Minimym ¢yHK1IT (JJ0Ka-
JBHUM, BITHOCHHH, a0Cco-
JFOTHUI/TII00aIbHUM,
YMOBHHI )

Touka MiHIMYMY

MoHOTOHHUN

MonoToHHO (3pocTaTH,
CIIaJIaTH)
MOHOTOHHICTB

HeoOxinna ymoBa
HeoOxinna ymoBa icHY-
BaHHS
Bin"emHoO-BU3HAaUEHa KBa-
apatuyHa popma

Hopmainbna cucrema me-
TOAY HalMEHIIUX KBaJpa-
TiB

He cniagatu

He 3pocratu

IToxuna acumnrora

YacTuHa/niIsiHKa YyTHYTO-

JlokanbHbIN (3KCTPEMYM,
MUHHUMYM, MAaKCUMYM )
Maxkcumusanus
MakcuMu3upoBaTh
MakcumyM pyHKIMH (J10-
KQJIbHBI, OTHOCUTENb-
HBIH, a0COJIFOTHBIN/TI00a-
JIbHBIN, YCIOBHBIN)

Touka MmakcumMyma

Meton HeonpeaeIEHHBIX
MHOXkUTENEN Jlarpanxka

Munumuzanus
MUHMMU3HPOBATH
Munumym ¢yHKIMA (J10-
KQJIbHBI, OTHOCUTENb-
HBIH, a0COJIFOTHBIN/TI00a-
JIbHBIN, YCIOBHBIN)

Touka MUHUMYMa

MOHOTOHHBIN

MoHoTOHHO (BO3pacTaTh,
yObIBaTh)
MOHOTOHHOCTB

HeoOxonumoe ycioBue
HeoOxonumoe ycioBue
CYILIECTBOBAHHUSI
OTpunatensHO onpee-
NE€HHAsl KBaIpaTU4Has
dbopma

Hopmainbhnas cucrema me-
TOJla HAMMEHBIINX KBa-
paToB

He yOniBaTh

He Bo3pacrath
Haxionnas acumnrora

YyacTok/4acTh BOrHYTO-



vity

228. Part/piece of convé-
Xity

229. Pass through the
point

230. Point of (asstimed/
proposal/presupposed) ex-
trémum

231. Point of a curve, of
a graph corresponding to
the extrémum, bénding
point

232. Poéint of extrémum,
extréme point
233. Positive
quadratic form

définite

234. Preliminary/téntati-
ve design [draft, drawing,
freehand/rough drawing,
sketch, vérsion] of a graph
/plot of a finction (graph/
plot ad interim nam.)

235. Principal minor of
the first [second, third, n-
th] order; principal minor
of o6rder one [two, three,
n]; first-[second-, third- n-
th] order principal minor
236. Quadratic form
237. Rélative (extrémum,
minimum, maximum)

238. Reépresént (for
example a curve)

239. Representation (for
example of a curve)

240. Rise/ascénd (from
left to right) (about a
graph /curve)

241. Rising/ascénding
(from left to right) (about
a graph/curve)

CT1

YacTuHa/IiIsIHKa OMYKII0-
CT1

[Tpoxoautu yepe3 TOUKy

Touka MOKIIMBOTO €KCT-
pEMyMy

Touka kpuBoi, rpadika,
sKa BIATIOBIIA€ EKCTPEMY-
My

EkcTpeManibHa TOUYKa, TOU-
Ka EKCTPEMYMY
JlogatHO-BU3HA4YEHA KBa-
apatuyHa popma

[Tonepenniii ecki3 rpadika
byHKITIi

["onoBHMIT MiHOP MEPIIOTO
[Apyroro, TpeThOro, n-ro|
MOPSIAKY

KBanpatuuna dopma
BinHocHuit (excTpemym,
MIHIMYM, MaKCUMYM)

3o00paxkatu/300pazutu
(Hanp. xpuUBY)
3o00paxeHHs (Hanp.
KpHUBOI)
CxoauTu/migiimaTucs
(3:11Ba HampaBo) (MPo KpH-
BY, PO Tpadik)
BucxigHui, ToM, 1110
migiiMaeThes (3711Ba Ha-
npaso) (IIpo KpUBY, Ipo
rpadik)
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CTH
VYyacTok/4acTh BBITYKJIO-
CTH

[TpoxoauTh yepe3 TOUKyY

Touka (BO3MOXHOI'0) JKC-
TpeMyma

Touka kpuBoO#, rpaduxka,
COOTBETCTBYHOILIAs IKCTPE-

MyMy

DKCTpeMaybHasi TOUKa, TO-
YyKa dKCTpeMyma
[TonoxurenbHO onpeze-
NEHHas KBaJpaTUyHas
dbopma

IIpenBapuTenbHbIN 3CKU3,
HaOpocoK rpaduka GyHK-
002078

I'maBHBIN MUHODP TIEPBOTO
[BTOpPOro, TPETHETO, 1-TO|
nopsiaAKa

KBangpatuunas popma
OTHOCUTENBHBIN (IKCTpe-
MyM, MUHUMYM, MaKCH-
MyM)
N306paxkaTb/n300pa3uth
(Hanp. KpUBYIO)
N3o6paxxenue (Hanp.,
KpUBOH)

[TogHUMATHCS/ BOCXOUTD
(cneBa Ha-mpaBo) (o rpa-
¢uke, 0 KpUBOiN)
[Tognumaromui-cs, BOc-
XOJIAIINN (CTIeBa HAIIPaBo)
(o rpaduke, 0 KpUBOH)
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242. Schematic design
[drawing, figure, draft]
243, Séparate a part/piece
of convéxity of a curve
and that of its concavity

244, Solve the préblem
for a(n) (I16cal, rélative, ab-
solute, conditional) extré-
mum

245. Stage/step of invest-
tigation

246. Stationary pdint
247. Straight line of reg-
réssion of y on x

248. Strict (monotonicity
[monotoneness, monoto-
ny], increase, décrease, ex-
trémum, minimum, maxi-
mum)

249. Strictly (incréase,
decréase, monotone/mo-
notonic, incréasing, dec-
réasing/decay)

250. Sufficient condition
251. Sufficient condition
of existence

252. Suggést (a depén-
dence between variables
... of the form...)

253. Sum of squdres of
(the) érrors

254. Tangent (line) at the
point of infléction/inflé-
xion

255. Test/invéstigate a
fanction for a(n) (local, ré-
lative, absolute, conditio-
nal) extrémum

256. Vértical asymptote

CxeMaTHU4HHI pUCYHOK

BinokpemiioBaTH IUISHKY
/4aCTUHY ONYKJIOCT1 KpH-
BO1 B/l NUITHKWA/9aCTUHM ii
YTHYTOCTI

Po3B"s3atu 3a1auy Ha (J10-
KaJbHUH, BITHOCHUM, a0-
COJIFOTHMIA, YMOBHUI1) €KcC-
TpeMyM

Etan nocnimxenus

CraiionapHa Touka
[Ipsima perpecii y Ha x

Crporwuii [cTpora] (MOHO-
TOHHICTh, 3pOCTaHHS, CIla-
JaHHS, EKCTPEMYM, MiHi-
MyM, MaKCUMYM )

Crporo (3pocTatu, cria-
JlaTu, MOHOTOHHUM, 3pOC-
Tar4Mi, CriaJarounii)

JlocTaTHs ymoOBa
JloctaTHsi yMoOBa iCHY-
BaHHS

HaBoguTu Ha nymKy, mij-
Ka3yBaTH (3aJICXKHICTh MK
3MIHHUMH ... BUTJISIY...)

CymMma kBajipaTiB MOMIJIOK/
HOXHUOOK
JloTrdHa B TOUII1 MIEPETHU-

Hy

JocnianTi GyHKIII0 HA
(JiokasIbHUH, BITHOCHUM,
a0COIOTHUM, YMOBHHUI)
EKCTPEMYM
BepTukanpHa acuMmnTora

CxeMaTtndeckuii uep-
TEXK/PUCYHOK

OTnensTh y4acToOK/4acTh
BBITTYKJIOCTH KPUBOM OT
ydacTKa/4acTu €€ BOTHY-
TOCTH

Pemuts 3amauy Ha (J10Ka-
JIbHBIN, OTHOCUTEIILHBIN,
a0COJIOTHBIH, YCIOBHBIN)
AKCTPEMYM

JTan uccliie10BaHus

CranunoHnapHas TOUKa
[Ipsamas perpeccuu y Ha x

Crporuii [cTporas] (mo-
HOTOHHOCTb, BO3PAaCTaHUE,
yObIBaHUE, IKCTPEMYM,
MUHUMYM, MAaKCUMYM)

Crporo (Bo3pactarhb, yObI-
BaTh, MOHOTOHHBIN, BO3pa-
CTaroUINi, yObIBaOUIUM)

JlocTaTouHOE yCIOBHUE
JlocTaTouHOE yCIOBHUE
CYIIECTBOBaHHSI
HaBoauTh Ha MBICIIb, HOI-
CKa3bIBaTh (3aBUCHUMOCTH
MEXIY IEPEMEHHBIMH ...
BHJA...)

CymMa KBaIpaToB OIIH
OoK/morpenrHocTen
KacarenbHas B TOUuke Iie-
perubda

UccnenoBath GpyHKIMIO HA
(JTOKaJIbHBIN, OTHOCUTEIb-
HBIH, a0COJIFOTHBIN, YCIIOB-
HBII) SKCTpEMyM

BeprukanbHas acumMnrora
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