Inversion of the local Pompeiu transform

Natalia P. Volchkova

Department of Mathematical Analysis and Function Theory, Donetsk National University, 24, Universitetskaya str., Donetsk, 83055, Ukraine

Abstract

The construction of inversion of the local Pompeiu transform for some classes of cylinders is obtained.

Key words: Fourier series, convolution, Bessel functions, spherical functions

2000 MSC: 42C10, 44A35, 33C10, 43A90

1. Introduction

Let \mathbb{R}^n be a real Euclidean space of dimension $n \geq 2$ with the Euclidean norm $|\cdot|$, let M(n) be the group of Euclidean motions in \mathbb{R}^n , and let $\mathcal{F} = \{\mu_i\}_{i=1}^k$ be a finite family of distributions with compact supports in \mathbb{R}^n . For fixed $g \in M(n)$ we consider the distribution $g\mu_i$ acting on $C^{\infty}(\mathbb{R}^n)$ by the rule

$$\langle g\mu_i, f \rangle = \langle \mu_i, f \circ g \rangle, \quad f \in C^{\infty}(\mathbb{R}^n).$$

The (global) Pompeiu transform $\mathcal{P}_{\mathcal{F}}$ is the map

$$\mathcal{P}_{\mathcal{F}}: C^{\infty}(\mathbb{R}^n) \to C^{\infty}(M(n))^k$$

given by

$$\mathcal{P}_{\mathcal{F}}(f)(g) = (\langle g\mu_1, f \rangle, \dots, \langle g\mu_k, f \rangle), \quad g \in M(n).$$
 (1)

Similarly, for an open set $U \subset \mathbb{R}^n$ the local Pompeiu transform maps $C^{\infty}(U)$ into the Cartesian product $C^{\infty}(\Lambda(U, \mu_1)) \times \ldots \times C^{\infty}(\Lambda(U, \mu_k))$ by the formula (1), where $\Lambda(U, \mu_i) = \{g \in M(n) : \operatorname{supp} g\mu_i \subset U\}.$

For given \mathcal{F} and U the following problems arise (see [4]).

Problem 1. Find out whether $\mathcal{P}_{\mathcal{F}}$ is an injective map. If it is not, describe the kernel of $\mathcal{P}_{\mathcal{F}}$.

Problem 2. In the case $\mathcal{P}_{\mathcal{F}}$ is injective, find the converse map.

Many authors have studied the injectivity of the Pompeiu transform and related problems for special \mathcal{F} and U (see the survey papers [4,13], which contain an extensive bibliography, and also [2,3,6,8–12]). The most interesting case is the case when $U = B_R(y) = \{x \in \mathbb{R}^n : |x - y| < R\}$, and $\mathcal{F} = \{\chi_E\}$ is the characteristic function (indicator) of a compact set $E \subset B_R(y)$ of positive measure. For this family \mathcal{F} and the set $E \subset \overline{B_r(x_0)}$ having a hyperbolic point $x_1 \in E \cap \partial B_r(x_0)$ and the global Pompeiu property, the Pompeiu transform $\mathcal{P}_{\mathcal{F}}$ is injective with respect to U if R > 2r (see [2,3], and also [6,9–11], where for some E the minimal value of R for which \mathcal{P}_{χ_E} is injective is found). In [3] for the sets E with the above properties the construction of the inversion of the transform \mathcal{P}_{χ_E} in the ball $B_R(y)$, R > 3r is obtained. Besides, for the case where E is a square a function $f \in C^{\infty}(B_R(y))$ is recovered in [3] from its Pompeiu transform $\mathcal{P}_{\chi_E}(f)$ also for R > 2r. In connection with this, the inversion of the transform $\mathcal{P}_{\chi_E}(f)$ also for R > 2r. In connection with this, the inversion of the transform $\mathcal{P}_{\chi_E}(f)$ also for R > 2r. In connection with this, the inversion of the transform $\mathcal{P}_{\chi_E}(f)$ also for R > 2r. In connection with this, the inversion of the transform $\mathcal{P}_{\chi_E}(f)$ also for R > 2r. In connection with this, the inversion of the transform $\mathcal{P}_{\chi_E}(f)$ also for R > 2r. In connection of the rompelum for some class of cylinders is obtained.

2. Statement of the main result

Let $\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$, let ρ and σ be the polar coordinates in \mathbb{R}^n (for each $x \in \mathbb{R}^n$ we set $\rho = |x|$ and if $x \neq 0$, then we set $\sigma = \frac{x}{\rho} \in \mathbb{S}^{n-1}$). Let $\{Y_s^{(k)}(\sigma)\}$, $1 \leq s \leq d_k$, be a fixed orthonormal basis in the spase \mathcal{H}_k of spherical harmonics of degree k, regarded as a subspace of $L^2(\mathbb{S}^{n-1})$ (see [7, Chapter 4, section 2]). To every function $f \in L_{loc}(B_R)$ we assign its Fourier series

$$f(x) \sim \sum_{k=0}^{\infty} \sum_{s=1}^{d_k} f_{ks}(\rho) Y_s^{(k)}(\sigma), \quad 0 < \rho < R,$$

where

$$f_{ks}(\rho) = \int_{\mathbb{S}^{n-1}} f(\rho\sigma) \overline{Y_s^{(k)}(\sigma)} d\sigma.$$

To reconstruct f it is sufficient to find the coefficients f_{ks} of its Fourier series. Further, as usual, $\mathcal{D}(\mathbb{R}^n)$ is the space of infinitely differentiable functions on \mathbb{R}^n ,

Further, as usual, $\mathcal{D}(\mathbb{R}^n)$ is the space of infinitely differentiable functions of \mathbb{R}^n , with compact supports, and $\mathcal{D}'(\mathbb{R}^n)$ is the space of distributions on \mathbb{R}^n . Let $\mu_1 * \mu_2$ be the convolution of two distributions on \mathbb{R}^n one of which is compactly supported. We need a concept of circular symmetrization of a distribution defined as follows: for any $\mu \in \mathcal{D}'(\mathbb{R}^n)$, we define $\mathcal{R}\mu$ setting

$$\langle \mathcal{R}\mu, \varphi \rangle = \langle \mu(x), \int_{\mathbf{SO}(n)} \varphi(kx) \, \mathrm{d}k \rangle, \quad \varphi \in \mathcal{D}(\mathbb{R}^n),$$
 (2)

where SO(n) is the group of rotations of \mathbb{R}^n , and dk is the normalized Haar measure on SO(n).

Let
$$\alpha \in (0, 2\pi)$$
, $\beta_{\alpha} = \begin{cases} \alpha/2 , \alpha \in (0, \pi], \\ \pi , \alpha \in (\pi, 2\pi), \end{cases}$ $Sg = \{z \in \mathbb{C} : |z| \leq 1, |\arg z| \leq 1, |$

 β_{α} , Re $z \geq \cos \frac{\alpha}{2}$ be the circular segment of angular measure α , $H = (Sg - h_{\alpha}) \times$

$$[-b_3, b_3] \times \ldots \times [-b_n, b_n], \text{ where } h_{\alpha} = \begin{cases} \cos \frac{\alpha}{2}, & \alpha \in (0, \pi], \\ 0, & \alpha \in (\pi, 2\pi), \end{cases}$$
 $b_k > 0, k = 3, \ldots, n.$

Further we need the following differential operators: $\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}$, $D^{\varkappa} = \frac{\partial^{|\varkappa|}}{\partial x_1^{\varkappa_1} \dots \partial x_n^{\varkappa_n}}$ ($\varkappa = (\varkappa_1, \dots, \varkappa_n) \in \mathbb{Z}_+^n$, $|\varkappa| = \varkappa_1 + \dots + \varkappa_n$), $D_1 = \frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2}$, $D_2 = \frac{\partial^{n-2}}{\partial x_3 \dots \partial x_n}$, $D_{ij}(a) = (x_i + a) \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial x_i}$, $(a \in \mathbb{R}^1)$. We denote $\mathcal{R}_k = \mathcal{R}(D_2 D_1^k \mu)$, where $\mu = \frac{\partial^2}{\partial x_2^2} D_{12}(h_\alpha) D_2 \chi_H$.

Let r_0 be the radius of the least closed ball containing Sg, $r=\sqrt{r_0^2+b_3^2+\cdots+b_n^2}$, R>2r, $f\in C^\infty(B_R)$, where $B_R=B_R(0)$. For $x\in B_{R-r}$ we set f(x)=f(-x), $f_1(x)=(f*\mathcal{R}\chi_H)(x)$, $f_i(x)=(\check{f}*\nu_i)(x)$, i=2,3, where $\nu_2=\mathcal{R}_1$,

$$\nu_{3} = \begin{cases} \mathcal{R}_{5} + \frac{4}{9n^{2}r^{2}}(3n-4)(3n+2)\Delta\mathcal{R}_{1} - \frac{4}{9n^{2}}\Delta^{2}\mathcal{R}_{1} , 3n\sin^{2}\frac{\alpha}{2} = 2r^{2}, \\ \mathcal{R}_{3} + \frac{2}{3n}\Delta\mathcal{R}_{1} , 3n\sin^{2}\frac{\alpha}{2} \neq 2r^{2}, \end{cases}$$

for $\alpha \in (0, \pi]$, and $\nu_3 = \mathcal{R}_2$ for $\alpha \in (\pi, 2\pi)$.

The main result of this paper is the following

Theorem 1. Let R > 2r. Then for any $k \in \mathbb{Z}_+$, $1 \le s \le d_k$, $\rho \in (0, R)$ there exist distributions $\mathcal{U}_{l,i}$, $(l \in \mathbb{N}, i = 1, 2, 3, 4)$ with the following properties:

- (1) supp $\mathcal{U}_{l,i} \subset B_{R-r}$ $(l \in \mathbb{N}, i = 1, 2, 3)$, supp $\mathcal{U}_{l,4} \subset B_R$ $(l \in \mathbb{N})$;
- (2) for any $f \in C^{\infty}(B_R)$

$$\left(\Delta^{n} \check{f}\right)_{ks} (\rho) = \lim_{l \to \infty} \left(\langle \mathcal{U}_{l,1}, f_{2} \rangle + \langle \mathcal{U}_{l,2}, f_{3} \rangle \right), \tag{3}$$

$$\check{f}_{ks}(\rho) = \lim_{l \to \infty} \left(\langle \mathcal{U}_{l,3}, f_1 \rangle + \langle \mathcal{U}_{l,4}, \Delta^n \check{f} \rangle \right). \tag{4}$$

Let us make some remarks. Lemmas 1 - 3 (see section 3 below) show how to reconstruct the functions f_i , i = 1, 2, 3 in terms of $\mathcal{P}_{\chi_H}(f)$. Therefore, applying the equalities (3), (4) we can compute the Fourier coefficients of f in terms of the Pompeiu transform of f. Thus, in Theorem 1 the procedure for the local inversion of the Pompeiu transform \mathcal{P}_{χ_H} is obtained. This method enabled us to obtain similar results for other compact sets E. In particular, analogues of Theorem 1 can be

proved for cylinders of the form $K \times [-b_3, b_3] \times ... \times [-b_n, b_n]$, where K belongs to some class of polygons or circular domains.

3. Auxiliary assertions

Let $1 \leq i < j \leq n$, $h, \theta \in \mathbb{R}^1$, let $\tau_{i,h}$ be a shift on h along x_i axis, and let $k_{i,j,\theta}$ be the rotation in the plane (x_i, x_j) by an angle θ .

Lemma 1. Let $E \subset \overline{B}_{r_1}$, $R > r_1$, $f \in C^{\infty}(B_R)$. Then

$$\mathcal{P}_{\chi_E}\left(\frac{\partial f}{\partial x_i}\right)(g) = \left. \frac{\mathrm{d}}{\mathrm{d}h} \left(\mathcal{P}_{\chi_E}(f)(\tau_{i,h} \circ g) \right) \right|_{h=0},\tag{5}$$

$$\mathcal{P}_{\chi_E}\left(D_{ij}(0)f\right)(g) = \left. \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\mathcal{P}_{\chi_E}(f)(k_{i,j,\theta} \circ g) \right) \right|_{\theta=0},\tag{6}$$

where $gE \subset B_R$.

Proof. For small h we have

$$\mathcal{P}_{\chi_E}(f)(\tau_{i,h} \circ g) = \mathcal{P}_{\chi_E}(f \circ \tau_{i,h})(g). \tag{7}$$

Differentiating (7) with respect to h and setting h = 0 we obtain (5). Equality (6) is proved analogously.

Lemma 2. Let $R > r_1$, $E \subset \overline{B}_{r_1}$, $\nu = D^{\varkappa}D_{ij}(a)\chi_E$. Then for any $f \in C^{\infty}(B_R)$ and $x \in B_{R-r_1}$ we have

$$\left(\check{f} * \mathcal{R}\nu\right)(x) = (-1)^{|\varkappa|+1} \int_{\mathbf{SO}(n)} \left(\mathcal{P}_{\chi_E}\left(D_{ij}(a)D^{\varkappa}\right)(y)\left(f(ky-x)\right)\right)(\mathbf{e}) \,\mathrm{d}k, \quad (8)$$

where e is the unit element of SO(n).

Proof. Using (2), we have

$$\left(\check{f} * \mathcal{R}\nu\right)(x) = \langle \nu(y), \int_{\mathbf{SO}(n)} f(ky - x) \, \mathrm{d}k \rangle. \tag{9}$$

By the relation (9) and the definition of $D_{ij}(a)$, we obtain

$$\left(\check{f} * \mathcal{R} \nu\right)(x) = (-1)^{|\varkappa|+1} \int_{E} \int_{\mathbf{SO}(n)} \left(D_{ij}(a) D^{\varkappa}\right)(y) \left(f(ky-x)\right) dk dy.$$

Hence, from (1) we obtain the required assertion.

Remark. Let $x \in B_{R-r_1}$, $k \in SO(n)$ be fixed, and let g_1 be the element of M(n) acting by the formula $g_1y = ky - x$. Then $\mathcal{P}_{\chi_E}(f(ky-x))(g) = \mathcal{P}_{\chi_E}(f)(g_1g)$, where $gE \subset B_{R-|x|}$. Due to this relation and Lemma 1 the values $f * \mathcal{R}\nu$ can be recovered from Pompeiu transform $\mathcal{P}_{\chi_E}(f)$ via formula (8).

Let δ be the Dirac delta measure at the origin of \mathbb{R}^n .

Lemma 3 ([3]). Let $R > 2r_1$, $E \subset \overline{B}_{r_1}$, $\mu(\varkappa) = \mathcal{R}(D^{\varkappa}\chi_E)$. Then for any $f \in C^{\infty}(B_R)$, and every $x \in B_{R-r_1}$ we have

$$(f * \mu(\varkappa))(x) = \int_{\mathbf{SO}(n)} \langle D^{\varkappa} \delta(y), (\mathcal{P}_{\chi_E} f) \begin{pmatrix} \left\| -k^{-1} x - ky \right\| \\ 0 & 1 \end{pmatrix} \rangle dk,$$

where $\mathbf{M}(n)$ is considered as the group of $(n+1) \times (n+1)$ matrices of the form

$$\left\| egin{array}{c} k & x \\ 0 & 1 \end{array} \right\|, \quad k \in \mathbf{SO}(n), \quad x \in \mathbb{R}^n,$$

and \mathbb{R}^n is identified with the affine subspace $\{x_{n+1}=1\}$ of \mathbb{R}^{n+1} .

For each $m \in \{1, ..., n\}$ let η_m be a map $\mathbb{R}^n \to \mathbb{R}^n$ acting as follows: if $x = (x_1, ..., x_n) \in \mathbb{R}^n$, then $\eta_m x = ((\eta_m x)_1, ..., (\eta_m x)_n)$, where $(\eta_m x)_k = x_k$ for $k \neq m$ and $(\eta_m x)_m = -x_m$. Let G^n_+ (respectively, G^n_-) be the set of maps $\mathbb{R}^n \to \mathbb{R}^n$ representable as a composition of an even (respectively, odd) number of maps η_m , $1 \leq m \leq n$.

Lemma 4. For any $f \in C^{n+1}(H)$ we have

$$\int_{H} D_{2}D_{12}(h_{\alpha}) \frac{\partial^{2}}{\partial x_{2}^{2}} f(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n} =$$

$$= \left(\sum_{\eta \in G_{+}^{n-2}} - \sum_{\eta \in G_{-}^{n-2}} \right) \left[f(z_{1}, \eta b) - f(z_{2}, \eta b) + \sin \frac{\alpha}{2} \frac{\partial f}{\partial x_{2}}(z_{1}, \eta b) + \sin \frac{\alpha}{2} \frac{\partial f}{\partial x_{2}}(z_{2}, \eta b) \right] ,$$

where

$$z_1 = \begin{cases} -i\sin\frac{\alpha}{2}, & \alpha \in (0, \pi], \\ e^{-i\frac{\alpha}{2}}, & \alpha \in (\pi, 2\pi), \end{cases}, \quad z_2 = \overline{z}_1, \quad b = (b_3, \dots, b_n).$$

Proof. Let $S_{\alpha} = Sg - h_{\alpha}$, $u \in C^{3}(S_{\alpha})$. Then

$$\int_{S_{\alpha}} \left(D_{12}(h_{\alpha}) \frac{\partial^{2}}{\partial x_{2}^{2}} u \right) (x_{1}, x_{2}) dx_{1} dx_{2}$$

$$= \int_{\cos \frac{\alpha}{2} - h_{\alpha}}^{1 - h_{\alpha}} \left[(\mathcal{A}u) \left(x_{1}, \sqrt{1 - (x_{1} + h_{\alpha})^{2}} \right) - (\mathcal{A}u) \left(x_{1}, -\sqrt{1 - (x_{1} + h_{\alpha})^{2}} \right) \right] dx_{1},$$

$$\operatorname{cre} \mathcal{A} = \frac{\partial}{\partial x_{1}} - x_{2} \frac{\partial^{2}}{\partial x_{1} \partial x_{2}} + (x_{1} + h_{\alpha}) \frac{\partial^{2}}{\partial x_{2}^{2}}. \text{ Bearing in mind that}$$

where $\mathcal{A} = \frac{\partial}{\partial x_1} - x_2 \frac{\partial^2}{\partial x_1 \partial x_2} + (x_1 + h_\alpha) \frac{\partial^2}{\partial x_2^2}$. Bearing in mind that

$$(\mathcal{A}u)\left(x_{1},\sqrt{1-(x_{1}+h_{\alpha})^{2}}\right)$$

$$=\frac{\partial}{\partial x_{1}}\left[u\left(x_{1},\sqrt{1-(x_{1}+h_{\alpha})^{2}}\right)\right.$$

$$-\sqrt{1-(x_{1}+h_{\alpha})^{2}}\frac{\partial u}{\partial x_{2}}\left(x_{1},\sqrt{1-(x_{1}+h_{\alpha})^{2}}\right)\right],$$

$$(\mathcal{A}u)\left(x_{1},-\sqrt{1-(x_{1}+h_{\alpha})^{2}}\right)$$

$$=\frac{\partial}{\partial x_{1}}\left[u\left(x_{1},-\sqrt{1-(x_{1}+h_{\alpha})^{2}}\right)\right.$$

$$+\sqrt{1-(x_{1}+h_{\alpha})^{2}}\frac{\partial u}{\partial x_{2}}\left(x_{1},-\sqrt{1-(x_{1}+h_{\alpha})^{2}}\right)\right]$$

from (10) we find

$$\int_{S_{\alpha}} \left(D_{12}(h_{\alpha}) \frac{\partial^2 u}{\partial x_2^2} \right) (x_1, x_2) \, \mathrm{d}x_1 \, \mathrm{d}x_2 \tag{11}$$

$$= u(z_1) - u(z_2) + \sin \frac{\alpha}{2} \frac{\partial u}{\partial x_2}(z_1) + \sin \frac{\alpha}{2} \frac{\partial u}{\partial x_2}(z_2).$$

Since for every $v \in C^{n-1}([-b_3, b_3] \times ... \times [-b_n, b_n])$

$$\int_{-b_3}^{b_3} \dots \int_{-b_n}^{b_n} (D_2 v) (x_3, \dots, x_n) dx_3 \dots dx_n = \sum_{\eta \in G_+^{n-2}} v(\eta b) - \sum_{\eta \in G_-^{n-2}} v(\eta b),$$

from (11) we obtain the assertion of Lemma 4.

Let J_q be the Bessel function of the first kind of order $q \geq 0$, and let $j_q(z) =$ $J_q(z)/z^q$. The spherical transform of the radial distribution μ with the compact support in \mathbb{R}^n is defined by

$$\widetilde{\mu}(\lambda) = \langle \mu(x), j_{\frac{n-2}{2}}(\lambda|x|) \rangle, \quad \lambda \in \mathbb{C}.$$
 (12)

Lemma 5. Let $k \in \mathbb{Z}_+$. Then

$$\widetilde{\mathcal{R}}_{k}(\lambda) = (-1)^{n-1} 2^{n-2} b_{3} \dots b_{n} \lambda^{2(k+n-2)} \left\{ C_{1k} j_{\frac{3n+2k-6}{2}}(\lambda r) + \lambda^{2} C_{2k} j_{\frac{3n+2k-4}{2}}(\lambda r) \right\},$$
where $C_{1k} = z_{1}^{k} - z_{2}^{k} + \mathrm{i} k \sin \frac{\alpha}{2} \left(z_{1}^{k-1} + z_{2}^{k-1} \right), C_{2k} = \sin^{2} \frac{\alpha}{2} \left(z_{1}^{k} - z_{2}^{k} \right).$

Proof. Since $j'_q(t) = -tj_{q+1}(t)$ (see [1, Chapter 7, § 7.2, formula (51)]), we have

$$\frac{\partial}{\partial x_1} \left((x_1 + ix_2)^k j_q(\lambda |x|) \right) \tag{13}$$

$$= k(x_1 + ix_2)^{k-1} j_q(\lambda|x|) - \lambda^2 x_1(x_1 + ix_2)^k j_{q+1}(\lambda|x|),$$

$$\frac{\partial}{\partial x_2} \left((x_1 + ix_2)^k j_q(\lambda |x|) \right) \tag{14}$$

$$= ik(x_1 + ix_2)^{k-1}j_q(\lambda|x|) - \lambda^2 x_2(x_1 + ix_2)^k j_{q+1}(\lambda|x|).$$

Using induction on k from (13), (14) we find

$$(-1)^k D_1^k (j_q(\lambda|x|)) = \lambda^{2k} (x_1 + ix_2)^k j_{q+k}(\lambda|x|).$$

Hence (see (12))

$$\widetilde{\mathcal{R}}_k(\lambda) = \lambda^{2(k+n-2)} \langle \mu, x_3 \dots x_n (x_1 + \mathrm{i} x_2)^k j_{\frac{3n+2k-6}{2}}(\lambda |x|) \rangle,$$

where $\mu = \frac{\partial^2}{\partial x_2^2} D_{12}(h_\alpha) D_2 \chi_H$. Using Lemma 4, we obtain the required assertion. \square

By the Paley – Wiener theorem [5, Theorem 7.3.1] there exist radial distributions μ_1 and μ_2 with supports in B_r , for which $\widetilde{\mu}_1(\lambda) = (-1)^n \widetilde{\nu}_2(\lambda)/\lambda^{2n}$, $\widetilde{\mu}_2(\lambda) = (-1)^n \widetilde{\nu}_3(\lambda)/\lambda^{2n}$. From Lemma 5 and properties of Bessel functions (see [1, Chapter 7, § 7.9]) it follows that $\widetilde{\mu}_1(\lambda)$ and $\widetilde{\mu}_2(\lambda)$ have no common zeros. Further, we shall need a lower estimate for the function $\widetilde{\mu}_1(\lambda)\widetilde{\mu}_2(\lambda)j_{\frac{n}{2}+k-1}(\varepsilon\lambda)$, where $\varepsilon > 0$.

Lemma 6. Let $a_1, a_2, a_3 > 0, k \in \mathbb{Z}_+,$

$$\theta(\lambda) = j_{\frac{3n-2}{2}}(a_1\lambda)j_{\frac{3n}{2}}(a_2\lambda)j_{\frac{n}{2}+k-1}(a_3\lambda).$$

Then there are constants L_{1k} , L_{2k} , such that for any integer $l \geq L_{1k}$ there exists $\rho_l \in (l, l+1)$ such that if either $|z| = \rho_l$ or $|\operatorname{Im} \lambda| \geq 1$ and $|\lambda| \geq L_{1k}$, then

$$|\theta(\lambda)| \geq \frac{L_{2k}}{|\lambda|^{\frac{7n+2k-1}{2}}} \mathrm{e}^{(a_1+a_2+a_3)|\operatorname{Im}\lambda|}.$$

Proof. The function $\theta(\lambda)$ is an even entire function, therefore to prove the assertion of Lemma 6 we can assume that $\text{Re }\lambda \geq 0$. From the asymptotic development of the Bessel function (see [1, Chapter 7, § 7.13, formula (3)]) we find

$$\theta(\lambda) = \frac{2}{\pi} \sqrt{\frac{2}{\pi}} \frac{(a_1)^{-\frac{3n-1}{2}} (a_2)^{-\frac{3n+1}{2}} (a_3)^{-\frac{n+2k-1}{2}}}{\lambda^{\frac{7n+2k-1}{2}}} \cos\left(a_1 \lambda - (3n-1)\frac{\pi}{4}\right) \times \frac{1}{\pi} \left(a_1 \lambda - (3n-1)\frac{\pi}{4}\right) + \frac{1}{\pi} \left(a_1 \lambda - (3n-1)\frac{\pi}{4}\right)$$

$$\times \cos \left(a_2 \lambda - (3n+1)\frac{\pi}{4}\right) \cos \left(a_3 \lambda - (n+2k-1)\frac{\pi}{4}\right) + O\left(\frac{e^{(a_1+a_2+a_3)|\operatorname{Im}\lambda|}}{|\lambda|^{\frac{7n+2k+1}{2}}}\right).$$

By the Lojasiewicz inequality (see [3]) we have

$$|\cos z| \ge \frac{1}{\pi e} d(z, V) e^{|\operatorname{Im} z|},\tag{15}$$

where $V = \{(2l+1)\pi/2, l \in \mathbb{Z}\}$, $d(z,V) = \min(1, dist(z,V))$. Using (15) and repeating arguments from the proof of Lemma 7 in [3], we obtain the assertion of Lemma 6.

In what follows let us assume that R > 2r. Choose a strictly increasing sequence of positive numbers $\{\varepsilon_m\}_{m=1}^{\infty}$ with limit $\frac{R}{2r} - 1$, and a corresponding increasing sequence of radii $R_m = 2r(1 + \varepsilon_m)$, $m \ge 1$, $R_0 = 0$.

Lemma 7. Let R > 2r. Then for any $k \in \mathbb{Z}_+$, $m \in \mathbb{N}$, $t \in [R_{m-1}, R_m)$ there are two sequences of radial distributions satisfying the following conditions:

- (1) supp $\mu_{l,i} \subset B_{R_m-r}, i = 1, 2, l \in \mathbb{N},$
- (2) there exist constants $L = L(k, R, r, \varepsilon_1, n), C = C(R, r, \varepsilon_1, n) > 0$ such that for $l \geq L$ the equality

$$\begin{split} \left|j_{\frac{n}{2}+k-1}(t\lambda)-(\widetilde{\mu}_{1}(\lambda)\widetilde{\mu}_{l,1}(\lambda)+\widetilde{\mu}_{2}(\lambda)\widetilde{\mu}_{l,2}(\lambda))\right| \leq \\ \frac{C(R,r,\varepsilon_{1},n)}{l} \frac{\|\lambda\|^{-\frac{n}{2}-k+\frac{13}{2}}}{t^{\frac{n}{2}+k-1}} \mathrm{e}^{R_{m}|\operatorname{Im}\lambda|}, \quad \|\lambda\|=\max(1,|\lambda|), \end{split}$$

holds.

To prove Lemma 7 it is sufficient to use Lemma 6 and repeat the arguments from the proof of Proposition 8 in [3].

4. The proof of main result

By Lemma 7 it follows (see [3, proof of Theorem 9]) that for any $m \in \mathbb{N}$, $\rho \in [R_{m-1}, R_m)$ there are distributions $\mathcal{U}_{l,i}$ ($l \in \mathbb{N}$, i = 1, 2) with supports in R_{R-r} such that for $l \geq L$ and any $f \in C^{\infty}(B_R)$ the following estimate is valid

$$|f_{ks}(\rho) - \langle \mathcal{U}_{l,1}, f * \mu_1 \rangle - \langle \mathcal{U}_{l,2}, f * \mu_2 \rangle|$$

$$\leq \frac{c_3}{l} \frac{\rho^{-\frac{n}{2}+1}}{(R - R_m)^M} \sup_{\substack{x \in B_{R'_m} \\ |\varkappa| \leq M}} \left| \frac{\partial^{|\varkappa|}}{\partial x^{\varkappa}} f(x) \right|,$$
(16)

where $R'_m = \frac{2}{3}R + \frac{1}{3}R_m$, $M = \left[\frac{n+13}{2}\right] + 1$, and the constant c_3 does not depend on R, r, ε_1, n . Substituting in (16) f for $\Delta^n \check{f}$ and having in mind that $\Delta^n \mu_i = \nu_{i+1}$,

i=1,2, we obtain the equality (3). Let now $T_1=\mathcal{R}\chi_H$, $T_2=\Delta^n\delta$. Then $\widetilde{T}_1(0)\neq 0$, $\widetilde{T}_2(\lambda)=(-1)^n\lambda^{2n}$. Thus, \widetilde{T}_1 and \widetilde{T}_2 have no common zeros. Moreover, \widetilde{T}_1 has an asymptotic behavior of the same type as that of the Bessel function (see [2,3]). Hence we can apply the same procedure as above to the two radial distributions T_1 and T_2 . By the same reasons there exist distributions $\mathcal{U}_{l,i}$ $(l \in \mathbb{N}, i=3,4)$ such that (4) holds. Theorem is proved.

References

- H. Bateman and A. Erdélyi, Higher transcendental functions. 2 (Nauka, Moscow, 1974).
- C.A. Berenstein and R. Gay, Le probléme de Pompeiu locale, J. Anal. Math. 52 (1989) 133–166.
- C.A. Berenstein, R. Gay, A. Yger, Inversion of the local Pompeiu transform, J. Anal. Math. 54 (1990) 259–287.
- C.A. Berenstein and D. Struppa, Complex analysis and convolution equations, Current Problems in Mathematics, Fundamental Directions, 54 (VINITI, Moscow, 1989) 5-111. (In Russian).
- 5. L. Hörmander, Linear partial differential operators. Springer-Verlag, Berlin 1963.
- P.A. Masharov, A new Morera-type theorem on the disk, Visnik Kharkiv Univ. Ser. Math. Prikl. Math. Mekh. 475 (49) (2000) 126-132.
- 7. I. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, NJ, 1971.
- V.V. Volchkov, A definitive version of the local two-radii theorem, Mat. Sb. 186
 (6) (1995) 15–34.
- V.V. Volchkov, An extremum problem related to Morera's theorem, Mat. Zametki. 60 (6) (1996) 804-809.
- V.V. Volchkov, Extremal cases of the Pompeiu problem, Mat. Zametki. 59 (5) (1996) 671–680.
- 11. V.V. Volchkov, Extremal problems on Pompeiu sets II, Mat. Sb. 191 (5) (2000) 4–16.
- 12. V.V. Volchkov, Injectivity sets of the Pompeiu transform, Mat. Sb. 190 (11) (1999) 51-66.
- L. Zalcman, A bibliographic survey of the Pompeiu problem, in: B.Fuglede et al. (eds), Approximation by Solutions of Partial Differential Equations (Kluwer Academic Publishers, Dordrecht, 1992) 185–194.