Алгоритм разработки объектов иерархии моделей заданной предметной области в моделирующем сервисном центре

Чепцов А.А. Кафедра ЭВМ ДонНТУ lex@cs.dgtu.donetsk.ua

Abstract

Cheptsov A.A. Algorithm of the domain area's models hierarchy's objects developing in the simulation and servicing centre. As a technology of the model-driven technological objects support the simulation and informational-servicing centre is supposed, the first prototype of that is developed for the coal industry. In a paper the algorithm of the models developing are supposed and described for the domain area "Coalmining ventilation networks and underground works safety".

1. Введение

Моделирование, как метод исследования сложных динамических систем различных предметных областей, в последнее время приобретает новое функциональное качество - математические модели и алгоритмы решения во всё возрастающей мере используются не только с целью анализа и прогнозирования состояния объектов исследования, но также и контроля управления технологическими производствами в целом, путем их реализации в форме симуляторов с использованием современных информационных технологий. Возможность функциональной организации средств моделирования качестве моделирующих сред поставила перед специалистами В области моделирования новые задачи проектирования, реализации и системной организации средств моделирования нового поколения, на основе которых небольшими функциональными затратами разрабатывать проблемно-ориентированные симуляторы, в максимальной учитывающие специфику динамических систем и процессов различных предметных областей, а также моделирующие центры, обеспечивающие и координирующие их функционирование.

В качестве технологии преодоления сложности моделей технологических систем различных предметных областей на всех этапах их построения и использования предлагается моделирующий сервисный центр (МСЦ) [1]. Проведенный в [2] анализ показывает, что фактором, объединяющим разные предметные области как сферы применения методов и средств моделирования, является наличие в них сложных динамических систем, характеризующихся формальными методами

математического и топологического описания, что обуславливает построение МСЦ с универсальных позиций, однако алгоритмически ориентированно на специфику каждой из них. При этом актуальной задачей является создание универсальных методик разработки и компьютерной реализации объектов иерархии моделей для предметных областей в рамках системно-технической архитектуры МСЦ.

2. Системная организация аппаратных ресурсов и программных компонентов МСЦ

Исходя из требований к распределенным моделирующим средам [2], в качестве базовой системной архитектуры для МСЦ предлагается использовать архитектуру компонентно-базированных сервисораспределённых систем Среди технологий. ориентированных [3]. реализующих данную архитектуру, нами была выбрана адаптированная к специфике моделирующей техники XML-базированная технология DESF (Discrete Event Simulation Framework) [4], в соответствии с которой МСЦ сервисо-ориентированная представляется как SimGrid инфраструктура [5] с использованием SWT (Standard Web Technologies) [6]. Данная технология предусматривает использование моделей МСЦ соответствующих предоставления моделирующих путём сервисов, размещённых на стороне серверных и сверхпроизводительных ресурсов МСЦ и доступных территориально удалённым пользователям МСЦ по сети Интернет по протоколам SOAP/HTTP (рис.1).

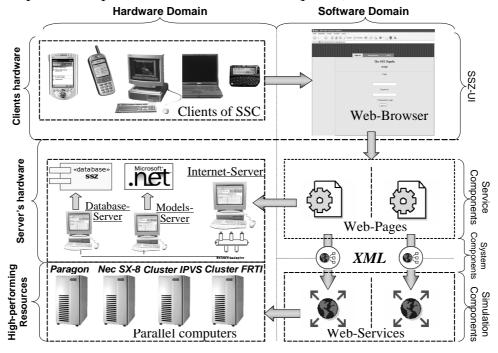


Рисунок 1 – Структурная организация программных и аппаратных ресурсов МСЦ в рамках SimGrid-среды.

eë пользователей МСЦ достигается использованием ДЛЯ моделей ограниченных возможность использования сложных при клиентских аппаратных pecypcax, также доступа сверхпроизводительным ресурсам при решении трудоёмких задач моделирования.

Под SimGrid-системой будем понимать вычислительные, сетевые и распределённые программно-технические компьютерные совместно функционирующие с целью решения задачи виртуальной использования моделирующих компонентов МСЦ. организации И Архитектура моделирующих служб (SimGrid-Services) в рамках SimGridсистемы специфицируется в соответствии с OGSA (Open Grid Source Architecture) [7], посредством которой они становятся доступными множеству Grid-клиентов (специалистов предметной области МСЦ). Реализация моделирующих служб осуществляется на основе одной из компонентно-базированных технологий распределённого программирования (ASP.NET-SimGrid, Java-SimGrid и др.).

В структуре аппаратных ресурсов МСЦ базовым узлом является который сосредотачивает В себе вычислительных ресурсов. Первоначально предполагается, что МСЦсервер функционирует на базе вычислительных ресурсов ДонНТУ. Он обеспечивает авторизацию, пользовательскую и техническую поддержку клиентов, предоставляет им доступ к проблемно-ориентированной моделирующей среде на пользовательском уровне, а также обеспечивает качественное своевременное И выполнение задач моделирования средствами иерархии моделей и симуляторов МСЦ, хранение, обработку и анализ полученных результатов процесса моделирования. Клиенты МСЦ получают доступ к ресурсам МСЦ-сервера через объединения своих ЛВС, с использованием Internet-соединения.

С целью повышения продуктивности процесса моделирования критичных по условиям безопасности технологических процессов и объектов предметных областей, В структуре МСЦ предлагается задействовать высокопроизводительные вычислительные ресурсы (MIMD-кластеры современных MIMD-ДоНТУ компьютеров, вычислительный комплекс Paragon), а также академических партнёров (сверхпроизводительный компьютерный данного проекта вычис-NEC-SX8 Штуттгартский центр университет], процессорный кластер с высокоскоростной коммутационной системой CLiC [Хемницкий технический университет], а также набор кластеров, функционирующих в Магдебургском, Штуттгартском и Эрлангенском университетах).

3. Разработка моделирующих компонентов МСЦ

В соответствии с требованиями к МСЦ [1], для каждого IJ(K)-объекта иерархии моделей предметной области (где I — функциональный уровень иерархии моделей заданной предметной области, J — технологическое направление, K — объект/процесс) предлагается реализовывать универсальный процесс разработки следующего вида: модель (model) \rightarrow приведенная модель (simulation model) \rightarrow дискретная модель (discrete simulation model) \rightarrow симулятор (simulator).

Под моделью (model) будем понимать математическое описание, с максимальной достоверностью представляющее протекающие в объекте исследования сложные динамические процессы. В качестве примера модели может быть приведено описание неустановившегося воздухораспределения в штреке шахтной вентиляционной сети с учётом утечек в выработанное пространство [8]:

$$\begin{cases}
-\frac{\partial P}{\partial \xi} = -\frac{2\rho}{F^2} Q \frac{\partial Q}{\partial \xi} + \frac{\rho}{F} \frac{\partial Q}{\partial t} + rQ^2 + r'(t)Q^2 \\
-\frac{\partial P}{\partial t} = \frac{\rho a^2}{F} \frac{\partial Q}{\partial \xi} - \frac{\rho a^2}{F} q
\end{cases} , \tag{1}$$

где P, Q – соответственно давление и расход воздуха в штреке; ρ , F, q, r, r', a – аэродинамические коэффициенты и параметры модели штрека.

Математическое описание разрабатывается отдельно сосредоточенными динамических систем c (ДССП-модели) распределёнными (ДСРП-модели) параметрами. Для описания ДССП выводятся уравнения для каждого из её составных элементов с учётом начальных и граничных условий, эффект композиции которых в систему уравнений, описывающую сложную ДССП, достигается путём агрегации в неё по определённой методике характеристик и функций топологических взаимосвязей между выделенными элементами. В общем случае ДССПмодель содержит:

- нелинейные и линейные дифференциальные уравнения различных порядков;
- алгебраические уравнения.

Для формализации и автоматического генерирования уравнений в математическое описание ДССП вводятся: векторы неизвестных переменных, их производных и нелинейных функций от них; матрицы топологических взаимосвязей элементов сетевого динамического объекта; матрицы параметров и векторы известных функций (характеристики активных элементов ДС — генераторов, насосов, турбокомпрессоров, двигателей, вентиляторов и т.п.; детерминированные и случайные функции влияния внешней среды); векторы вспомогательных переменных для определения переменных с порядками n>1. Формальными матричновекторными операциями можно привести математическое описание СДС к

системе уравнений в виде *simulation model*, пригодной для дальнейшего численного решения, которая может быть представлена как система вида (2):

$$\begin{array}{l}
\stackrel{\bullet}{Y} = AY + BX + CF(t) + DZ \\
X = \varphi(Y) \\
Z = \varphi(Y, t)
\end{array}$$
(2)

где Y — вектор неизвестных переменных; X — вектор нелинейных функций; F(t) — вектор функции влияния внешней среды, $Z = \phi(Y,t)$ — вектор характеристик активных элементов; A, B, C, D — матрицы параметров и связей.

Математическое описание ДСРП представляется дифференциальными уравнениями в частных производных. Особенность ДСРП-моделей заключается в том, что система уравнений для них является смешанной: часть элементов топологии ДС МОГУТ являться объектами распределёнными параметрами, которые совместно функционируют с динамическими и безинерционными объектами с сосредоточенными параметрами. С позиции построения моделей ДСРП подразделяются на параболического, гиперболического, эллиптического системы специального типов. Для численного решения дифференциальных уравнений в частных производных может быть использован один из методов нахождения дифференциально-разностной схемы (метод прямых, метод характеристик и др.), которая представляет собой совокупность обыкновенных дифференциальных уравнений, с достаточной степенью точности аппроксимирующих базовые дифференциальные уравнения в частных производных ДСРП и приведенных к виду (2). Так, на основе метода прямых [9], для ДСРП-модели штрека (1) может быть приведена следующая simulation model:

$$\begin{cases} \frac{dQ_{\text{omk}}}{dt} = \frac{F_{\text{om}}}{\rho} \cdot \frac{P_{\text{out},k+1} - P_{\text{out},k}}{\Delta \xi} + \frac{2}{F_{\text{om}}} \cdot Q_{\text{omk},k} \cdot \frac{Q_{\text{omk+1}} - Q_{\text{omk}}}{\Delta \xi} - \frac{F_{\text{om}}}{\rho} \cdot r_{\text{om}} \cdot Q_{\text{omk}}^2 - \frac{F_{\text{om}}}{\rho} \cdot r_{\text{t}}(t) \cdot Q_{\text{omk}}^2 \\ \frac{dP_{\text{omk+1}}}{dt} = \frac{\rho a^2}{F_{\text{om}}} \frac{Q_{\text{omk+1}} - Q_{\text{omk}}}{\Delta \xi} - \frac{\rho a^2}{F_{\text{om}}} q_k, \quad k = 1..m \end{cases}$$
(3)

В динамических объектах сетевой топологии уравнения элементов объединяются топологическими матрицами инциденций и контуров в систему уравнений, состоящую из n-1 уравнений для узлов

$$AQ = 0, (4)$$

и $\gamma = m - n + 1$ уравнений для контуров

$$SK\frac{dQ}{dt} + SRZ = SH , (5)$$

где m, n —соответственно количество ветвей и узлов сетевого объекта (ШВС); A, S — соответственно топологические матрицы инциденций и контуров; Q, H — соответственно векторы расходов воздуха в ветвях и разностей давлений вентиляторов, K, R, Z — диагональные матрицы аэродинамических параметров.

 \mathbf{C} алгоритма решения simulation использованием совокупности discrete simulation представляется виде упорядоченных в соответствии с применяемыми при реализации моделей С целью достижения необходимой или методами. численными максимальной точности решения системы (2) используется один из методов численного решения систем обыкновенных дифференциальных уравнений (метод Эйлера, метод Рунге-Кутта 4-го порядка, метод Адамса-Башфорта 2-го порядка, блочный 2-точечный одношаговый разностный метод и др.).

Например, для *simulation model* (3) может быть предложена следующая Адамса-Башфорта 2-го порядка *discrete simulation model* вида (6):

$$\begin{cases} V_{Q}^{k}(i) = \frac{F}{\rho} \cdot \frac{P_{k+1}^{(i)} - P_{k}^{(i)}}{\Delta \xi} + \frac{2}{F} \cdot Q_{k}^{(i)} \cdot \frac{Q_{k}^{(i)} - Q_{k+1}^{(i)}}{\Delta \xi} - \frac{F}{\rho} r (Q_{k}^{(i)})^{2} - \frac{F}{\rho} r'(t) \cdot (Q_{k}^{(i)})^{2} \\ V_{P}^{k}(i) = \frac{\rho a^{2}}{F} \cdot \frac{Q_{k+1}^{(i)} - Q_{k}^{(i)}}{\Delta \xi} + \frac{\rho a^{2}}{F} q_{k}, \quad k = 1..M \end{cases}$$

$$\begin{cases} Q_{k}^{(1)} = Q_{k}^{(0)} + h \cdot (V_{Q}^{k}(0)), \quad P_{k+1}^{(1)} = P_{k+1}^{(0)} + h \cdot (V_{P}^{k}(0)), \quad i = 0 \\ Q_{k}^{(i+1)} = Q_{k}^{(i)} + \frac{h}{2} (3V_{Q}^{k}(i) - V_{Q}^{k}(i-1)), \quad P_{k+1}^{(i+1)} = P_{k+1}^{(i)} + \frac{h}{2} (3V_{P}^{k}(i) - V_{P}^{k}(i-1)), \quad i > 0 \end{cases}$$

$$(6)$$

где h — шаг численного дифференцирования, $\mathbf{Q} = \{Q_1,...,Q_k,...Q_M\}$, $\mathbf{P} = \{P_1,...,P_k,...P_{M+1}\}$ — векторы аэродинамических параметров вдоль продольных координат штрека, M — количество пространственно-аппроксимирующих элементов длиной $\Delta \xi$.

Разработанные дискретные модели подлежат программной реализации в виде исполняемых программных компонентов (симуляторов), которые в дальнейшем могут быть интегрированы в МСЦ в соответствии с принципами системной организации его аппаратных ресурсов моделирующих программных И служебных компонентов, осуществляется на основе выбранной программно-технической платформы и посредством технологий разработки программного обеспечения. В примера объектно-ориентированной функциональности модели в рамках системотехнического решения МСЦ может быть приведена автономная web-служба (рис. 2).

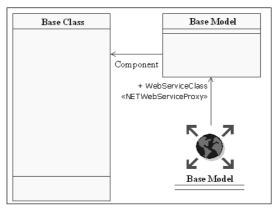


Рисунок 2 – Объектно-ориентированное представление *web*-базированной модели.

4. Заключение

Представленные в данной работе теоретические, модельные и программные разработки, а также проведенные экспериментальные исследования подтверждают достижение основных поставленных целей концептуальной разработки и реализации методики системной алгоритмической организации средств и методов модельной поддержки и сопровождения сложных динамических систем различных предметных областей форме проблемно-ориентированного моделирующего сервисного центра, предоставляющего возможность эффективного целенаправленного применения метода компьютерного моделирования для решения проблем исследования на единых методических принципах.

Первый прототип МСЦ был разработан ДЛЯ угольной промышленности, в рамках которого в соответствии с предложенным и рассмотренным в данной работе алгоритмом были разработаны и программно реализованы модели технологического направления «Техника безопасности и проветривание» [10]: модель лавы, модель откаточного штрека, модель вентиляционного штрека, модель воздухоподающего ствола, модель воздухоотводящего ствола, модель схемы проветривания выемочного участка, модель шахтной вентиляционной сети как объекта с сосредоточенными параметрами, модель шахтной вентиляционной сети как объекта с распределёнными параметрами. Дальнейшие разработки концентрируются на реализации моделей для предметной области «Шахтные вентиляционные системы и безопасность труда горняков», а также внедрении моделирующего сервисного центра в технологический процесс угольной промышленности и апробации, что планируется осуществлять на базе шахты "Южно-Донбасская №3" (Донецкая область, Украина).

Литература

- 1. Cheptsov O., Svjatnyj V., Hohmann R. Die Entwicklung eines Simulationsund servicezentrums für gegebenes Gegenstandsgebiet. / Наукові праці ДонДТУ, Серія: "Інформатика, кібернетика та обчислювальна техніка", вип. 93, 2005, с. 151-158.
- 2. Святний В.А.: Паралельне моделювання складних динамічних систем / Сборник трудов конференции «Моделирование-2006», Институт проблем моделирования в энергетике им. Г.Е.Пухова НАН Украины, Киев 2006. с.83-90.
- 3. Leymann, F. Web Services: Distributed applications without limits. Proceedings BTW 03, Berlin Heidelberg New York Tokio: Springer, 2003
- 4. Thomas Wiedemann. Next Generation Simulation Environments Founded on Open Source Software and XML-Based Standard Interfaces. In Proceedings of the 2002 Winter Simulation Conference, 2002.
- 5. Gyimesi, M., Breitenecker, F. Simulation Service Providing als Web Service. In: F.Hülsemann u.a. (Hrsg.), Tagungsband 18. ASIM-Symposium Simulationstechnik, Erlangen 2005, SCS 2005.
- 6. Senthilanand Chandrasekaran, Gregory Silver, John A. Miller, Jorge Cardoso and Amit P.Sheth: Web Service Technologies and their Synergy with Simulation. In Proceedings of the 2002 Winter Simulation Conference, 2002.
- 7. Berman, F., Hey, A., Fox, G.: Grid computing: Making the global infrastructure a reality. Wiley, 2003.
- 8. Абрамов Ф.А., Фельдман Л.П., Святный В.А. Моделирование динамических процессов рудничной аэрологии. К.: Наукова думка, 1981. 284c.
- 9. Бахвалов Н., Жидков Н., Кобельков Г. Численные методы. М.: Изд-во «Лаборатория базовых знаний», 2003. 632 с.
- 10.Zur Entwicklungsorganisation des Simulations- und Servicezentrums für die Kohleindustrie / O. Cheptsov, V. Svjatnyj, O. Beljaev, V. Lapko, O. Schkrebez/ Simulationstechnik 18. Symposium in Erlangen, September 2005. s.554-559.