МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ УКРАИНЫ ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Методические указания и задания к практическим работам по дисциплине "Основы информатики и вычислительной техники " для студентов подготовительного отделения

МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ УКРАИНЫ ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Методические указания и задания к практическим работам по дисциплине "Основы информатики и вычислительной техники "

для студентов подготовительного отделения

Утверждено на заседании кафедры вычислительной математики и программирования Протокол №4 от 22 ноября 2010 г. Утверждено на заседании учебноиздательского совета ДонНТУ Протокол №5 от 06.12.2010 г.

УДК 681 О-75

Методические указания и задания к практическим работам по дисциплине "Основы информатики и вычислительной техники" для студентов подготовительного отделения / составитель Тарабаева И.В. Донецк, ДонНТУ, 2010.-26 с.

Автор: Тарабавева, ст. пр. ВМ и П.

Отв. за выпуск Павлыш В. Н., проф., зав.каф. ВМ и П

Содержание

ЦЕЛИ И ЗАДАЧИ КУРСА

Цель курса "Основы информатики и вычислительной техники" для студентов подготовительного отделения - подготовить слушателей к успешному обучению в Донецком национальном техническом университете и помочь слушателям овладеть современными информационными технологиями. Это достигается путем:

- 1. углубления и систематизации знаний, полученных на родине, на основе межпредметной координации информатики, русского языка и других базовых дисциплин;
- 2. устранения пробелов школьного образования, которые обусловлены разницей в национальных и украинских общеобразовательных программах по информатике;
- 3. формирования теоретической базы знаний основ информатики, необходимых студентам для изучения этой дисциплины в Донецком национальном техническом университете;
- 4. изучения терминологии дисциплины на русском языке, изучение конструкций языка, которые присущи научному стилю речи.

Главные задачи курсу:

- научить студентов пользоваться персональным компьютером, работать с операционной системой;
- научить студентов работать с текстовыми документами и электронными таблицами;
- выработать у студентов умение решать задачи школьной программы, составляя простые алгоритмы.

Тема: «Для чего нужен компьютер? Единицы измерения информации. Устройства компьютера»

Студент должен прочитать текст лекции «Для чего нужен компьютер? Единицы измерения информации. Устройства компьютера», письменно и устно ответить на вопросы по теме лекции.

- 1. Для чего нужен компьютер?
- 2. Какие единицы измерения информации Вы знаете?
- 3. Какие устройства компьютера называют внутренними?
- 4. Какие устройства компьютера называют внешними?
- 5. Что такое материнская плата,
- 6. Что такое процессор?
- 7. Что такое оперативная память? Зачем она нужна?
- 8. Что такое видеокарта?
- 9. Что такое звуковая плата?
- 10. Зачем нужен жесткий диск? Что такое емкость?
- 11.Зачем нужен дисковод для дискет?
- 12. Что такое дисковод CD-ROM и дисковод CD/RW?
- 13. Что такое дисковод Сотво DVD + CD/RW и пишущий DVD дисковод?
- 14. Что такое сетевая карта?
- 15. На какие виды делят внешние устройства?
- 16. Зачем нужен монитор? Какие виды мониторов Вы знаете?
- 17.Зачем нужен принтер? Какие типы принтеров Вы знаете?
- 18. Что такое клавиатура?
- 19. Что такое сканер? Какие типы сканеров Вы знаете?
- 20. Что такое графический планшет?
- 21. Какие устройства управления Вы знаете? Что такое мышь?
- 22. Что такое модем?
- 23. Какие устройства хранения и переноса информации Вы знаете?

Тема: «Клавиатура компьютера»

Студент должен прочитать текст лекции «Клавиатура компьютера», письменно и устно ответить на вопросы по теме лекции. На занятии студент должен набрать один из вопросов ответ на него в текстовом редакторе Microsoft WORD (приложение запускается на выполнение преподавателем).

- 1. Зачем нужна клавиатура?
- 2. На какие группы можно разделить клавиши на клавиатуре?
- 3. Зачем нужны алфавитно-цифровые клавиши?
- 4. Зачем нужна клавиша [Shift]?
- 5. Зачем нужна клавиша [CapsLock]?
- 6. Зачем нужна клавиша [Enter]?
- 7. Зачем нужна клавиша [Esc]?
- 8. Зачем нужна клавиша [**Tab**]?
- 9. С помощью, каких клавиш можно удалить 1 символ? Расскажите, что делает каждая клавиша.
- 10. С помощью, каких клавиш можно управлять курсором?
- 11. В каких режимах работает цифровая клавиатура?

Тема: «Программы для компьютера. Типы программ. Понятие операционной системы. Файловая система персонального компьютера»

Студент должен прочитать тексты лекций «Программы для компьютера. Типы программ. Понятие операционной системы», «Файловая система персонального компьютера», письменно и устно ответить на вопросы по теме лекции.

Вопросы по теме «Программы для компьютера. Типы программ. Понятие операционной системы»

- 1. Что такое программа?
- 2. На какие два типа можно разделить программы? Какую работу выполняют прикладные программы?
- 3. Назовите примеры прикладных программ.
- 4. На какие два типа можно разделить программы? Что можно делать с помощью системных программ?
- 5. Что такое операционная система.
- 6. Назовите примеры системных программ.

Вопросы по теме «Файловая система персонального компьютера»

- 1. Что такое файл?
- 2. Из каких частей состоит имя файла?
- 3. Как правильно писать имя файла?
- 4. Что Вы знаете о расширении имени файла?
- 5. Что такое папка?
- 6. Что такое вложенная и охватывающая папка?
- 7. Что такое корневая папка?
- 8. Что такое текущая папка?
- 9. Из чего состоит имя диска?
- 10. Что такое путь?
- 11. Что такое полное имя файла?

Тема: «Первое знакомство с WINDOWS»

Студент должен прочитать текст лекции «Первое знакомство с WINDOWS», письменно и устно ответить на вопросы по теме лекции.

- 1. Что такое рабочий стол? Что такое объект?
- 2. Какие действия можно выполнять с помощью мыши? Как открыть окно?
- 3. Что нужно сделать, чтобы выбрать опцию или объект? Как вызвать контекстное меню?
- 4. Как выполнить действие перетащить и отпустить?
- 5. Как запустить программу с помощью меню Пуск?
- 6. Что такое строка заголовка?
- 7. Что произойдет, если щелкнуть на кнопке Свернуть?
- 8. Что произойдет, если щелкнуть на кнопке Развернуть?
- 9. Что произойдет, если щелкнуть на кнопке Закрыть?
- 10. Что произойдет, если щелкнуть на кнопке Восстановить?
- 11. Когда появляются полосы прокрутки?
- 12. Как можно просматривать содержимое окна?
- 13. Расскажите, что Вы знаете об опциях со знаками ▶ и ...
- 14. Что можно увидеть в строке состояния?
- 15. Что можно делать с помощью диалоговых окон?
- 16. Что можно сделать с помощью переключателя в диалоговом окне?
- 17. Что можно сделать с помощью флажка в диалоговом окне?
- 18. Что можно сделать с помощью счетчика в диалоговом окне?
- 19. Что можно делать с помощью текстового поля? Что нужно сделать, чтобы увидеть раскрывающееся поле списка?
- 20. Как в диалоговом окне переходить с одной страницы диалога на другую?
- 21. Зачем в диалоговом окне нужны кнопки ОК, Применить и Отмена?

Тема: «Основные операции с файлами и папкам в ОС WINDOWS»

Студент должен прочитать текст лекции «Основные операции с файлами и папкам в ОС WINDOWS», письменно и устно ответить на вопросы по теме лекции.

- 1. Что можно делать с помощью окна Мой компьютер?
- 2. Что нужно сделать, чтобы открыть окно Мой компьютер?
- 3. Что можно увидеть в окне Мой компьютер?
- 4. Что нужно сделать, чтобы открыть папку? Что нужно сделать, чтобы выйти из папки? Что нужно сделать, чтобы перейти из одной открытой папки в другую?
- 5. Что нужно сделать, чтобы упорядочить файлы в окне?
- 6. Расскажите, как создать файл с помощью опции Создать?
- 7. Расскажите, как сохранить изменения в файле?
- 8. Расскажите, как запустить программу на выполнение? Расскажите, как с помощью этой программы создать файл?
- 9. Расскажите, как создать папку?
- 10. Расскажите, как выделить несколько объектов с помощью клавиши **Ctrl.** Расскажите, как выделить несколько объектов с помощью опции Выделить все?
- 11. Расскажите, как выделить несколько объектов с помощью клавиши **Shift**? Расскажите, как выделить несколько объектов с помощью мыши?
- 12. Расскажите, как скопировать или переместить объекты с помощью контекстного меню?
- 13. Расскажите, как скопировать или переместить объекты при помощи перемещения кнопкой мыши?
- 14. Расскажите, как можно переименовать объект?
- 15. Расскажите, как можно удалить объект?
- 16. Расскажите, что нужно сделать, чтобы найти файл или папку?

Тема: «Выполнение программ»

Студент должен прочитать текст лекции «Выполнение программ», письменно и устно ответить на вопросы по теме лекции.

- 1. Расскажите, как можно запустить программу на выполнение.
- 2. Расскажите, как запустить на выполнение программу с помощью кнопки **Пуск** и опции **Все программы.**
- 3. Расскажите, как запустить на выполнение программу с помощью опции **Мой компьютер.**
- 4. Расскажите, как запустить на выполнение программу с помощью кнопки **Пуск** и опции **Выполнить.**
- 5. Расскажите, что такое *ярлык* и что можно делать с помощью *ярлыка*.
- 6. Расскажите, как можно создать ярлык.
- 7. Расскажите, как создать ярлык при помощи перемещения правой кнопкой мыши.
- 8. Расскажите, как можно создать ярлык с помощью окна диалога **Создание ярлыка.**

Tema: «Системы табличной обработки данных Microsoft Excel. Основы офисного программирования»

Студент должен прочитать тексты лекций «Системы табличной обработки данных Microsoft Excel. Основы офисного программирования», письменно и устно ответить на вопросы по теме лекции.

Вопросы по теме «Системы табличной обработки данных Microsoft Excel»

- 1. Что такое ссылка на ячейку, диапазон ячеек?
- 2. Что нужно сделать, чтобы выделить диапазон ячеек?
- 3. Что нужно сделать, чтобы ввести информацию в ячейку? Что нужно сделать, чтобы редактировать информацию в ячейке?
- 4. Расскажите, из каких частей состоит формула в Excel.
- 5. Расскажите, о правилах ввода функций в Excel.
- 6. Расскажите, что нужно сделать, чтобы ввести функцию на лист Excel с помощью мастера функций.
- 7. Расскажите, что такое автозаполнее и что можно делать с помощью этого средства.

Вопросы по теме «Основы офисного программирования»

- 1. Что такое документ?
- 2. Что такое проект?
- 3. Расскажите, что вы знаете о программировании в системе VBA.
- 4. Что макрос?
- 5. Расскажите, что делают с помощью макрорекордера.
- 6. Расскажите, что нужно сделать, чтобы записать часто повторяющиеся действия.

Тема: «Основы алгоритмизации»

Студент должен составить блок-схему, которая по исходным данным находит решение заданной модели.

ВАРИАНТЫ ЗАДАНИЯ

Вариант	Задания
1	Дано: a, b $x = a^2 + b \sin x$ Модель: $F = \frac{a+b}{2x^2+b^2}(a+x)\sin x$ Результаты: F и х Дано: a, b $ax-c$, если $x \le a$
	$y = \begin{cases} x + c, \text{ если } a < x < b \\ cx, \text{ если } x \ge b \end{cases}$ Модель: $c = \begin{cases} ax + b, \text{ если } x < 2 \\ a \cdot b, \text{ если } x \ge 2 \end{cases}$ $x = \sqrt{a^2 + b^2}$
	Результаты: у, с и х
	Дано a, b, c $z = \begin{cases} ax^2 + bx + c, & \text{если } x > 2 \\ bx^2 + ax + c, & \text{если } x = 2 \\ cx^2 + ax + b, & \text{если } x < 2 \end{cases}$ Модель:: $x = \begin{cases} (a+b) \cdot c, & \text{если } a < c \\ \frac{(a-b)}{c}, & \text{если } a \ge c \end{cases}$
	Результаты: z и х
2	Дано: a, b Модель: $x = Ln^2c^2 - c^3$ модель: $y = e^x + e^{-x} \cdot \sin x$ Результаты: y, c и х Дано: a,b,c
	$z = \begin{cases} ax^2 + bx + c, \text{ если } x > 2\\ bx^2 + ax + c, \text{ если } x = 2\\ cx^2 + ax + b, \text{ если } x < 2 \end{cases}$ $x = \begin{cases} (a+b) \cdot c, \text{ если } a < c\\ ab, \text{ если } a \ge c \end{cases}$
	Результаты: z и х

Вариант	Задания
	Дано: a, b
	$y = \begin{cases} \sqrt{abx}, \text{ если } x < 4\\ a + b + x, \text{ если } 4 \le x \le 6 \end{cases}$
	$y = \begin{cases} a+b+x, \text{ если } 4 \le x \le 6 \end{cases}$
	Модель:
	$x = \begin{cases} \sqrt{a^2 + 1}, & \text{если } a > b \\ \sqrt{b^2 + 1}, & \text{если } a \le b \end{cases}$
	$\sqrt{b^2+1}$, если $a \le b$
	Результаты: у и х
3	Дано: z
	Модель: $y = 5\cos x^2 + 3\sin^2 x^2$ $x = z^2 - \sin z$
	Результаты: у и х Дано: a, b
	1
	$y = \begin{cases} ab, & \text{если } x < 1 \\ a\sqrt{x}, & \text{если } 1 \le x \le 3 \end{cases}$
	bx^2 , если $x > 3$
	a^2+1 , если $ab>2$
	$x = \begin{cases} a^2 + 1, \text{ если } ab > 2\\ b^2 - 1, \text{ если } ab \le 2 \end{cases}$
	Результаты: у и х
	Дано: а, b
	$z = \begin{cases} Ln(x), \text{ если } x \ge -1 \\ 1, \text{ если } -1 < x < 1 \end{cases}$
	l
	e^x , если $x \le 1$
	Модель: $\left[\frac{a^2}{b^2}, \text{ если } a-1 \le b\right]$
	(x, y)
	$\left \frac{a}{b}\right $, если $a-1>b$
	Результаты: z и х
4	Дано: а
	Модель: $d = \sin\left(\frac{a}{3} - 1\right) + a^2$ $P = (2a+1)d + d\cos(a+3)$
	Модель: $a = \sin(\frac{\pi}{3}) + a$ $P = (2a+1)a + a\cos(a+3)$
	Результаты: d и Р
	Дано: a, b
	(a+b)x, если $x < 3$
	$y = \begin{cases} (a+b)x, & \text{если } x < 3 \\ (a-b)x, & \text{если } x = 3 \\ abx, & \text{если } x > 3 \end{cases}$
	Модель. $(abx, cenn x > 5)$
	$x = \begin{cases} a^2 + 1, & \text{если } ba \ge 1 \\ b^2 - 1, & \text{если } ba < 1 \end{cases}$
	[0 1, COM 00 \ 1
	Результаты: у и х

Вариант	Задания
	Дано: a, b
	ax+by, если $x < 1$
	$z = \begin{cases} ax - by, & \text{если } 1 \le x \le 9 \end{cases}$
	$z = \begin{cases} ax - by, & \text{если } 1 \le x \le 9 \\ \frac{ax}{by}, & \text{если } x > 9 \end{cases}$
	$y = \begin{cases} \sqrt{ab}, & \text{если } a < b \\ \sqrt{a+b}, & \text{если } a \ge b \end{cases}$
	Результаты: у и z
5	Дано: а, т
	$b = \cos(a - \pi) + a^b$
	Модель: $f = \sin^2 a + \frac{b}{1 + a^2}$
	Результаты: b и f
	Дано: a, b
	$\int \sin x$, если $x \le a$
	$z = \cos x$, если $a < x < b$
	Модель: $(tgx, ecли x \ge b)$
	$x = \begin{cases} (a-1)(b-2), & \text{если } a > b+1 \\ (a+1)(b+2), & \text{если } a \le b+1 \end{cases}$
	Результаты: z и х
	Дано: a, b, c
	$y = \begin{cases} x^3 + a, & \text{если } 2 \le x \le 5 \\ x^2 + b, & \text{если } -5 < x < -2 \end{cases}$
	Модель: $x+c$, если в остальных случая:
	$x = \begin{cases} a\sqrt{bc}, & \text{если } c \le 5 \\ b\sqrt{ac}, & \text{если } c > 5 \end{cases}$
	$b \sqrt{ac}$, если $c > 5$ Результаты: у и х
6	Дано: а, z
	$b = a^2(z+2) \cdot (2z+1)$
	$b = a^{2}(z+2)\cdot(2z+1)$ Модель: $x = \left(z + \frac{z}{z^{2}+1} + ab - 1\right)^{3}$
	$\langle z^2+1 \rangle$
	Результаты: b и х
	т сзультаты. О и х
	Дано: a, b, x
	$\left(r + v \right) = e^{-\alpha u} + v < a$
	$z = \begin{cases} x + y, & \text{centh } xy < a \\ x - y, & \text{ecn u } a \le x \le b \end{cases}$
	Модель: $(xy, ech x > b)$
	$y = \begin{cases} ax + b, \text{ если } x < 3\\ a + bx, \text{ если } x \ge 3 \end{cases}$
	Результаты: у и z

Вариант	Задания
	Дано: a, b, c
	модель: $y = \begin{cases} a\sqrt{x}, & \text{если } x < 2\\ bx^2, & \text{если } 2 \le x < 3\\ ce^x, & \text{если } x \ge 3 \end{cases}$ Модель: $x = \begin{cases} \frac{(a+b)}{c}, & \text{если } a \le bc\\ \frac{(a-b)}{c} \cdot c, & \text{если } a > bc \end{cases}$
	$y = \left\{ bx^2, \text{ если } 2 \le x < 3 \right\}$
	ce^x , если $x \ge 3$
	Модель: $(a+b)$ соли $a < ba$
	$x = \begin{cases} \frac{1}{c}, & \text{если } u \leq bc \end{cases}$
	$\left \frac{(a-b)}{c} \cdot c \right $, если $a > bc$
	`
_	Результаты: у и х
7	Дано: V, h
	Модель: $r = \frac{V \cdot h + 1}{V^2 + 1} + 3,14V^2$
	Модель: $V + 1$ $x = 3.14 r^2 - V^2 h \sin r$
	Результаты: г и х
	Дано: а, х
	$z = \begin{cases} x^2 + y^2, & \text{если } y > x + 1 \\ x^2 y^2, & \text{если } y = x + 1 \end{cases}$
	Модель: $x^2 - y^2$, если $y < x + 1$.
	1 · · · · · · · · · · · · · · · · · · ·
	$y = \begin{cases} x + a, \text{ если } x = a \\ ax, \text{ если } x \neq a \end{cases}$
	Результаты: у и z
	Дано: a, b
	$y = \begin{cases} \sqrt{b+x^2}, & \text{если } x < 1\\ Ln(ax), & \text{если } 1 \le x \le 5 \end{cases}$
	$y = Ln(ax)$, если $1 \le x \le 5$
	Модель: $\begin{cases} bx^3, \text{ если } x>3 \\ bx^3, \text{ если } x>3 \end{cases}$
	$ab+3$, если $ab \le 3$
	Модель: $ x = \begin{cases} bx^3, & \text{если } x > 3 \\ ab + 3, & \text{если } ab \le 3 \\ \frac{a}{b} - 3, & \text{если } ab > 3 \end{cases} $
	Doory in many v. v. v. v.
8	Результаты: у и х Дано: х
	Модель: $z = \sin^4 x^2 + 1$ $F = \sin x + (\cos^2 x - F \cdot z)$
	Результаты: z и F
	Дано: а, b, х
	$(ax+by, ecли a \le x \le b$
	$z = \begin{cases} bx + ay, \text{ если } -a \le x \le -b \end{cases}$
	Модель: $(xy, \text{ если в остальных случаях })$
	$y = \begin{cases} a^2 + b^2, & \text{если } a \neq b \\ a \cdot b, & \text{если } a = b \end{cases}$
	Результаты: у и z

Вариант	Задания
	Дано: a, b x^3+1 , если $x<4$
	$y = \begin{cases} x^3 + 1, \text{ если } x < 4 \\ x^2 + 1, \text{ если } 4 \le x \le 5 \\ x + 1, \text{ если } x > 5 \end{cases}$
	Модель: $x = \begin{cases} \frac{a^2}{b^2}, & \text{если } a+1 \le b \end{cases}$
	$\left \frac{a}{b} \right $, если $a+1>b$ Результаты: у и х

Тема: «Алгоритм циклической структуры»

Студент должен составить блок-схему, которая по исходным данным находит решение заданной модели.

ВАРИАНТЫ ЗАДАНИЯ

_	DAI HAIT DI ЗАДАНИЛ
Вариант	Задания
1	Дано: значения переменных b и c , $an \le a \le ak$, шаг изменения а равен ha
	$z = \begin{cases} ax^2 + bx + c, \text{ если } x > 2\\ bx^2 + ax + c, \text{ если } x = 2\\ cx^2 + ax + b, \text{ если } x < 2 \end{cases}$ Модель: $x = \begin{cases} (a+b) \cdot c, \text{ если } a < c\\ \frac{(a-b)}{c}, \text{ если } a \ge c \end{cases}$
	Для решения этой задачи можно выбрать любой тип цикла.
	Результаты: х и z
	Дано: значение переменной а, $xn \le x \le xk$, шаг изменения x равен hx
	Модель: $z = \frac{\sqrt[3]{x^4 + (a-4)x}}{\ln \sqrt{ x^2 + \sqrt{x} }}$. Вычислить максимальное по модулю
	значение z.
	Для решения этой задачи нужно использовать безусловный цикл.
	Результаты: z, max значение z
	Дано: a=3,7; x =2; dx =0.2.
	Модель: Z вычислять по формуле: $z=0.5\cos x + Ln(2a-x)$. Считать
	до тех пор, пока значение z станет больше 2. Определить k -
	количество вычисленных z , и сумму z>0.
	Для решения этой задачи тип цикла выбрать согласно варианту
	задания.
	Результаты: Z , k

Вариант	Задания
2	Дано: значение переменной b, $an \le a \le ak$, шаг изменения а равен
	ha
	$z = \begin{cases} Ln(x), \text{ если } x \ge -1\\ 1, \text{ если } -1 < x < 1 \end{cases}$
	e^x , если $x \le 1$
	Модель: $\frac{a^2}{b^2}$, если $a-1 \le b$
	$z = \begin{cases} Ln(x), & \text{если } x \ge -1 \\ 1, & \text{если } -1 < x < 1 \\ e^x, & \text{если } x \le 1 \end{cases}$ Модель: $x = \begin{cases} \frac{a^2}{b^2}, & \text{если } a - 1 \le b \\ \frac{a}{b}, & \text{если } a - 1 > b \end{cases}$
	Для решения этой задачи можно выбрать любой тип цикла.
	Результаты: х и z
	Дано: значения переменных b, a, $xn \le x \le xk$, шаг изменения x равен hx
	Модель: $y = \frac{\sqrt[5]{a\sqrt[3]{bx} + x}}{a + (bx)^2}$. Вычислить среднее арифметическое среди
	положительных значений у, и среднее геометрическое – среди отрицательных у (если это возможно).
	Для решения этой задачи нужно использовать безусловный цикл.
	Результаты: у, среднее арифметическое среди положительных значений у, и среднее геометрическое – среди отрицательных у
3	Лано: $a = 1.2$: $x = 3$: $dx = 0.5$
	Дано: $a=1,2$; $x=3$; $dx=0,5$. Модель: $z=\frac{a+\sqrt{ax^2+x}}{\sin x+3}$. Считать до тех пор, пока подкоренное
	выражение больше 0. Определить ${\bf k}$ - количество вычисленных ${\bf z}$ и
	минимальное вычисленное значение z. Для решения этой задачи тип цикла выбрать согласно варианту
	задания.
3	Результаты: Z , k
3	Дано: значение переменной b, $an \le a \le ak$, шаг изменения а равен ha
	\sqrt{abx} , если $x < 4$
	$y = \begin{cases} a+b+x, & \text{если } 4 \le x \le 6 \\ (a-b)\cdot x, & \text{если } x > 6 \end{cases}$
	модель: $y = \begin{cases} \sqrt{abx}, & \text{если } x < 4 \\ a + b + x, & \text{если } 4 \le x \le 6 \\ (a - b) \cdot x, & \text{если } x > 6 \end{cases}$ $x = \begin{cases} \sqrt{a^2 + 1}, & \text{если } a > b \\ \sqrt{b^2 + 1}, & \text{если } a \le b \end{cases}$
	Для решения этой задачи можно выбрать любой тип цикла.
	Результаты: х, у

	Задания
Вариант	Дано: $xn \le x \le xk$, шаг изменения х равен hx Модель: $y=e^{\cos(x)}$. Определить максимальное среди значений $y>x$ и минимальное среди $y\le x$. Для решения этой задачи нужно использовать безусловный цикл. Результаты y , максимальное среди значений $y>x$ и минимальное среди $y\le x$
	Дано: $\mathbf{q} = 3$; $\mathbf{dq} = -0.2$.
1	Модель: F вычислять по формуле: $F = \sqrt{(1+0.5q)} - \frac{1}{q+1}$. Считать до тех пор, пока подкоренное выражение больше 0. Определить k - количество вычисленных F и произведение F>0. Для решения этой задачи тип цикла выбрать согласно варианту задания.
	Результаты: x, y, k - количество вычисленных F и произведение $F{>}0$
_	Дано: $an \le a \le ak$, шаг изменения а равен ha, значение переменной b. $y = \begin{cases} e^x, \text{ если } x = 2\\ \sin x, \text{ если } x > 2\\ ax^2 + b, \text{ если } x < 2\\ \sqrt{ab} + 2, \text{ если } a \ge b\\ \frac{a}{b} + 2, \text{ если } a < b \end{cases}$ Для решения этой задачи можно выбрать любой тип цикла. Результаты: x, y Дано: $x^{n \le x \le xk}$, шаг изменения x равен hx. Модель: $z = \sin(\cos(x))$. Определить сумму значений $z > x$ и произведение $z \le x$. Для решения этой задачи нужно использовать безусловный цикл. Результаты: z , сумму значений $z > x$ и произведение $z \le x$ Дано: $\mathbf{q} = 3$; $\mathbf{d} \mathbf{q} = -0.2$. Модель: \mathbf{F} вычислять по формуле: $F = \frac{Ln(x^2 - 0.5x)}{q^2 + 3}$. Считать до тех пор, пока выражение под знаком логарифма > 0 . Определить \mathbf{k} - количество вычисленных \mathbf{F} и минимальное значение \mathbf{F} .
	Для решения этой задачи тип цикла выбрать согласно варианту задания. Результаты: F, k

Вариант 5 Дано: $an \le a \le ak$, шаг изменения а равен ha, значение переменной b. $z = \begin{cases} Ln(x), \text{ если } x \ge -1 \\ 1, \text{ если } -1 < x < 1 \\ e^x, \text{ если } x \le 1 \end{cases}$ Модель: $x = \begin{cases} \frac{a^2}{b^2}, \text{ если } a - 1 \le b \\ \frac{a}{b}, \text{ если } a - 1 > b \end{cases}$
$z = \begin{cases} Ln(x), \text{ если } x \ge -1 \\ 1, \text{ если } -1 < x < 1 \\ e^x, \text{ если } x \le 1 \end{cases}$ Модель: $x = \begin{cases} \frac{a^2}{b^2}, \text{ если } a - 1 \le b \\ \frac{a}{b}, \text{ если } a - 1 > b \end{cases}$
Модель: $x = \begin{cases} e^x, & \text{если } x \leq 1 \\ \frac{a^2}{b^2}, & \text{если } a - 1 \leq b \\ \frac{a}{b}, & \text{если } a - 1 > b \end{cases}$
Модель: $x = \begin{cases} e^x, & \text{если } x \leq 1 \\ \frac{a^2}{b^2}, & \text{если } a - 1 \leq b \\ \frac{a}{b}, & \text{если } a - 1 > b \end{cases}$
Модель: $x = \begin{cases} \frac{a^2}{b^2}, & \text{если } a - 1 \le b \\ \frac{a}{b}, & \text{если } a - 1 > b \end{cases}$
Для решения этой задачи можно выбрать любой тип цикла
Результаты:х, z
Дано: $xn \le x \le xk$, шаг изменения х равен hx, значения переменных
a, b
Модель: $z = \frac{\sqrt[3]{(a^2 - 2ab + x)}}{(a+b)^2 + e^x}$. Определить минимальное значение
среди значений z≤0, максимальное среди z>0 и количество
вычисленных z.
Для решения этой задачи нужно использовать безусловный цикл.
Результаты: z, минимальное значение среди значений z≤0,
максимальное среди z>0 и количество вычисленных z
Дано: $\mathbf{a}=3$; $\mathbf{da}=-0.5$.
Модель: Z вычислять по формуле: $z = 2,79 Ln(a^3 + a + 1)$. Считать до
тех пор, пока выражение под знаком логарифма >1. Определить
количество (K) вычисленных z и произведение z<0.
Для решения этой задачи тип цикла выбрать согласно варианту
Задания.
Результаты: z, количество (K) вычисленных z и произведение z<0
6 Дано: $an \le a \le ak$, шаг изменения а равен ha, значение переменной b
ax+by, если $x<1$
$z = \begin{cases} ax + by, & \text{если } x < 1 \\ ax - by, & \text{если } 1 \le x \le 9 \\ \frac{ax}{by}, & \text{если } x > 9 \end{cases}$
M одель: $\frac{\partial}{\partial y}$, если $x > 9$
$y = \begin{cases} \sqrt{ab}, & \text{если } a < b \\ \sqrt{a+b}, & \text{если } a \ge b \end{cases}$
Для решения этой задачи можно выбрать любой тип цикла.
Результаты: z, y
Дано: $xn \le x \le xk$, шаг изменения х равен hx, значение переменной а
Модель: $z = a \sqrt[4]{\frac{ax}{\ln^3(a+x)}}$.Определить разницу между минимальным
и максимальным значениями z.
Для решения этой задачи нужно использовать безусловный цикл.
Результаты: z, min z, max z, разница между минимальным и
максимальным значениями z

Вариант	Задания
	Дано: x=2; hx=0,4 .
	Модель: А и z вычислять по формулам:
	Модель: A и z вычислять по формулам: $a = x^2 - \frac{2}{7}$ $z = \sin^2 a - a \cdot \sqrt{\frac{10}{x^2 + 2 \cdot x + 2}}$. Считать до тех пор, пока
	подкоренное выражение станет меньше 0,2. Определить
	количество (K) вычисленных z и сумму $z > 0$.
	Для решения этой задачи тип цикла выбрать согласно варианту
	задания.
	Результаты: a, z , количество (K) вычисленных z и сумму $z > 0$.
7	Дано: $an \le a \le ak$, шаг изменения а равен ha, значения переменных
	b, c
	$\left(a\sqrt{x}, \text{ если } x<2\right)$
	$y = bx^2$, если $2 \le x < 3$
	ce^x , если $x \ge 3$
	$y = \begin{cases} a\sqrt{x}, \text{ если } x < 2\\ bx^2, \text{ если } 2 \le x < 3\\ ce^x, \text{ если } x \ge 3 \end{cases}$ Модель: $x = \begin{cases} \frac{(a+b)}{c}, \text{ если } a \le bc\\ \frac{(a-b)}{c} \cdot c, \text{ если } a > bc \end{cases}$
	$\frac{(a+b)}{c}$, если $a \le bc$
	x = (a-b)
	$\frac{c}{c}$
	Для решения этой задачи можно выбрать любой тип цикла.
	Результаты:у, х
	Дано: $xn \le x \le xk$, шаг изменения х равен hx, значение переменной а
	2 3—
	Модель: $y = \frac{a^2 + x\sqrt[3]{x}}{\sqrt{a} + \sqrt[3]{x}}$. Определить максимальное значение у и
	среднее значение среди положительных элементов х.
	Для решения этой задачи нужно использовать безусловный цикл.
	Результаты: у, максимальное значение у и среднее значение среди
	положительных элементов х
	Дано: a=1; ha=0,3 .
	NA NA
	Модель: \mathbf{Y} и \mathbf{x} вычислять по формулам:.
	$y = \frac{ x-3,6\cdot a }{x^2+1}$ $x = a \cdot e^{a+1}$ Считать до тех пор, пока значение
	x станет больше 100. Определить количество (K) вычисленных
	y и сумму $y < 0$.
	Для решения этой задачи тип цикла выбрать согласно варианту
	задания.
	Результаты: у, х, Определить количество (K) вычисленных y и
	cymmy $y < 0$.

Вариант	Задания
8	Дано: $an \le a \le ak$, шаг изменения а равен ha, значения переменных
	b, c
	$y = \begin{cases} x^3 + a, & \text{если } 2 \le x \le 5 \\ x^2 + b, & \text{если } -5 < x < -2 \end{cases}$
	$y = \langle x^2 + b, \text{ если } -5 < x < -2 \rangle$
	Модель: $x+c$, если в остальных случая:
	$x = \begin{cases} a\sqrt{bc}, & \text{если } c \le 5 \\ b\sqrt{ac}, & \text{если } c > 5 \end{cases}$
	Для решения этой задачи можно выбрать любой тип цикла.
	Результаты: у, х
	Дано: $xn \le x \le xk$, шаг изменения х равен hx, значения переменных
	a, b
	Модель: $t = (a+b)^2 \sqrt{\frac{a+x}{b+x}} \ln(a+x)$. Вычислить количество
	отрицательных значений х. Определить минимальное значение
	среди вычисленных значений t.
	Для решения этой задачи нужно использовать безусловный цикл.
	Результаты: t, min t, количество отрицательных значений x .
	Дано: $a=3,2; x=0,5; dx=-0.4.$
	Модель: F вычислять по формуле: $F = \frac{1}{7} + \ln^2 \left(2 \cdot a + \frac{x^3}{x^2 + 1} \right)$. Считать
	до тех пор, пока выражение под знаком погарифма больше 0.
	Определить количество (K) вычисленных F и произведение
	F>0.
	Для решения этой задачи тип цикла выбрать согласно варианту
	задания.
	Результаты: F , количество (K) вычисленных F и произведение
	F>0

Тема: «Циклические алгоритмы задач формирования и обработки одномерных массивов»

Студент должен составить блок-схему, которая по исходным данным находит решение заданной модели.

ВАРИАНТЫ ЗАДАНИЯ

Вариант	Задания
•	Дано: Массив X , задается перечислением элементов, где $N-$ это
1	количество элементов массива.
	Необходимо вычислить:
	$y_{i} = \begin{cases} \frac{1}{\frac{1.4}{\sqrt{x_{i}^{5}}}}, \text{ если } x_{i} & 0.5 \\ \sqrt{x_{i}^{5}} & e^{x_{i}} & +1.5 \end{cases}$ $10\sqrt{ x_{i} } + e^{x_{i}}, \text{ если } x_{i} & 0.5$
2	Дано: Массив X , задан интервалом значений, где $Xn \le x_i \le Xk$ hX_i .
	Необходимо вычислить:
	$B = \frac{1}{N} \sum_{i=1}^{N} y_{i}$ $D = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (y_{i} - B)^{2}}$
	$D = \sqrt{\frac{1}{N-1}} \sum_{i=1} \left(y_i - B \right)^2$
	$\left[2+2x_i\sin x_i, \text{ если } x_i\leq 0\right]$
	$y_i = \left\{ 1 - \cos \frac{\pi}{2} x_i, \text{ если } 0 < x_i \le 10 \right\}$
	$x_i - \sqrt{\ln x_i}$, если $x_i > 10$
	Дано: Переменная b , массив t , который задается перечислением
3	элементов, где N – это количество элементов массива.
	Необходимо вычислить:
	$z = \int_{a}^{1.5t} 1.5t_{i^2} + b \sin \pi \cdot t_i $, если $t_i \ge 0$
	$Z_i = \begin{cases} 6.5t_i - \frac{1}{2}\sqrt{t_{i^2} + 1} &, \text{ если } t_i < 0 \end{cases}$
	$S = \sum_{Z_i > 0}^{L} Z_i$ и максимальный по модулю элемент массива Z и его номер
4	Дано: Массив X , задан интервалом значений, где $Xn \le x_i \le Xk$ hX_i .
	Необходимо вычислить:
	$0.5x_i+1$, если $x_i<0$
	$y_i = \begin{cases} \pi x_i - 2 \cdot x_i , \text{ если } 0 \le x_i \le 6 \\ 0, \text{ если } x_i > 6 \end{cases}$
	$[0, ecли x_i > 6]$
	$z_i = 1 + e^{z_i}$
	Подсчитать кол-во (K) y_i 5 и найти максимальный элемент массива

Вариант	Задания
	Дано: Массив X , задан интервалом значений, где $Xn \le x_i \le Xk$ hX_i . Необходимо вычислить: $1-e^{-z_i}, ecnu \qquad z_i > 3$
	$y_{i} = (\cos z_{i} + z_{i}^{2}, ecnu -1 \le z_{i} \le 3$ $z_{i} + \sqrt{ z_{i} }, ecnu z_{i} \le -1$ $Z_{i} = 1.5x_{i} + \frac{x_{i}}{x_{i}^{2} + 1} \mathbf{M} S = \sum_{y_{i} > 0} y_{i}$
6	Дано: Массив X , задается перечислением элементов, где N — это количество элементов массива.
	Необходимо вычислить:
	$Z_{i} = \begin{cases} 1 - x_{i} \cos x_{i} & \text{, если y }_{i} > 0.2\\ \sqrt{1 + x_{i}^{2}} & \text{, если y }_{i} \leq 0.2 \end{cases}$
	$y_i = \sin \pi \cdot x_i - x_i$ $S = \frac{1}{N} \sum_{i=1}^{N} Z_i$ и максимальный элемент массива Y.
	l=1
7	Дано: Массив X , задается перечислением элементов, где $N-$ это
	количество элементов массива. Необходимо вычислить:
	$Z_{i} = \begin{cases} x_{i} + \frac{\pi}{2} \sin \frac{\pi}{2} x_{i} &, \text{ если } y_{i} < 0 \\ 1 &, \text{ если } y_{i} \ge 0 \end{cases}$
	$($ 1 , если $y_i \ge 0$
	$y_i = x_{i^2} - x_i - 2$
	$A = \sqrt[N]{\prod_{i=1}^{N} Z_i}$ и минимальный элемент массива Y.
8	Дано: Массив X , задан интервалом значений, где $X_n \le X_k = X_k$ $X_n \le X_k = X_k$
	Необходимо вычислить: $3 \sin (\omega_0 + x_0)$
	$y_i = \frac{3\sin(\omega_i + x_i)}{2 + \cos(x_i - \omega_i)}$
	$\omega_i = \begin{cases} \frac{\pi}{2} - 2x_i & \text{, если } x_i \leq \frac{\pi}{4} \\ \pi - 2x_i & \text{, в остальных случаях} \end{cases}$
	$S = \sum_{y_i > 0} (y_i - \omega_i)^2$

Тема: «Алгоритмы обработки двумерных массивов»

Студент должен составить блок-схему, которая по исходным данным находит решение заданной модели.

ВАРИАНТЫ ЗАДАНИЯ

Ranuau	ВАРИАНТЫ ЗАДАНИЯ
Вариан т	Задания
1	Определить номер строки и номер столбца максимального элемента прямоугольной матрицы $A = (a_{i_j})_{n,m}$.
2	Найти отношение минимального элемента матрицы $A = (a_{ij})_{m,n}$ и максимального элемента матрицы $B = (b_{i,j})_{k,p}$.
3	Найти произведение положительных элементов в матрице B размерностью $^{K \times L}$. Значения элементов матрицы B вводятся с клавиатуры.
4	Для квадратной матрицы $F = (f_{ij})_{n,n}$ найти отношение суммы элементов, расположенных выше главной диагонали, к сумме элементов, расположенных ниже главной диагонали, предусмотрев соответствующее сообщение, если последняя сумма (делитель) окажется равной нулю.
5	Вычислить элементы матрицы Z размерностью M х N по элементам исходной матрицы $x=(x_{ij})_{n,m}$, $Z_{ij}=x_{ij}^2$, главную диагональ оставить неизменной.
6	Подсчитать количество нулевых элементов матрицы X размерностью m x n и напечатать их индексы.
7	Преобразовать матрицу $C = (C_{ij})_{n,n}$ так, чтобы все элементы, расположенные ниже главной диагонали, были уменьшены вдвое, а элементы расположенные выше главной диагонали, – увеличены вдвое.
8	Найти сумму и произведение отрицательных элементов в матрице B размерностью $^{K \times L}$. Значения элементов матрицы B вводятся с клавиатуры.

ЛИТЕРАТУРА

- 1. Алексеев Е.Р. Универсальный самоучитель начинающего пользователя ПК- М.:НТ Пресс, 2007. 640с.:ил.
- 2. Павлыш В.Н., Анохина И.Ю., Кононенко И.Н., Зензеров В.И. Начальный курс информатики для пользователей персональных компьютеров/Уч.-метод. пособие. Донецк:ДонНТУ, 2006
- 3. Князева М.Д. Алгоритмика: от алгоритма к программе. Учебное пособие. М.: КУДИЦ-ОБРАЗ, 2006, 192 с.
- 4. Князева М.Д., Трапезников С.Н. Алгоритмы. М.: ГУП ЦПП, 2000, 822с.
- 5. Виктор Долженков, Юлий Колесников. Micrososft Excel Наиболее полное руководство. Санкт-Петербург, «БХВ-Петербург», 2005

- 6. Сергеев Н.П., Домнин Л.Н. Алгоритмизация и программирование. М.: Радио и связь, 1982, 232с.
- 7. Рудникова Л.В. Microsoft Excel для студента. Санкт-Петербург, «БХВ-Петербург», 2005.
- 8. Навчальний посібник містить відомості про основні пристрої комп'ютера, про основні принципи алгоритмізації й практичні навички роботи з операційною системою Windows XP та прикладною програмою MS Excel/ Автор И.В. Тарабаєва. Донецьк, ДонНТУ, 2009. 150c.