В.А. БУДИШЕВСКИЙ, к.т.н., доц., ДонНТУ Д.Ю. ЧЕРЕВАТСКИЙ, к.т.н., с.н.с., ИЭП НАН Украины

КУМУЛЯТИВНЫЕ КРИВЫЕ КАК СРЕДСТВО РЫНОЧНОГО АНАЛИЗА

Развитие рыночных отношений невозможно без анализа производственно-коммерческих, логистических и других систем, изучения моделей предложения. Популярные в Украине труды по микро-экономике, скажем [1], трактуют модели рыночного предложения как зависимость количества товара, предлагаемого на про-

дажу, от его цены. Вместе с тем, в мировой практике особое внимание уделяется моделям, показывающим соотношение издержек у различных операторов рынка. Пример таких кумулятивных кривых приведен на рис. 1

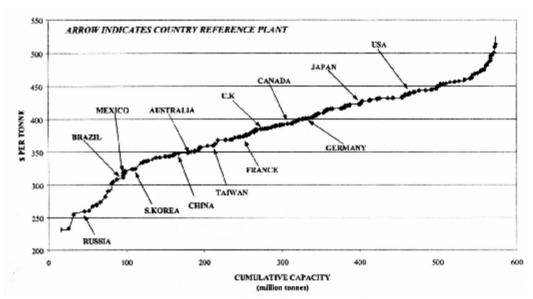


Рис. 1. Кумулятивная кривая себестоимости мирового производства листового проката

Так, организация World Steel Dynamics, имеющая более чем 120-летний опыт изучения сталелитейного бизнеса, в 2000 г. опубликовала седьмую годовую версию продукта WCC (World Cost Curve) [2]. Показанная на рис. 1 кривая предварена обращением: "Where Are You in the Hotand Cold-Rolled Coil Curve?" Материалы основываются на обобщении данных 304 металлургических заводов из 44 стран, занятых производством листового проката. "The WCC is a hands—on strategic tool that permits executives in the steel industry to

think about their cost position in both practical and theoretical terms"². Разработка подобных глобальных обзоров, формирование кумулятивных кривых является самостоятельным видом бизнеса. Только полистовому прокату предлагаемые аналитические материалы стоят, как следует из прейскуранта, \$7,5 тыс. для подписчиков

² "Мировые кривые себестоимости являются удобным стратегическим средством практического и теоретического свойства, дающим возможность руководителям сталелитейной промышленности уяснить уровень эффективности своего производ-

© В.А. Будишевский, Д.Ю. Череватский, 2005

______ ства".

¹ Где Ваше место на кривой горяче– и холоднокатанных рулонов? © В.А. Буди

на труды WSD и \$12,5 тыс. для остальных потребителей. Подобные исследования в металлургии и добывающих отраслях, в том числе мировой угольной промышленности, проводит фирма AME Mineral Economics, имеющая офисы в Австралии и Северной Америке [3].

К сожалению, аналитические инструменты такого рода почти не применяются отечественными специалистами. Первая встреченная авторами настоящей статьи формализация метода построения кумулятивных графиков себестоимости в работах принадлежит vкраинских экономистов В.П. Скубенко [4]. Суть формирования модели заключается в том, чтобы систематизировать предложения субъектов рыночной деятельности исходя из количества и сравнительной характеристики, измеряющей усилия субъекта на подготовку данного предложения. Зачастую в качестве последней применяется себестоимость товара, что даже заложено в названии - WCC одна из типичных аббревиатур этого типа характеристик. Хотя первая буква, относящаяся к понятию "Мировая", не является обязательной. С равным успехом такие кривые себестоимости строят для своих угольных шахт американская национальная компания Consol Energy и австралийско-южноафрикано-индонезийско - венесуэльская Anglo Coal.

Графическая подача данных, прежде всего, предполагает качественную пере-

дачу рыночной ситуации. Вместе с тем, задачи анализа могут обусловить необходимость количественного измерения состояния всего рынка в целом, что может быть достигнуто посредством математического описания кумулятивных кривых, чему и посвящена настоящая статья.

Правила построения модели предписывают ранжировать всех предлагающих продукты операторов рынка по размерам издержек в направлении их (издержек) роста. Координаты места участника на кривой предложения составляют объем его приращения к объему предложения операторов с меньшим рангом (ось абсцисс) и издержки производственно-коммерческого цикла (ось ординат).

$$Q_i = Q_{i-1} + q_i; c_i,$$

где Q_{i} - координата i-го объекта по оси абсцисс;

 $Q_{i\text{-}1}$ - координата предыдущего объекта (имеющего меньшие издержки) на оси абсписс:

 $q_{i^{\text{-}}}$ объем предложения $\,$ i-ого объекта;

 c_{i} - издержки производства продукции на i-ом объекте;

i- ранг объекта, полученный в результате сортировки по издержкам.

Подготовительная форма для построения модели имеет вид (табл. 1).

Таблица 1. Форма для построения кумулятивной кривой

Ранг субъекта ры-	Объем предложе-	Издержки	Координата по оси
ночной деятель-	Р ИН		абсцисс
ности			
1	q_1	$c_1(min)$	$Q_1=q_1$
2	q_2	c_2	$Q_2=q_1+q_2$
i	q_{i}	c_{i}	$Q_i = q_1 + q_2 + + q_i$

Собственно модель представляет собой график кумулятивной кривой, отражающий зависимость c(Q).

В качестве предмета анализа в работах [4, 5, 6,7], выступала себестоимость

угледобычи на предприятиях угольной промышленности. Но возможна и другая интерпретация, например, в [8] по оси абсцисс была представлена та же величина: кумулятивное предложение угля, тыс.т, а

по оси ординат – удельное потребление электроэнергии на процессах угледобычи, кВт.ч/т. В [9] – ось абсцисс отражала кумулятивное предложение электроэнергии тепловыми электростанциями Украины, измеренное в млрд.кВт.ч, а ось ординат – удельное потребление условного топлива на выработку электроэнергии, г/кВт.ч.

Несмотря на возможные различия в

показателях, принципы построения кумулятивных кривых остаются неизменными.

Для решения задачи нахождения математической зависимости, описывающей кумулятивную кривую, обратимся к данным статьи [10], отражающим интегральную энергоемкость угледобычи (табл. 2).

Таблица 2 Характеристика удельного расхода энергоносителей в процессе угледобычи

Компания	D	q _e	q_{T}	$q_{\rm oil}$	q_{sum}	Q
ГХК "Павлоградуголь"	9192,6	18,9	3,9	2,1	24,9	9193
ш. "Краснолиманская"	2276,0	18,4	6,2	0,5	25,1	11469
ГХК "Ровенькиантрацит"	5251,1	29,7	8,3	0,2	38,2	16720
ГХК "Селидовуголь"	6074,5	30,9	15,8	0,9	47,6	22794
ш. им.Засядько	2703,0	43,6	7,9	1,0	52,6	25497
ГХК "Добропольеуголь"	4046,3	42,0	12,3	1,1	55,4	29544
ГХК "Октябрьуголь"	1810,8	41,5	23,9	1,3	66,7	31354
ГХК "Краснодонуголь"	3114,3	49,2	17,9	0,2	67,3	34469
ш. "Комсомолец Донбасса"	1196,3	57,2	7,8	2,4	67,3	35665
ГХК "Донуголь"	5942,5	51,0	15,8	0,6	67,5	41607
ГХК "Западно-Украинская"	3584,9	29,2	36,6	3,2	69,0	45192
ГХК "Торезантрацит"	2695,1	54,6	17,6	1,1	70,9	47887
ГХК "Луганскуголь"	3443,4	54,6	15,2	1,5	71,3	51331
ГХК "Макеевуголь"	6945,4	62,6	15,7	0,7	79,0	58276
ГХК "Свердловантрацит"	1487,6	73,3	12,2	2,0	87,5	59764
ГОАО "Октябрьское"	474,6	74,9	14,0	1,2	90,1	60238
ГХК "Шахтерскуголь"	1966,6	65,1	26,6	0,4	92,2	62205
ГХК "Донбассантрацит"	1010,9	77,1	20,1	0,9	98,1	63216
ГХК "Лисичанскуголь"	646,3	67,1	38,5	0,5	108,6	63862
ш. "Бутовка-Донецкая"	151,2	74,3	45,7	1,5	121,5	64013
ПО "Донецкуголь"	922,4	97,4	30,0	0,8	128,2	64936
ПО "Орджоникидзеуголь"	1366,8	151,1	16,9	0,3	168,3	66303
ГХК "Антрацит"	910,5	142,2	28,2	1,6	172,0	67213
ГХК "Первомайскуголь"	727,7	104,8	68,3	0,2	173,2	67941
ПО "Снежноеантрацит"	768,5	125,5	54,4	0,4	180,3	68709
ПО "Артемуголь"	1251,8	191,7	45,2	1,0	246,1	69961
ПО "Дзержинскуголь"	737,7	225,6	22,4	1,2	249,1	70699

В расчете интегрального показателя учтены прямые расходы электроэнергии, тепловой энергии и нефтепродуктов для перечисленных субъектов угледобычи. Все показатели были выражены в единицах условного топлива, что дало возможность суммировать их. В табл. 2 приняты следующие обозначения: D – годовая добыча угля; qe - расход-брутто энергоносителя на выработку электроэнергии для выполнения

процессов угледобычи; q_T - расход угля на производство тепловой энергии в процессе угледобычи; q_{oil} -удельный расход нефтепродуктов для обеспечения угледобычи; q_{sum} - суммарный расход энергоносителя на процессах угледобычи, Q — кумулятивный объем добычи угля.

Кумулятивная кривая q_{sum} (Q) показана на рис. 2.

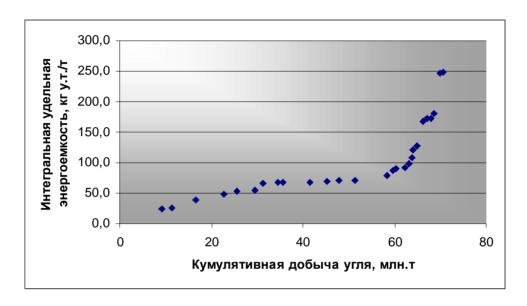


Рис. 2. Кумулятивная кривая предложения угля по интегральному показателю удельной энергоемкости угледобычи

Задача нахождения вида зависимости q_{sum} от Q может быть решена различными способами.

Одним из них может быть аппроксимация точек, находящихся на кумуля

тивной кривой, стандартными функциями с помощью, например, средств Microsoft Excel $^{\text{®}}$. Так, для имеющихся данных наиболее точной является полиномиальная зависимость 6 степени (рис. 3) вида

$$q_{sum}\!\!=\!\!42.608\text{-}6.655Q + 0.751Q^2 - 0.034Q^3 + 0.001Q^4 - 1*10^{-5}Q^5 + 6*10^{-8}Q^6,$$

где Q представлено в млн.т/год.

Вид аппроксимирующей зависимости выбран в интерактивном режиме — сообразно получаемому качеству "подгонки" — из достаточно широкого арсенала функций (линейная, степенная, логарифмическая, экспоненциальная и др.), реализованного в системе построения диаграмм. О степени точности можно судить по предоставляемому значению R^2 (где R — коэффициент корреляции). Применительно к данному случаю, эта характеристика ока-

залась близкой к единице, что позволяет говорить о практически функциональной зависимости.

Алгоритм определения тренда изменения функции с возрастанием кумулятивного значения аргумента с использованием диаграмм Microsoft Excel [®] можно описать следующим образом:

- 1) войти в модуль построения диаграмм;
- 2) выбрать в разделе "Тип диаграммы" "Точечная";

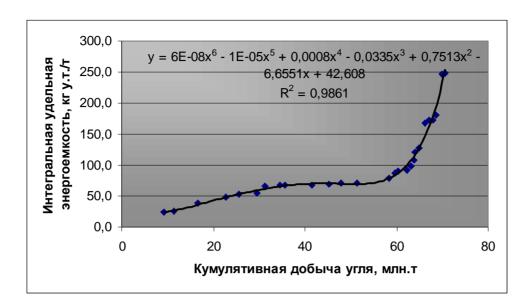


Рис. 3. Аппроксимация кумулятивной кривой с помощью полинома 6-й степени

- 3) в разделе "Исходные данные" указать "Ряд";
- 4) задать по оси X значения кумулятивного показателя;
- 5) задать по оси Y значения удельного показателя издержек (или других величин);
- 6) завершить построение диаграммы в виде отдельных точек;
- 7) в окне "Формат данных" указать "Добавить линию тренда";
- 8) выбрать тип линии тренда, наиболее соответствующий конфигурации точек на диаграмме (приоритет следует отдать линейному типу);
- 9) задать в окне "Параметры", относящемся к линии тренда, опции "Показывать уравнение на диаграмме" и "Поместить на диаграмму величину достоверности аппроксимации (R^2)";
- 10) если значение (R^2) находится в диапазоне 0,6-1,0, принять полученную формулу в качестве расчетной модели зависимости искомого показателя;

если точность аппроксимации недостаточна ($R^2<0,6$) — изменить тип линии тренда и повторить операции.

Программная оболочка Microsoft

Excel® не является исключительно подходящей для решения задач такого рода. Ее достоинство заключается в распространенности. С успехом могут быть применены любые программы математической статистики.

Другой подход к аппроксимации данных кумулятивной кривой, особенно имеющей понимающийся кверху "хвост", — это использование метода разрывной регрессии. В программной оболочке Statistica[®], предназначенной для статистического анализа и обработки данных в среде Windows[®], этот модуль называется Pieceswise linear regression (кусочнолинейная регрессия) [11, с. 418]. Предлагаемые процедуры позволяют оценить параметры модели следующего вида

$$Y = (b_{01} + b_{11}x)_{[Y < =Y^*]} + (b_{02} + b_{12}x)_{[Y > Y^*]},$$

где Ү*- точка разрыва;

 b_{i1} и b_{i2} –коэффициенты регрессии до и после точки разрыва.

Определенные по данным табл. 2 параметры кусочно-линейной регрессии – следующие:

 q_{sum} *=100,667 KF y.T./T; b_{01} =19,690; b_{11} =1,155; b_{02} =-1125,460; b_{12} =19,343.

То есть первая часть кумулятивной кривой описывается зависимостью

 q_{sum} =19,690+1,155Q, а после точки с ординатой примерно 101 кг у.т./т, зависимостью вида q_{sum} =-1125,460+19,343Q.

Аппроксимация данных показана на рис. 4.

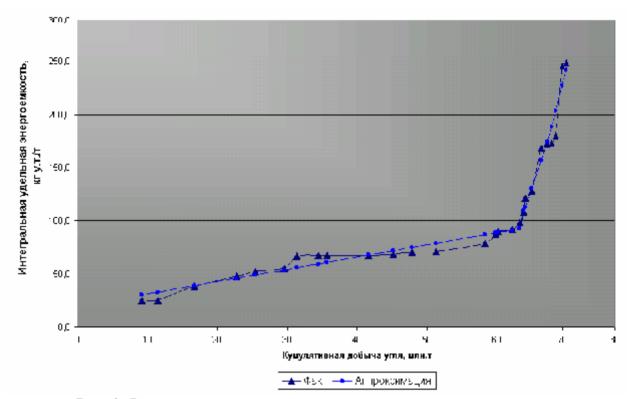


Рис. 4. Фактические данные кумулятивной кривой и их аппроксимация

По сравнению с полиномиальными моделями кусочно–линейные регрессии более удобны в использовании при проведении исследований, хотя и несколько утрируют реальную картину. Математическое описание кумулятивных кривых дает возможность отслеживать динамику изменения рыночной ситуации, производить другие виды анализа.

В результате можно предложить следующие выводы:

- кумулятивные кривые являются удобным и универсальным средством анализа рынков;
- несмотря на то, что наибольшее распространение имеют кривые себестоимости, целесообразно расширять свод показателей, используемых для анализа. Ими могут быть не только экономические, но и физические величины;
- существуют различные подходы к математической формализации вида кумулятивных кривых. В статье на основании реальных данных показаны два

метода аппроксимации, использующие возможности компьютерных программ математической статистики (полиномиальной и кусочно-линейной регрессии).

Таким образом, в работе предложен инструмент, дающий возможность математического описания всего рынка в целом и определения конкурентных возможностей субъектов, составляющих данную систему.

Литература

- 1. Доллан Э.Дж., Линдсей Д. Микроэкономика. С.-Пб.: Санкт-Петербург оркестр, 1994.-448 с.
- 2. Marcus P.F., Kirsis K.M., Barnet D.F. Flat-rolled World Cost Curve.- World Steel Dynamics, 2000. Электронный документ. Заголовок с экрана.- http://www.worldsteeldynamics.com
- 3. AME Mineral Economics. Leading independent market analysts in basic industries.- 2005.- Электронный документ. Заголовок с экрана.- http://www.ame.com.au

- 4. Скубенко В.П. Формування ринково-адаптованих підприємств промисловості. Автореферат дис... доктора економічних наук. Спеціальність 08.07.01-Економіка промисловості. Донецьк: ІЕП НАН України, 2001.-32 с.
- 5. Скубенко В.П. Проявление нелинейности экономических и энергетических характеристик предприятия при сокращении выпуска продукции// економіка промисловості.- Донецьк: ІЕП НАН України.- 2000.- С. 197-206.
- 6. Данилов В.К. Анализ себестоимости добычи энергетических углей в Донбассе //Экономика промышленности. Донецк: ИЭП НАН Украины.- 1999.- С. 235-251.
- 7. Сычев Г.М. Анализ себестоимости добычи углей косового назначения в Донбассе//Экономика промышленности.-Донецк: ИЭП НАН Украины.-2000.-С. 335-343.
- 8. Ященко А.М., Ткачев В.Н. Об энергосбережении в угольной промыш-

- ленности// Уголь Украины.- 2001.- №5.-С. 3-6.
- 9. Череватский Д.Ю., Рак Н.М. О совершенствовании взаиморасчетов между поставщиками и потребителями угольного топлива на ТЭС// Экономика промышленности. Донецк: ИЭП НАН Украины, 1999.- С. 462-470.
- 10. Скубенко В.П., Череватский Д.Ю. Эффективность использования угольного топлива и кризис угольной промышленности// Проблемы повышения эффективности функционирования предприятий различных форм собственности. Донецк: ИЭП НАН Украины. 1998.- С.135-143.
- 11. Боровиков В.П., Боровиков И.П. Statistica Статистический анализ и обработка данных в среде Windows. М.: Информационно-издательский дом «Филинъ», 1997. 608 с.

Статья поступила в редакцию 30.03.2005

Р.З. АМИРОВ, к.т.н., доцент ДонНТУ

ПОВЫШЕНИЕ ТОЧНОСТИ ПРОГНОЗОВ С ИСПОЛЬЗОВАНИЕМ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ

В условиях начавшегося экономического роста в Украине проблема прогнозирования при инвестировании в условиях риска и неопределенности имеет важное значение. Развитие промышленного сектора требует дополнительных денежных ресурсов, источниками которых являются собственные и заемные средства. При этом требуется соизмерять затраты и ожидае-При инвестировании мые результаты. очень важен прогноз экономической эффективности проекта и оценка риска реализации проекта. Факторы неопределенности определяют риск проекта, увеличивают дополнительные расходы, обуславливают недополучение дохода.

Одним из ключевых факторов, влияющих на объем инвестиций, является

курсовая стоимость национальной валюты, а также динамика ее изменения. Поэтому прогнозирование курсовой стоимости гривны позволяет определить желаемый для предприятия объем инвестиций, а также снизить риск недополучения прибыли. Например, предприятиям, импортирующим продукцию, для определения необходимого объема инвестиций и реализации эффективной политики ценообразования необходимо знать текущие и прогнозируемые курсы валют.

Сложность прогнозирования валютного курса заключается в необходимости учета не только значений рассматриваемого временного ряда, но и целого ком-