МЕТОДИКА ПОЛУЧЕНИЯ УПРОЧНЕННОГО β-ГИДРИДА ПАЛЛАДИЯ И ВОЗВРАТ ЕГО МЕХАНИЧЕСКИХ СВОЙСТВ ПРИ ОТЖИГЕ В ВОДОРОДЕ

Д.А. Гляков*, М.В. Гольцова, Г.И. Жиров

Донецкий национальный технический университет, г. Донецк, Украина ул. Артема, 58, Донецк, 83000, Украина

Annotation

There is elaborated an experimental technique of strengthened palladium β -hydride production. For this aim cold-worked palladium was saturated with hydrogen through the conditions, when $\alpha \rightarrow \beta$ transformation proceed. Mechanical properties of cold-worked β -hydride are as follows: $\sigma_B = 280 \text{ H/mm}^2$, $\sigma_{0.2} = 180 \text{ H/mm}^2$, $\delta = 1\%$. Then recrystallization and mechanical properties reflex were studied. It was discovered, that primary recrystallization proceeds in 275–350°C temperature rate. After recrystallization plasticity of palladium β -hydride becomes even higher than the one of annealed palladium.

Введение

В работе [1] была разработана методика получения ненаклепанного β -гидрида палладия. Эта методика заключается в насыщении отожженного палладия водородом таким образом, чтобы фигуративная точка на диаграмме состояния системы Pd—H двигалась «в обход» купола двухфазной (α + β)-области, и образец при насыщении не претерпевал гидридного превращения. В работе [2] было экспериментально установлено, что ненаклепанный β -гидрид палладия является очень пластичным материалом, по своим свойствам сопоставимым с отожженным палладием.

Задача настоящей работы состояла в том, чтобы разработать методику получения упрочненного β -гидрида палладия и изучить возврат его механических свойств и рекристаллизацию при отжиге в водороде.

1. Материал и методика эксперимента

В работе исследовали высокочистый палладий (99,98%) в виде проволоки Ø 0,5 мм в состоянии поставки. Проволока была изготовлена по стандартной технологии: после промежуточного отжига на последнем этапе волочения палладий был подвергнут деформации 95%. Из проволоки нарезали опытные образцы длиной 165 мм для водородной обработки и механических испытаний и образцы-свидетели длиной 40 мм.

Насыщение образцов водородом и их рекристаллизационный отжиг проводили в водородо-вакуумной установке ВВУ-3 [3]. ВВУ-3 позволяет осуществлять обработку в вакууме (~1 Па) и в водороде (≤4 МПа) при температурах от комнатной до 1100°С и одновременно измерять удельное электросопротивление образца-свидетеля для контроля наводораживания образцов.

^{*} Автор-корреспондент, e-mail: goltsova@fem.dgtu.donetsk.ua

После проведения рекристаллизационного отжига образцы извлекали из ВВУ-3 и испытывали на разрывной машине РМУ-0,05-1, предназначенной для проведения испытаний образцов на растяжение с усилием до 500 Н. Длина рабочей части образцов – 100 мм. Растяжение проводили при постоянной скорости перемещения подвижного зажима разрывной машины 10 мм/мин. После проведения испытаний по стандартной методике определяли предел прочности $\sigma_{\text{в}}$, $H/\text{мм}^2$, условный предел текучести $\sigma_{0,2}$, $H/\text{мм}^2$, относительное удлинение δ , %.

2. Методика получения упрочненного β-гидрида палладия

Вначале измерили механические свойства исходного, нагартованного палладия в состоянии поставки, их уровень составил $\sigma_{\text{в}} = 302 \text{ H/mm}^2$, $\sigma_{0.2} = 236 \text{ H/mm}^2$, $\delta = 1\%$.

Затем экспериментальные образцы и образцы-свидетели помещали в рабочую камеру ВВУ-3, которую вакуумировали. Образцы нагревали до 130° С. При этой температуре в рабочую камеру подавали водород со скоростью 0,1 МПа/мин до давления 2,5 МПа. Иными словами, образцы наводораживали таким образом, что они претерпевали прямое гидридное фазовое $\alpha \rightarrow \beta$ превращение. По достижении давления 2,5 МПа делали изотермобарическую выдержку, отслеживая изменение удельного электросопротивления образцасвидетеля, до полного насыщения деформированного палладия водородом.

Подчеркнем, что β -гидрид палладия, будучи насыщенным твердым раствором водорода в палладии, является по своей природе иным материалом, нежели чистый палладий, и поэтому сравнение его свойств со свойствами чистого палладия является в известной мере некорректным. Соответственно, мы сопоставляли механические свойства упрочненного β -гидрида палладия со свойствами ненаклепанного β -гидрида палладия, описанными в работе [2]. Ненаклепанный β -гидрид палладия имеет следующие свойства: $\sigma_{\rm B}$ =200 H/мм², $\sigma_{0,2}$ =31 H/мм², δ = 34 % [2]. Таким образом, ненаклепанный β -гидрид палладия по своей природе является очень пластичным материалом. Разработанная нами методика насыщения водородом исходно нагартованного палладия позволяет получить β -гидрид в сильно упрочненном виде. Действительно, механические свойства наклепанного β -гидрида палладия, как оказалось, имеют следующие характеристики: $\sigma_{\rm B}$ =280 H/мм², $\sigma_{0,2}$ =180 H/мм², δ =1%.

3. Возврат механических свойств β-гидрида палладия при его отжиге в водороде

Рекристаллизационный отжиг каждой партии полученного упрочненного β -гидрида палладия (3 образца) осуществляли сразу и непосредственно в установке BBУ-3 путем их нагрева со скоростью 4–5°С/мин в водороде ($P_{12} = 2.5 \text{ M}\Pi a$) до заданной температуры, выбранной из интервала 170–700°С. После стабилизирующей выдержки (5 мин) образцы отжигали в течение 90 минут. По окончании рекристаллизационного отжига рабочую камеру

без откачки водорода охлаждали сначала вместе с печью до 150°С. Затем образцы извлекали из печи, охлаждали на воздухе до комнатной температуры и сразу же испытывали на разрывной машине.

Результаты экспериментов представлены в таблице.

Таблица 1 Механические свойства β-гидрида палладия, отожженного в среде водорода

	Температура отжига, °С	Предел прочно сти $\sigma_{\text{в}}$, Н/мм^2	Условный предел текучести $\sigma_{0.2}$, $H/мм^2$	Относительное удлинение δ, %
1	170	276	183	1,13
2	200	285	192	1,5
3	225	280	186	1,8
4	250	224	175	5
5	275	193	59	39
6	300	193	53	41
7	350	191	40	46
8	400	190	40	47
9	500	181	39	43
10	600	171	36	43
11	700	168	35	42

Как видно из таблицы, отжиг при температурах до 225°С практически не меняет механических свойств упрочненного β -гидрида палладия. При отжиге при 250°С уже намечается возврат механических свойств: предел прочности уменьшился на 5%, предел текучести — на 0,5%, относительное удлинение возросло до 5%. Отжиг в интервале температур от 275 до 350°С привел к первичной рекристаллизации и практически полному возврату механических свойств (позиции 5–7 в таблице). При дальнейшем повышении температуры механические свойства гидрида палладия претерпевают лишь малые изменения. При этом $\sigma_{0,2}$ понижается до 35 H/мм² при отжиге при 700°С. Описанный выше возврат механических свойств исходно упрочняемого гидрида палладия особенно наглядно виден на рисунке.

Весьма интересно, что гидрид палладия после рекристаллизационного отжига обладает более высокой пластичностью ($\delta = 42\%$), чем отожженный палладий ($\delta = 37\%$). В этом, как мы считаем, принципиальным образом проявляется особая природа гидрида палладии, как концентрированного твердого раствора водорода в переходном металле.

Действительно, при проведении испытаний на растяжение отожженных образцов β-гидрида палладия наблюдалась известная в металловедение «бегающая шейка»: последовательное образование утонений («шеек») по длине образца. Проявление и механизм этого эффекта состоит в следующем. Первая появившаяся на образце шейка сначала, как и положено, последовательно развивалась до некоторого предела. Затем ее развитие пре-

кращалось. Далее формировалась новая шейка, и процесс многократно повторялся. Непосредственно до разрыва образца количество шеек на разных образцах формировалось от 3 до 5 штук. Мы считаем, что это явление однотипно так называемому TRIP-эффекту. Суть TRIP-эффекта в метастабильных сталях, как известно, заключается в том, что при образовании шейки на образце (т.е. в области максимальных пластических деформаций) развивается фазовое превращение, которое локально упрочняет металл.

В нашем случае, при образовании шейки вследствие возникающих напряжений и возможного локального удаления водорода в сплаве Pd—H развивается локальное обратное β — α гидридное фазовое превращение. При этом имеет место локальный водородофазовый наклеп материала. В результате развитие данной шейки прекращается. Далее формируется новая шейка в новом месте образца. Этот процесс повторяется и в целом обеспечивает повышенное относительное удлинение рекристаллизованного гидрида палладия при его деформировании растяжением.

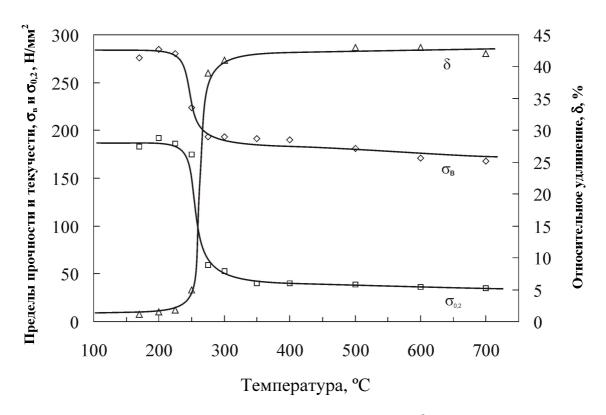


Рисунок. Возврат механических свойств упрочненного β -гидрида палладия при отжиге в водороде.

Выводы

1. Разработана методика получения упрочненного β -гидрида палладия путем насыщения водородом исходно нагартованных палладиевых образцов при температурах много ниже критической температуры системы Pd–H ($T_{\text{kd}} = 292^{\circ}\text{C}$). Упрочненный

- гидрид палладия имеет следующие механические свойства: $\sigma_{\text{B}} = 280 \text{ H/mm}^2$, $\sigma_{0.2} = 180 \text{ H/mm}^2$, $\delta = 1 \%$.
- 2. Исследованы рекристаллизация и возврат механических свойств упрочненного β-гидрида палладия при его отжиге в водороде. Установлено, что первичная рекристаллизация упрочненного гидрида палладия имеет место в интервале температур от 275 до 350°C.
- 3. Во время испытаний на растяжение образцов β-гидрида палладия, отожженных при температурах выше температурного интервала рекристаллизации, зарегистрировано формирование множественных шеек вследствие развития гидридного TRIPэффекта.

Литература

- 1. Goltsova M.V., Artemenko Yu.A., Zaitsev V.I. Kinetics of reverse $\beta \rightarrow \alpha$ hydride transformations in thermodynamically open palladium-hydrogen system // J. Alloys & Compounds. 1999. Vol. 293–295. P. 379–384.
- 2. Жиров Г.И. Отожженный и водородофазонаклепанный гидрид палладия: методики получения и механические свойства // ФТВД.— 2003. Т. 13, № 2. С. 71—82.
- 3. Ветчинов А.В., Гляков Д.А., Гольцова М.В. Новая экспериментальная водородо-вакуумная установка // Труды Третьей Международной конференции «Водородная обработка материалов» (ВОМ-2001), Донецк–Мариуполь, 14–18 мая 2001 г. С. 142–143.