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Abstract 

 
Krasnik M.Y. CAPE-OPEN object oriented interfaces for the DIVA 

simulator. Object oriented interfaces for the Diva simulator described in this 
article. There are model interfaces, equation solvers interfaces (differential-
algebraic equation solvers, nonlinear algebraic equation solvers). Also included 
sequential diagrams for the full work cycle of the model and solver. 

 
Introduction 

 
The scientific computing community's need for implementations of 

complex numerical algorithms has awakened interest in the potential benefits of 
object-oriented programming (OOP) compared to traditional approaches. These 
benefits include more flexible and extensible implementations of numerical 
algorithms, simplified user interfaces, and better readability from the developer's 
perspective.  

As base of developing modeling system was chosen CAPE-OPEN 
standard [2]. It is a co-operative project sponsored by the European Union and 
aimed at defining software interfaces which allow plug-and-play simulation 
components within the various process simulators currently on the market (i.e. 
commercial, academic or "in house" simulators). The main features of the 
standard are: 
 Steady-state and dynamic simulation for process design  
 Training simulators for operators  
 Data acquisition and reconciliation  
 Advanced control, monitoring and diagnostic  
 Optimization of processes  
 Equipment design tools (heat exchanger, reactor, pipe network, pressure 

relief, distillation, etc.) 
 Process design tools (process simulators, process network designers, etc.) 

CAPE-OPEN interface classes CapeNumericESO and CapeNumericDAESO 
(see below) fully describe Diva models. Using CAPE-OPEN interface allows us 
to use models in different modeling systems, like gPROMS, HYSYS et al. 
 



CAPE-OPEN interface classes 
 

As base of modeling system was chosen Diva [1,8], which was developed at 
the Institut für Systemdynamik und Regelungstechnik (university of Stuttgart). 

 

 
 

Figure 1. Multithreaded modeling system packages kit 
 

On figure 1 presented diagram of developed packages: 
Utility package. Basic defined classes: 
 CapeUtilityComponent. Super class of the all CAPE subclasses, which 

holds information about name, description and version of the 
component. 

 CapeException. Super class for the CAPE exceptions. 
 CapePublicParameter. Holds information on any parameter in general. 
 CapeVariant. Variant data type, which allows hold integer, real, string, 

pointer data types. 



Matrix package. Defining the matrix types (see fig. 3): 
 CapeNumericMatrix. Abstract super class for the matrix. 
 CapeNumericFullMatrix. Dense matrix subclass. 
 CapeNumericUnstructuredMatrix. Sparse matrix subclass. 
 

 
 

Figure 2. Class diagram of the Utility package 
 

 
 

Figure 3. Class diagram of the Matrix package 
 

Model objects 
 

The base component of the modeling system is the model, which is the 
definition of large sets of nonlinear equations of any kind generally requires a 
large amount of relatively complex data. This has led us to introduce the concept 
of an Equation Set Object (ESO) as a means of defining this information in a 
way that can be accessed and used by instances of NLASolvers and DAESolvers 
(see [2]). The structure of the ESO is, therefore, central to the interface 
definitions which are the ultimate goal of this work.  

The ESO is an abstraction representing a square or rectangular set of 
equations. These are the equations that define the physical behavior of the 



process under consideration, and which must be solved within a flowsheeting 
problem. The interface to this object is intended to serve the needs of the various 
solver objects by allowing them to obtain information about the size and 
structure of the system, to adjust the values of variables occurring in it, and to 
compute the resulting equation residuals and, potentially, other related 
information (e.g.  partial derivatives).  

More specifically, an ESO will support a number of operations including 
the following:  
 Obtain the current values of a specified subset of the variables. 
 Alter the values of any specified subset of the variables. 
 Compute the residuals of any specified subset of the equations at the current 

variable values. 
 Obtain the partial derivatives of a specified subset of the equations with 

respect to a specified subset of the variables (at the current variable values of 
the object).  

The ESO component mainly represents a rectangular system of P 
equations and N variables (P superior or equal to N). The ESO was built as an 
independent component with all the interfaces needed for the Solver 
Component.  

 

 
 

Figure 4. Class diagram of the ESO package 
 



On figure 4 presented class diagram of the ESO package 
(CapeNumericESO, CapeNumericLAESO, CapeNumericNLAESO, 
CapeNumericDAESO classes). 

The first type of classes is intended for encapsulation different model data 
types. The second fulfills library managing, which contains models. Below 
presented brief characteristic of the first type models. 
 
CapeNumericESO (inherits from: CapeUtilityComponent)  

This is the interface of the Equation Set Object which in the most general 
case represents a set of equations of the form f(x,x')=0. In general, a set 
described by an ESO can be rectangular, i.e.  the number of variables does not 
have to be the same as the number of equations. The variables in an ESO are 
characterized by their current values (that can be changed via the provided 
interface), and also lower and upper bounds. Usually, these bounds relate to the 
domain of definition of the equations or physical reality. For this reason, any 
attempt to set one or more variables to values outside these bounds is considered 
to be illegal and will, therefore, be rejected.  

The equations in an ESO are assumed to be sparse, i e. any given equation 
will involve only a subset of the variables in the ESO. Consequently, only a 
(usually small) subset of the partial derivatives  ∂f/∂x are going to be nonzero 
for any set of values of the variables x. The sparsity pattern of the ESO refers to 
the number of such nonzero elements, and the row i (i.e. equation fi) and column 
j (i.e. variable xj) to which each such nonzero corresponds. The way in which 
information on this structure is defined is entirely analogous to that for linear 
systems.  

The interface defined in this section provided mechanisms for obtaining 
information on the current values and bounds of the variables x, as well as the 
sparsity pattern of the ESO. It also allows the modification of the variable 
values, and the computation of the values ("residuals") of the equations f(x) for 
the current values of x and of the nonzero elements of the matrix ∂f/∂x (the so-
called "Jacobian" matrix).  

The methods of the CapeNumericESO interface are: 
GetParameterList  gets the list of all the parameters  
Get/SetParameter  gets/sets the current value of a specific parameter  
GetNumVars  gets the number of variables of this ESO  
GetNumEqns  gets the number of equations in this ESO  
SetFixedVars  sets the value of fixed variables  
SetAllVariables  sets the value of all variables of this ESO 
Get/SetVariables  gets/sets the value of some variables 
GetAllVariables  gets the value of all variables 
GetVariables  gets the value of a subset of the variables 
GetAllResiduals  gets the value of all the residuals 
GetResiduals  gets the value of a subset of the residuals 



GetJacobianStruct  returns a structure of the Jacobian matrix 
GetAllJacobianValues returns a Jacobian values 
GetJacobianValues gets the values of selected entries of the Jacobian 
Destroy   deletes the ESO Component. 
 
CapeNumericLAESO (inherits from: CapeNumericESO)  

Describes linear system of equation: 
 
A*x = B 
 
where x  Rn solution vector, A  Rnn is a matrix of coefficients and B  

Rn  is a vector. 
The methods of the CapeNumericLAESO interface are: 

SetLHS  sets the left hand side values of the linear system 
GetRHS  gets the left hand side values of the linear system 
SetRHS  sets the values of the right hand side vector 
GetRHS  gets the values for the right hand side vector 
 
CapeNumericNLAESO (inherits from: CapeNumericESO)  

Describes nonlinear implicit system of equation 
f(x) = 0 
where x  Rn, f: Rn Rn. There is no special method right now for this 

interface. 
 
CapeNumericDAESO (inherits from: CapeNumericESO)  

This is the interface of the Differential-Algebraic Equation Set Object 
which represents a (generally rectangular) set of differential-algebraic equations 
of the form:  

 
f(x, x', t) = 0, 
 
where t  R is the independent variable, x  Rn is a vector of dependent 

variables and x' denotes the derivatives dx/dt. In general, the quantities dx/dt 
will appear in the system for only a subset of the dependent variables x. This 
subset of x are often referred to as the "differential variables" while the rest are 
the "algebraical variables".  

The methods of the class CapeNumericDAESO functionality for 
accessing and altering information pertaining to f(x,x')=0. They also allows 
changing the value of the independent variable t.  
The defined methods are: 
SetAllDerivatives  sets the numerical value of all the derivatives 
GetAllDerivatives  gets the numerical value of all the derivatives 
GetDerivatives  gets the value of a subset of the derivatives 



GetDiffJacobianStruct gets the structure of the differential Jacobian matrix 
GetDiffJacobianValues gets the values of the differential Jacobian matrix 
GetIndependentVar gets the value of the independent variable 
SetIndependentVar sets the value of the independent variable. 
 

Equation solvers 
 

On figure 5 presented class diagram of the ESO package, which consist of 
classes description: CapeNumericSolver, CapeNumericLASolver, 
CapeNumericNLASolver, CapeNumericDAESolver. 

 

 
 

Figure 5. Class diagram of the Solver package 
 
CapeNumericSolver (inherits from: CapeUtilityComponent)  

This interface exists to provide facilities for identifying the various 
algorithmic parameters (e.g. convergence accuracy, integration error tolerances 
that are recognized by a numerical solver, and for altering their values if 
necessary.  
Six methods have been defined, which are common to the different kinds of 
solvers: 
GetParameterList  returns the list of all the parameters 
SetParameter  sets the current value of a specific parameter 
Solve    attempts to solve the system of equations 
GetSolution   gets all the values of the variables 
Destroy   deletes the solver component 
SetReportingInterface sets the reference to an object in charge of managing 

some reporting at each step of the process 
 



CapeNumericLASolver (inherits from: CapeNumericSolver) 
The Solve method get the A matrix and the B vector of the Ax=B system 

using the already defined methods in the CapeNumericLAESO. The A matrix is 
given by the GetJacobianValues method of the ESO and the B vector is equal to 
minus GetResiduals method with all the variables set to zero. The x vector result 
is given by the GetSolution method. 
 

No specific methods have been defined for this kind of solver. 
 

CapeNumericNLASolver (inherits from: CapeNumericSolver) 
Such type of solvers allows to solve non-linear problems, which are 

defined by CapeNumericNLAESO, or steady-state problems which are defined 
by CapeNumericDAESO with all derivatives equal zero. 

 
Methods of the class: 

SetCvgTolerance  sets the convergence tolerance 
GetCvgTolerance  gets information on the convergence tolerance 
SetMaxIterations  sets the maximum number of iterations 
GetMaxIterations  gets information on the maximum number of iterations  
DoNIterations  perform N iterations on the nonlinear problem 
 

All this functions supersedes parameters of particular solvers, which will 
be described later. 
 
CapeNumericDAESolver (inherits from: CapeNumericSolver) 
The class related to the solution of differential-algebraic equation systems and 
has additional methods: 
SetRelTolerance  sets the relative tolerance values 
GetRelTolerance  gets information on the relative tolerance 
SetAbsTolerance  sets the absolute tolerance 
GetAbsTolerance  gets information on the absolute tolerance  
 

Below described realized nonlinear and differential-algebraic solvers. 
There are defined 4 classes: 
 Class SdasacSolver (inherits from CapeNumericDAESO). This class based 

on the SDASAC solver written in FORTRAN, for more details see [3]. 
 Class NLEQ1Solver (inherits from CapeNumericDAESO). This class based 

on the NLEQ1S subroutine written in FORTRAN, which uses damped affine 
invariant Newton method [4,5].  

 Class IDASolver (inherits from CapeNumericDAESO).  This class based  on 
the Implicit Differential Algebraic equation solver  written in pure C, for 
more details see [6].  



 Class KINSolver (inherits from CapeNumericNLAESO). This class based on 
the solver which uses Krylov Inexact Newton techniques and written in pure 
C language (see [9]).  

On the figure 6 shown class diagram of the realized solver objects. 
 

 
 

Figure 6. Sequential diagram of working with ESO and Solver classes 
 

Conclusion 
 

In the article described CAPE-OPEN interfaces for the different solvers. 
Also described models class, which definition can be generated using ProMoT 
with object oriented modeling conception. 

The next step will be avoidance of the FORTRAN code in the models and 
maintaining full-featured object oriented models. 
 

Acknowledgments 
 

I am indebted to all researchers who have worked in the Diva project and 
have contributed to the new modelling system in one way or the other. Specially 
I would like to thank Martin Ginkel, Martin Häfele, Michael Mangold, Nikolai 
Tschebotarjov, Roland Waschler, Prof. Achim Kienle and Prof. Ernst D. Gilles 
from the Max-Planck-Institute of dynamic complex technical systems 
(Magdeburg, Germany), and also Andrew Chut and Konstantin Teplinsky from 
the Donetsk National Technical University (Ukraine). 

The work was supported by PRO3 scholarship, and I would like to thank  
Beate Witteler-Neul, coordinator of the PRO3 project. 

Also I am indebted to the computer engineering department of the 
Donetsk National Technical University, and head of the department Prof. 
Vladimir. A. Svjatnyj. 
 



References 
 
1. Wouwer A.V., Saucez Ph. , Schiesser W.E., Adaptive method of lines, 
Chapman & Hall/CRC Press, (2001), pp. 371-406. 
2. Open Interface Specification Numerical Solvers, CO-NUMR-EL-03 Vers. 1 
3. Mangold M., Short Dovumentation of SDASAC, Institut für Systemdynamik 
und Regelungstechnik Universität Stuttgart, April 3, 1998 
4. Deuflhard P., Newton Techniques for Highly Nonlinear Problems - 
Theory and Algorithms, Academic press Inc. 
5. Nowak U., Weimann L., A Family of Newton Codes for Systems of Highly 
Nonlinear Equations - Algorithm, Implementation, Application, ZIB, Technical 
Report TR 90-10 (December 1990) 
6. Taylor Al. G. and Hindmarsh Al. C.,  User Documentation for IDA, A 
Differential-Algebraic Equation Solver for Sequential and Parallel Computers,  
Lawrence Livermore National Laboratory report UCRL-MA-136910, December 
1999 
7. Harwell Subroutine Library Specifications (Release 12),  pp. 516-527, AEA 
Technology, Harwell Laboratory, December 1995. 
8. Diva home page - http://www.isr.uni-stuttgart.de/diva/diva.html 
9. Taylor Al. G., Hindmarsh Al. C., User Documentation for KINSOL, A 
Nonlinear Solver for Sequential and Parallel Computers, Lawrence Livermore 
National Laboratory report UCRL-ID-131185, July 1998. 
 

Дата надходження до редколегії: 13.10.2003 р.  
  


