ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЧИСЛА САТЕЛЛИТОВ НА ГАБАРИТНЫЕ РАЗМЕРЫ ПЛАНЕТАРНОЙ ПЕРЕДАЧИ

Матеко П.М., Удинцев Р.А., Карасева Т.И., Серокуров И.А. (ДонНТУ г. Донеик, Украина,)

Планетарные передачи принято разделять на три типа: дифференциальные, замкнутые дифференциальные и простые планетарные. Простые планетарные передачи обладают большей нагрузочной способностью и более высоким КПД по сравнению с обычными зубчатыми передачами, имеющими те же габариты.

Исследование проводилось на примере привода маневровой лебедки с планетарной передачей (рис.1).

Исходные данные для расчета:

Тяговое усилие на канате $F = 20\kappa H$;

Скорость движения каната $V = 0.6 \, \text{м/c}$;

Диаметр барабана D = 320мм;

Срок службы $L_h = 20400 \, часов$.

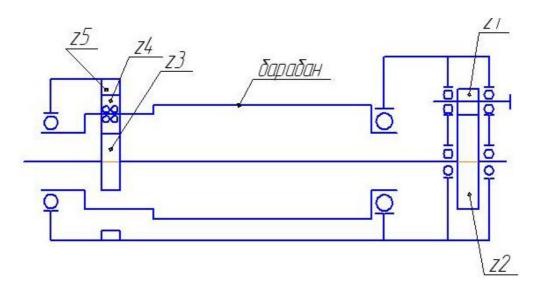


Рисунок 1 - Схема привода маневровой лебедки

Расчет привода.

Определение мощности на барабане и валу двигателя:

$$P_{\delta ap} = FV = 20 \cdot 0,6 = 12 \kappa Bm;$$
 $P_{\partial e} = \frac{P_{\delta ap}}{\eta_{np}} = \frac{12}{0.88} = 13,64 \kappa Bm.$

Коэффициент полезного действия привода:

$$\eta_{np} = \eta_{yn} \cdot \eta_{uu} \cdot \eta_{nn} \cdot \eta_{no}^3 = 0.99 \cdot 0.98 \cdot 0.96 \cdot 0.99^5 = 0.88$$

где $\eta_{yn} = 0,99$ - КПД уплотнений;

 $\eta_{uu\pi} = 0.98$ - КПД зубчатой цилиндрической передачи;

 $\eta_{no\partial}=0,99$ - КПД одной пары подшипников качения. $\eta_{n\pi}$ - КПД планетарной передачи, расчитываемый по формуле

$$\eta_{nn} = 1 - \frac{U_{1H} - 1}{U_{1H}} (1 - \eta_{13}^H) = 1 - \frac{5 - 1}{5} (1 - 0.95) = 0.96,$$

где $\eta_{13}^H = 0.95$ - КПД планетарной передачи относительно водила (смазка колёс консистентная, опоры сателлитов – подшипники качения)

Частота вращения барабана:

$$n_{\delta} = \frac{60 \cdot 1000 \cdot V}{\pi D} = \frac{60 \cdot 1000 \cdot 0.6}{3.14 \cdot 320} = 35,8 \ oб$$
 / мин

Тогда частота вращения вала электродвигателя равна:

$$n_{\partial 6} = n_{\delta} \cdot i_{np} = 35.8 \cdot 25 = 895 \, o\delta \, / \, MuH;$$

где $i_{np} = i_{yun} \cdot i_{nn}$ — передаточные числа цилиндрической и планетарной передач.

Принято: $i_{\mu\nu} = 5$, $i_{n\pi} = 5$, тогда $i_{np} = 5 \cdot 5 = 25$.

По расчетной мощности и передаточному отношению принимается электродвигатель 4A160M6V3:

$$P_{\partial B} = 15 \kappa Bm$$
 $n_{\partial B} = 97506 / мин$ $\frac{T_{\Pi}}{T_{\Pi}} = 1.2$ $d = 48 MM$

Передаточное отношение привода:

$$i_{np} = \frac{n_{\partial e}}{n_{\tilde{o}}} = \frac{975}{35.8} = 27.2.$$

Передаточное отношение планетарной передачи принимается $i_{nn} = 5$,

тогда

$$i_{\mu\mu\eta} = \frac{i_{np}}{i_{n\eta}} = \frac{27.2}{5} = 5.44$$
.

Частоты вращения шестерни z_1 и колеса z_2 равны:

$$n_1 = n_{\partial\theta} = 97506$$
 / мин
 $n_2 = \frac{n_1}{i_{\text{max}}} = \frac{975}{5.44} = 179,206$ / мин

Следовательно, частота вращения солнечной шестерни z_3 равна:

$$n_3 = n_2 = 179,2 \, o \delta /$$
 мин

Частота вращения водила и барабана:

$$n_H = n_{\delta} = \frac{n_3}{i_{n\pi}} = \frac{179,2}{5} = 35,806 / \text{мин}.$$

Определение мощности на валах:

$$P_1 = P_{\partial B_1} \cdot \eta_{vn} \cdot \eta_{no\partial} = 13,64 \cdot 0,99 \cdot 0,99 = 13,36 \kappa Bm$$

$$P_2 = P_1 \cdot \eta_{uu\pi} \cdot \eta_{no∂} = 13,36 \cdot 0,98 \cdot 0,99 = 12,96 \kappa Bm$$

Определение крутящих моментов:

$$T_1 = 9,55 \frac{P_I}{n_1} \cdot 10^6 = 9,55 \frac{13,36}{975} \cdot 10^6 = 130,8 \cdot 10^3 \, H\text{мм}$$

$$T_2 = 9,55 \frac{P_2}{n_2} \cdot 10^6 = 9,55 \frac{12,96}{179,2} \cdot 10^6 = 690,6 \cdot 10^3 \, H\text{мм};$$

Крутящий момент на солнечной шестерне z₃ равен:

$$T_3 = T_2 = 690,6 \cdot 10^3 \, H$$
MM.

Расчет планетарной передачи

Передаточное отношение планетарной передачи обычно принимают $i_{3H}^{5}=3...8$ (в примере $i_{3H}^{5}=5$). Число сателлитов U=3...5 .

При проектировании планетарних передач следует соблюдать три условия:

1. Число зубьев сателлита выбирают из условия соосности валов центральных колес:

$$z_4 = \frac{z_5 - z_3}{2}$$
;

2. Из условия возможности сборки передачи сумма чисел зубьев колес корончатого z_5 и солнечной шестерни z_3 должна быть кратна числу сателлитов:

$$\frac{z_5 + z_3}{U} = \gamma;$$

где U - число сателлитов, γ - целое число.

3. Чтобы соседние сателлиты не задевали зубьями друг друга, должно соблюдаться условие соседства:

$$d_{a_4} < 2 \cdot a_{w34} \sin \frac{\pi}{U}$$

Для дальнейших исследований было проанализировано возможное число зубьев центральных колес и сателлитов, при которых соблюдались выше приведенные условия (см. табл.1) при числе сателлитов U=2...5

Таблица 1. Анализ возможных чисел зубьев центральных колес и сателлитов при числе сателлитов U=2...5

Число сателли- тов	Число зубьев			Выполнение условий			Пригод- ность
U	Z_3	Z_4	Z_5	Условие	Условие	Условие	передачи
				соосности	сборки	соседства	
2	18	27	72	Да	Да	Да	Да
3	18	27	72	Да	Да	Да	Да
4	18	27	72	Да	Нет	Да	Нет
5	18	27	72	Да	Да	Нет	Нет
25	19	28,5	76	Нет	-	-	Нет
2	20	30	80	Да	Да	Да	Да
3	20	30	80	Да	Нет	Да	Нет
4	20	30	80	Да	Да	Да	Да
5	20	30	80	Да	Да	Нет	Нет
25	21	31,5	84	Нет	-	-	Нет
2	22	33	88	Да	Да	Да	Да
3	22	33	88	Да	Не	Да	Нет
4	22	33	88	Да	Нет	Да	Нет
5	22	33	88	Да	Да	Нет	Нет
25	23	34,5	92	Нет	-	-	Нет
2	24	36	96	Да	Да	Да	Да
3	24	36	96	Да	Да	Да	Да
4	24	36	96	Да	Да	Да	Да
5	24	36	96	Да	Да	Нет	Нет

Для дальнейших расчетов принята планетарная передача с числом зубьев солнечной шестерни z_3 =24, т.к. в этом случае возможно изготовление планетарной передачи с числом зубьев сателлитов U = 2;3;4. При других числах зубьев солнечной шестерни возможно изготовление планетарной передачи при двух значениях числа сателлитов.

При z_3 =19,21,23 при любом числе сателлитов условие соосности не выполняется, следовательно, планетарная передача с этими числами зубьев солнечной шестерни в дальнейшем не рассматривалась.

Расчет планетарной передачи производился из условия прочности зубьев на изгибную выносливость. Модуль зацепления равен:

$$m \geq \sqrt[3]{\frac{2 \cdot Y_F \cdot k_F \cdot T_3}{\psi_m \cdot z_3 \cdot [\sigma]_F U'}};$$

где Y_F =4 - коэффициент прочности зубьев;

 $T_3 = 690,6 \cdot 10^3 \, H$ мм - крутящий момент на солнечной шестерне $z_{3,}$;

 $k_F = 1,4$ - коэффициент нагрузки;

U' = U - 0.7 - приведенное число сателлитов;

 ψ_m =8 - коэффициент ширины зубчатого колеса по модулю;

 z_3 =24 — число зубьев солнечной шестерни;

 $[\sigma]_F$ - допускаемое напряжение на изгибную выносливость,

 $[\sigma]_F = 220 M\Pi a$, для стали 45 H=220..240 HB.

Подставляя значения величин в выше приведенную формулу получаем:

При
$$U = 2$$
; $m = 5.2$ мм=>5,5 мм. При $U = 3$; $m = 4,3$ мм=>4,5 мм.

При
$$U = 4$$
; $m = 3.8$ мм $= >4.0$ мм.

Размеры планетарной передачи определяются значением модуля зацепления при числе сателлитов U = 2;3;4 (см. табл.2)

Число сателлитов Диаметры делит. U = 2; m = 5.5мм U = 3; m = 4.5мм U = 4; m = 4*MM* окр., мм $d_{w3} = m \cdot z_3$ 132 96 108 $d_{w4} = m \cdot z_4$ 198 162 144 $d_{w5} = m \cdot z_5$ 528 384 432

Таблица 2. Размеры планетарной передачи при U = 2;3;4.

Из табл.2 видно, что размеры планетарной передачи с увеличением числа сателлитов уменьшаются, т.к. в зацеплении солнечной шестерни z_3 находятся несколько зубьев, равное числу сателлитов, значит, уменьшается модуль зацепления и, соответственно, размеры колес. На основании полученных данных построен график зависимости габаритных размеров планетарной передачи от числа сателлитов (рис.2).

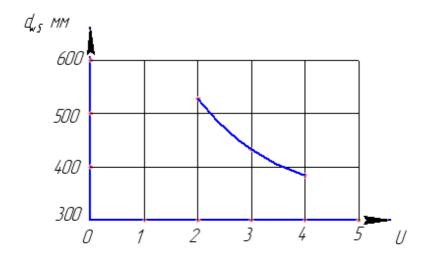


Рисунок 2 - График зависимости габаритных размеров планетарной передачи от числа сателлитов

На практике обычно принимают планетарные передачи с числом сателлитов U=3. При этом числе сателлитов чаще всего выполняются условия соосности, сборки и соседства при различных числах зубьев центральных колес и передаточном отношении. Пример выполнения привода маневровой лебедки с числом сателлитов U=3 представлен на рис.3.

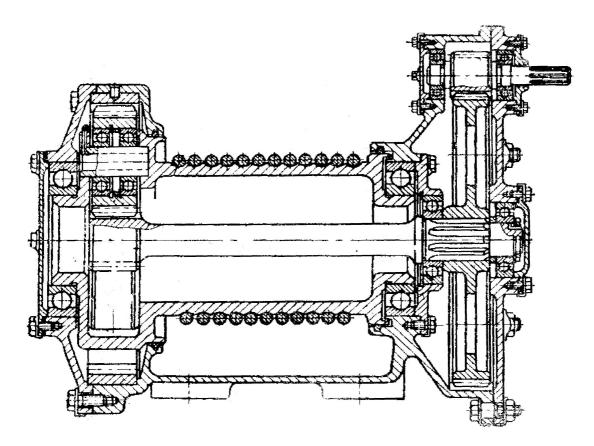


Рисунок 3 - Редуктор привода маневровой лебедки

Список литературы. 1. Методичні вказівки до виконання курсового проекту з деталей машин. Розділ 1. Донецьк, ДонНТУ, 2005, 36 с. 2. Методичні вказівки до виконання курсового проекту з деталей машин. Розділ 2. Донецьк, ДонНТУ, 2005, 48 с. 3. Чернавский С.А. и др. Проектирование механических передач. - М.: Машиностроение, 1967. - 798 с. 4. Перель Л.Я. Подшипники качения. Справочник. - М.: Машиностроение, 1983. - 543 с.