ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ МАГНЕЗИАЛЬНЫХ ФЛЮСОВ В КОНВЕРТЕРНОМ ЦЕХЕ ОАО «МК «АЗОВСТАЛЬ»

Ганошенко В.И., Буга И.Д., Ковура А.Б., Гнедаш А.В., Цапи И.Г., Р.В. Кузенков – ОАО «МК «Азовсталь»

Розроблена технологія використання нових магнезіальних флюсів у конверторній плавці для підвищення змісту у шлаку MgO та стійкості вогнетривкої кладки конвертора. Встановлено, що для підвищення змісту у шлаку оксиду магнію до 8-15 % потребують питомої витрати флюсу озалізненного доломітового 24-45 кг/т сталі або брикетів флюсу магнезіального вуглєцєвозалізовмістного 10-20 кг/т. При підвищенні у шлаку середнього змісту MgO до 8 % стійкість вогнетривкої кладки конвертора збільшується на 400 плавок.

В конвертерном цехе ОАО «МК «Азовсталь» разработаны технологии использования двух видов магнезиальных флюсов: ожелезненного доломитового флюса — ОДФ-К [1] и брикетов магнезиального флюса железо-углеродосодержащего — ФМБУЖ, применяемых для увеличения содержания MgO в шлаке с целью повышения стойкости футеровки конвертеров, выполненной из периклазоуглеродистых огнеупоров. ОДФ-К также используется для компенсации дефицита извести.

Основным магнезиальным флюсом является ОДФ-К Докучаевского флюсодоломитового комбината, который изготавливают посредством совместного обжига во вращающихся печах сырого доломита фракции 5-25 мм и железорудного компонента (железорудные окатыши, железная руда). Химический состав (норма/факт), %: CaO – н.м. 54/58; MgO – н.м. 32/33; Fe₂O₃ – н.б. 7/3; SiO₂ – н.б. 4/3,2; ПМПП – н.б. 3/1. Фракционный состав – 5-40 мм; менее 5 мм – н.б. 10 %; более 40 мм – н.б. 10 %.

Брикеты ФМБУЖ производства ОАО «Магнезит» (г. Сатка, Россия) изготавливают из отсевов флюса ожелезненного магнезиального, производимого во вращающихся обжиговых печах и углеродосодержа-

щего материала с фракцией менее 4 мм, каустического магнезита фракцией менее 0,1 мм и лингосульфанатной связки.

Химический состав брикетов ФМБУЖ (норма/факт), %: MgO– н.м. 75/78,5; C – 4-8/5; Fe₂O₃ – 4-8/5; SiO₂ – н.б. 5/4,5; CaO – н.м. 1/2; ПМПП – н.б. 2/1. Размеры брикетов – 60x30 мм.

Необходимо отметить повышенный охлаждающий эффект ОДФ-К и ФМБУЖ (2,0 и 1,76 МДж/кг соответственно), относительно извести (1,68 МДж). Это объясняется наличием в составе магнезиальных флюсов оксидов железа, а в ФМБУЖ – теплогенерирующей добавки углерода.

Для конвертерной плавки используют известь марки ИС-1 со следующим химическим составом (норма/факт), %: CaO – н.м. 92/93; MgO – н.м. 6/1; SiO₂ – н.б. 1,8/0,8; ПМПП – н.б. 5/2,3. Фракционный состав – 5-40 мм; менее 5 мм – н.б. 8 %; более 40 мм – н.б. 10 %.

Массовый расход на плавку ОДФ-К и ФМБУЖ, а также извести определяют в зависимости от заданного содержания MgO в шлаке (8-15%), а также расхода чугуна и содержания в нем кремния. Заданные концентрации содержания MgO в шлаке достигаются при удельном расходе ОДФ-К 24-45 кг/т или ФМБУЖ — 10-20 кг/т.

Режим присадки магнезиальных флюсов в конвертер практически не отличается от режима присадки извести: 40-60 % до заливки чугуна, оставшуюся часть — во время первых 5-7 минут продувки.

Коэффициент замены ОДФ-К на ФМБУЖ по содержанию в них MgO составляет от 0,4 до 0,45.

Для ошлакования футеровки конвертера (без применения технологии разбрызгивания шлака азотом) содержание в шлаке MgO увеличивают до 12-15 %, что необходимо для получения требуемой вязкости шлака, которая обычно не соответствует требованиям особенно при температуре металла после продувки более 1675 °C.

Повышение содержания MgO в шлаке более 5 % ускоряет процессы шлакообразования, предотвращает «сворачивание» шлака в период интенсивного окисления углерода, что позволило исключить применение плавикового шпата во время продувки. С увеличением среднего содержания в шлаке MgO до 8 % стойкость периклазо-углеродистой футеровки повысилась на 400 плавок.

Для сравнения основных показателей при использовании магнезиальных флюсов было проведено 32 плавки с полной заменой ОДФ-К на ФМБУЖ. Сравнительный анализ результатов приведен в таблице 1.

Таблица 1

Показатель	Среднее значение		
	ОДФ-К	ФМБУЖД	Изменение
Расход основных материалов			
Расход чугуна, кг/т	922,1	901,2	- 20,9
в т. ч. за счет			
замены ОДФ-К на ФМБУЖД			- 12,9
повышения t чугуна на 20 °C			- 8,0
Расход лома, кг/т	197,3	218,2	+ 20,9
в т. ч. за счет			
замены ОДФ-К на ФМБУЖД			+ 12,9
повышения t чугуна на 20 °C			+ 8,0
Расход извести, кг/т	35,2	57,5	+ 22,3
Расход ОДФ-К, кг/т	40,4	-	- 40,4
Расход ФМБУЖД, кг/т	-	19,7	+ 19,7
Химсостав и температура чугуна			
[Si](ч), %	0,76	0,80	+ 0,04
[Mn](ч), %	0,76	0,57	- 0,19
[S](Y), %	0,016	0,026*	+ 0,010
[P](ч), %	0,042	0,042	0
Т(ч), ° С	1285	1305	+ 20
Химсостав и температура металла после продувки			
[C](пп), %	0,05	0,05	0
[Mn](ππ), %	0,16	0,15	- 0,01
[S](пп), %	0,019	0,033*	+ 0,014
[Р](пп), %	0,007	0,008	+ 0,001
Т(пп), °С	1694	1694	0
Химсостав шлака после продувки			
(CaO), %	39,3	39,8	+ 0,5
(MgO), %	11,4 13,3	14,0	+ 2,6
(FeO), %	13,3	11,1	- 2,2
(SiO ₂), %	16,1	17,7	+ 2,6 - 2,2 + 1,6
Основность	3,1	3,0	- 0,1
(CaO+MgO/SiO ₂ +P ₂ O ₅)		,	ŕ
Основность (CaO/SiO ₂) * – высокие концентрации серы в чугу	2,4	2,3	- 0,1

^{* –} высокие концентрации серы в чугуне и металле после продувки получены из-за остановки на ремонт отделения десульфурации чугуна и производства по этой причине рядового сортамента стали с использованием низкокачественного металлолома

В результате замены ОДФ-К на ФМБУЖ было установлено:

- снижение удельного расхода чугуна на 12,9 кг/т из-за сокращения массового расхода магнезиальных флюсов на плавку и меньшего охлаждающего эффекта ФМБУЖ;
- увеличение удельного расхода извести на 22,3 кг/т из-за меньшего содержания CaO в ФМБУЖ;
- усвоение MgO шлаком из брикетов ФМБУЖ на 6,9 % больше, чем из ОДФ-К, в основном из-за наличия в последнем мелкой фракции, которая выносится из конвертера с отходящими газами во время продувки.

Известно, что увеличение содержания MgO в шлаке приводит к ухудшению дефосфорации металла в конвертере [2].

Повышение содержания фосфора в металле после продувки можно объяснить результатами ранее выполненных исследований для расчета константы реакции дефосфорации металла [3]:

 $lg K_p = 7,87 \cdot lg[(CaO) + (CaF_2) + 0,3(MgO) + 1,2(Na_2O) - 0,5(P_2O_5) - 0,05(FeO)] + 22270/T - 27,124.$

Из формулы следует, что коэффициент реакционной способности оксида магния в 3,3 раза меньше, чем у оксида кальция. Поэтому для улучшения дефосфорации металла, при увеличении содержания в шлаке MgO, необходимо повышать содержание в нем CaO, т.е. основность шлака $CaO/SiO_2\left(B_1\right)$.

На практике во многих конвертерных цехах, в т.ч. и в конвертерном цехе OAO «МК «Азовсталь», основность шлака определяют по формуле $CaO+MgO/SiO_2+P_2O_5$ (B_2).

Выполненный нами анализ показал нецелесообразность расчета основности шлака по формуле B_2 , т. к. при увеличении основности за счет повышения содержания в шлаке MgO происходит снижение основности B_1 , определяющей дефосфорацию и десульфурацию металла в конвертере:

$$B_1 = -0.258 + 0.946B_2$$
, $r = 0.707$

Получены следующие зависимости содержания фосфора в металле после продувки от содержания в шлаке MgO и его основности B_1 в пределах от 1,7 до 3,5, включающих низкую основность:

При увеличении нижнего предела основности B_1 с 1,7 до 2,8 зависимость содержания фосфора в металле от основности шлака B_1 и содержания в нем MgO не установлена.

Влияние содержания в шлаке MgO на десульфурацию металла не установлено:

$$D_S = -46,69 - 0,706*MgO, r = -0,032$$

Полученные зависимости подтверждают необходимость при использовании магнезиальных флюсов применять для оценки качества шлака основность B_1 и поддерживать ее значения на уровне не менее 2,8. Замена формулы расчета основности шлака B_2 на B_1 повлечет увеличение удельного расхода извести на 3,0-3,5 кг/т на 0,1 основности.

Для расчета основности B_2 удельный расход извести сокращают в соотношении 0.9 кг/т на 1 кг/т ОДФ-К и 0.7 кг/т на 1 кг/т ФМБУЖ. При расчете основности шлака B_1 удельный расход извести необходимо сокращать из расчета 0.55 кг/т на 1 кг/т ОДФ-К и повышать на 0.1 кг/т на 1 кг/т ФМБУЖ.

ВЫВОДЫ

- 1. В конвертерном цехе МК «Азовсталь» внедрена технология конвертерной плавки с использованием магнезиальных флюсов ОДФ-К и ФМБУЖ для повышения стойкости периклазоуглеродистой футеровки конвертеров.
- 2. Применение ОДФ-К в 2005 году со средним удельным расходом 24 кг/т позволило увеличить среднее содержание в шлаке MgO до 8 % и повысить стойкость футеровки на 400 плавок. При этом удельный расход извести снизился на 22 кг/т, а использование плавикового шпата было исключено.
- 3. Высокомагнезиальный флюс ФМБУЖ имеет ряд преимуществ относительно ОДФ-К:
 - снижение массового расхода магнезиального флюса в 2,4 раза;
 - меньше на 8 % охлаждающий эффект;
 - усвоение MgO шлаком выше на 6,9 %.

Недостаток флюса — повышение удельного расхода извести. Поэтому использование этого флюса более рационально совместно с ОДФ- K.

4. Определение основности шлака при повышении содержания MgO в шлаке более 5 % необходимо производить на формуле B_1 =

- CaO/SiO_2 , т. к. при увеличении основности шлака $B_2 = CaO+MgO/SiO_2+P_2O_5$ приводит к уменьшению основности B_1 , определяющей дефосфорацию и десульфурацию металла в конвертере.
- 5. Увеличение содержания MgO в шлаке не ухудшает десульфурацию металла в конвертере, а также дефосфорацию, если основность шлака B_1 будет составлять не менее 2,8.

Литература:

- 1. Патент Украины на изобретение № 71683 от 15.12.2004 г. «Способ производства ожелезненного доломитового флюса и шихта для его осуществления». Авторы: Баранник В.В., Буга И.Д., Ганошенко В.И., Пономарев В.В. и др.
- 2. Использование высокомагнезиальных материалов в конвертерной плавке Демидов К.Н., Ламухин А.Н., Шатилов О.Ф. и др. Сталь, 2004 г., № 2. С. 12.
- 3. Лунев В.В., Аверин В.В. Сера и фосфор в стали М: Металлургия, 1988.