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Abstract
The construction of inversion of the local Pompeiu transform for some classes of
cylinders is obtained.
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1. Introduction

Let R™ be a real Euclidean space of dimension n > 2 with the Euclidean norm ||,
let M (n) be the group of Euclidean motions in R", and let F = {y;}%_; be a finite
family of distributions with compact supports in R™. For fixed g € M (n) we consider
the distribution gu; acting on C*°(R") by the rule

(gps, ) = (i, fo g), f € CT(R™)
The (global) Pompeiu transform Pg is the map
Pr:C®(R") — C*(M(n))"
given by
Pr(f)(9) = (g, -5 lgux, £)), g € M(n). (1)

Similarly, for an open set U C R™ the local Pompeiu transform maps C*(U) into
the Cartesian product C®(A(U, p1)) x...x C*°(A(U, ux)) by the formula (1), where
A(U, i) = {g € M(n):suppgu: C U}.

For given F and U the following problems arise (see [4]).



Many authors have W& i
problems for special F and U (see the s
tensive bibliography, and also [2 -12]).
when U = Br(y) = {r e R |z -y < R :
function (indicator) of a compact set E C Bg(y) of positive 1

ily F and the set E C B, {:ﬂn)‘ hm a \ herbolic Ly €
global Pompeiu property, the Pompeiu ﬁramfom’mm
if R > 2r (see [2,3], and also [6,9-11], where for E the mi
for which P, is injective is found). In [3] for the sets E with the
the construction of the inversion of the transform 'Px p in t al

is obtained. Besides, for the case where E is a square a function fg
recovered in [3] from its Pompeiu transform P, (f) also for B > 2r. In con 1
with this, the inversion of the transform P, in the ball Bg(y) of radius R>2r
for other compacts E is of great interest. In the present paper the solution of this
problem for some class of cylinders is obtained. _ Vi A ol

I st

2. Statement of the main result

Let S"~! = {z € R™:|z| = 1}, let p and o be the polar coordinates in R” (for
each z € R™ we set p = |z| and if ¢ # 0, then weset o = 7 € §7=1). Lef {Y}}H{J}},
1 < s < di, be a fixed orthonormal basis in the spase Hj of spherical harmonics

of degree k, regarded as a subspace of L? (S*~!) (see [7, Chapter 4, section 2]). To
every function f € Lj,.(Bgr) we assign its Fourier series

oo de

flz) ~ Z Z Frs(p)Y B (5), 0<p<R,

k=0 s=1

where

frs(p) = f £(po)YF (o) do.

S:n.-l

To reconstruct f it is sufficient to find the coefficients fi, of its Fourier series.
Further, as usual, D(R") is the space of infinitely differentiable functions on R", -
with compact supports, and D’(R™) is the space of distributions on R". Let pq * pa
be the convolution of two distributions on R™ one of which is compactly supported.
We need a concept of circular symmetrization of a distribution defined as follows:
for any u € D'(R"™), we define Ry setting B
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Ruse) = (@), [ o(ka)ab), o DR, @
S0(n)
where SO(n) is the group of rotations of R™, and dk is the normalized Haar measure
on SO(n).

af2 , o€ (0,m],
Eetia: = (0. 2n), 3, = / i Sg = {z € Cile] = L]argz| <
T, a € (m 2r),

Ba,Rez > cos §} be the circular segment of angular measure a, H = (Sg — ha) X

x
cog =4 0 o ie Y kel
[_'53:‘53} Koo X [_bﬂabﬂ]? where hy = 2 { ] b = i = 30000,
0, o€ (mr2r),

Further we need the following differential operators: A = 3%25 e aifr, B> =
1 mn

gl ;
B = 1. bz {J-f= {Jf]_,..,,ifn] = Eﬂ', IHE = Jf1+“'+}fn}, D]_ — 3-2-1‘ +1 22, Dy =

%T Dij(a) = (x +{1}% = :rjaim, (a € R'). We denote Ry = R(D2D¥pu),

5-..0Ty
where u = %Dlz(hajﬂzxg.

Let ro be the radius of the least closed ball containing Sg, r =
\/T§+b_§+'--+b%, 43/t ' 2 = Cm[BR], where B = BR{{}}. For z £ Bp_»

we set f(z) = f(—z), fi(z) = (f * Rxa)(z), fi(z) = (f*u) (), i = 2,3, where
vg =R,

4 2

R (3n — 4)(3n +2)AR; — o ARy, 3nsin’ % —2r2

2,2
vy = 9ner

2 .
Ra+ —AR; , 3nsin® = £ 292,
3n 2

for a € (0,7, and v3 = R, for a € (m, 2m).
The main result of this paper is the following

Theorem 1. Let R > 2r. Then for any k € Z, 1 < s < d, p € (0, R) there exist
distributions U ;, (I € N, i = 1,2, 3,4) with the following properties:

(1) suppldy,; C Br_r “ eEN,i=1,2, 3]: Eupplﬁ_q, C Bpg {E € N):

(2) for any f € C*°(Bgr)

(&“f) ks [P] o IEIE'G l::{u'!:l! fz} 7 {MJ,E: fﬂ-}) 1 [:3)
frs(p) = Jim (@3, f1) + Usa, A™f)). (4)

Let us make some remarks. Lemmas 1 - 3 (see section 3 below) show how to
reconstruct the functions f;, i = 1,2,3 in terms of P, (f). Therefore, applying
the equalities (3), (4) we can compute the Fourier coefficients of f in terms of the
Pompeiu transform of f. Thus, in Theorem 1 the procedure for the local inversion of
the Pompeiu transform P, ,, is obtained. This method enabled us to obtain similar
results for other compact sets E. In particular, analogues of Theorem 1 can be
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be the rotation in the

) AL RS . b
Pxe (ﬁft) (9) = ah (an U)Cﬂ,ﬂﬁ

:
il 5

Pxe (Di(0)f) (9) = =5 (?’xs(f)(kma*ﬁgi)' ﬁ%r:?a m%l

where gF C Bg.

Proof. For small h we have

Pye(f)Tinog)= Pye(fom, r)(9)

Differentiating (7) with respect to h and setting h = 0 we obtain {5)& éqgmﬂw
is proved analogously. '
for

Lemma 2. Let R > r;, E C B,,, v = D*D;;(a)xg. Then for any f € 6‘”(%
and ¢ € Bg_,, we have i

(f * Rv) (z) = (~1)P+? [ (Pxs (Dij(a)D*) (y) (f(ky — z))) (e) dk, @}

S0(n)

where e is the unit element of SO(n).

Proof. Using (2), we have

(FrR) @)= l), [ flky—a)ab). 9)
S50(n)
By the relation (9) and the definition of D;;(a), we obtain e
(o) @)= (D [ [ (D@D @) by =) dkdy.
E sO(n) 4
Hence, from (1) we obtain the required assertion. Ef R
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Remark. Let ¢ € Br_,,, k € SO(n) be fixed, and let g; be the element of M(n)

acting by the formula g1y = ky — z. Then Py, (f(ky —z)) (9) = Pyxx(f) (919),
where gE C Bg_|;|. Due to this relation and Lemma 1 the values f * Rv can be
recovered from Pompeiu transform P, . (f) via formula (8).

Let 6 be the Dirac delta measure at the origin of R™.

Lemma 3 ([3]). Let R > 2ry, E C B,,, u{3) = R(D*xg). Then for any f €
C*°(Bg), and every & € Br_,, we have

—klz—k
(f * u(30) (z) = f(D"ﬁ{y),(Pfo}( : s, o )}dk?

S0(n) 1

where M(n) is considered as the group of (n + 1) x (n + 1) matrices of the form

k z
01

, ke€S0(n), zekR",

and R"™ is identified with the affine subspace {z,4+1 = 1} of R™*.

For each m € {1,...,n} let n,, be a map R® — R" acting as follows: if z =
(1,-..,%n) € R", then 7,2 = ((Mn2h;- .., (MmZ)n), where ()i = i for k #
m and (mZ)m = —Zm. Let GT (respectively, G ) be the set of maps R" — R"
representable as a composition of an even (respectively, odd) number of maps 7:,,
1<m<n.

Lemma 4. For any f € C™*'(H) we have

32
/Dzﬂlgfihg}a—x%-f(xl, ‘e g :cn} d:l"] it dzn =
H

= P [f[zhﬂb}—f{zz,ﬂb}+ﬂingﬂ{zl,ﬁh).|.

2 5132
neGL™* neGr™?
i O
T 1 b 1
+ sin 5 axa{zg n )]
where

a
—isin— , a € (0,7,
£]1 — 2

e~ %  ae(m2n),

Proof. Let S, = Sg — ha, u € C3(S,). Then



vor SNy
T E ?.i,ff*}*?T‘ A

- (Au) (21, -1
where A = 5% - Eﬁ :

(Au) (21, VI = (@1 + ha)? ) I

- ai:;l [ (20, vVT=(or + ha)ﬂ)

o it adf we b

A A G h))] by

(Au) (21, -1 = (@1 + ha)?)

= o [u (o1, ~VI= @ +haP)
+\/1_(I1+hrx]2% (Ily—\/l—(h +hu}2)} >
from (10) we find L, 2 "
2 i gt ;
f(ﬂuih }5 )(-"31,1?2)'?12?1 dz, : {11}
—u{zlj—uzg}—i-slngaw (zl)+31n{;§u(32} )

Since for every v € C™7 ! ([—ba, ba] X ... X [=bn, by])

ha by
/ f (D2v) (23, .-, Zn)de3... dzn = Y o(mb)— Y v(nb),
Shh o neG}™? neG™~?
from (11) we obtain the assertion of Lemma 4. E[

Let J, be the Bessel function of the first kind of order ¢ > 0, and let jg(2) =
Jq(2)/ 29. The spherical transform of the radial distribution g with the compact
support in RB" is defined by

() = (u(2), jazz(Nz])), A€C. ol 4

$
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Lemma 5. Let k € Z,. Then
ﬁk{)\] - (ml}“‘lz“—zba s bn}.z[k'l’n'g} {Cij3n+2k—5 (Ar) + Az{jgkjanﬂk—d. {:AT)} )

dEi k : PR k—1 k—1 2o k I
where Ci = 2¥ — 25 +iksin§ (277 +25 '), Cax =sin® § (2f — z5).

Proof. Since j(t) = —tjg41(t) (see [1, Chapter 7, § 7.2, formula (51)]), we have

a% (@1 +iz2) 4 (M2])) (13)
= k(z; + imz}k_qu(MT” o )'FII{-TI =i imgj}qu+1{}t|i"|].,
o (@ +122)* 54 (a) (14)

= ik{.’fﬂl + img)k_qu{:klmﬂ e -}LZIQ {I]_ + iIg}qu+1|:.}.|$|}.
Using induction on k from (13), (14) we find

(=1)*Df (Jg(Alz])) = X** (@1 + iz2)"jgrk (Al])-
Hence (see (12))

ﬁk(i] = )\2(k+n—2) (i, T3 - - . Tn(zy + iﬂ:g]kjan-n-zk-—s (Alz])},

where y = ai;gﬂm{hﬂjﬂg x . Using Lemma 4, we obtain the required assertion. [
2

By the Paley — Wiener theorem [5, Theorem 7.3.1] there exist radial distribu-
tions g and ps with supports in By, for which i1 ()\) = (=1)"a(X)/A?", Ha2(A) =
(=1)"T5(A)/A%". jFrom Lemma 5 and properties of Bessel functions (see [1, Chap-
ter 7, § 7.9]) it follows that z;(A) and fz(A) have no common zeros. Further, we
shall need a lower estimate for the function fiy(A)@z(A)j3 +x—1(¢A), where € > 0.

Lemma 6. Let a,,az,a3 >0, k € Z,
() = jan=2(a1\)jap (a2A)jg +k-1(asA)-

Then there are constants Lix, L2k, such that for any integer [ > Ly, there exists
p € (I,1 + 1) such that if either |z| = p; or |[ImA| > 1 and |A| > Ly, then

|B(A\)] = %e{ﬂl+az+a3]| ImA|

Proof. The function #(A) is an even entire function, therefore to prove the assertion
of Lemma 6 we can assume that Re A > 0. From the asymptotic development of
the Bessel function (see [1, Chapter 7, § 7.13, formula (3)]) we find

L 41 nt+2k—1
2 /2 (e Y P () M m
gt il Nt
8(A) e T cos (al (3n 1}4) %




where V = {(21 + 1)7/2,l € E}g
peating arguments from the proof

Lemma 6. 1¢ {I.F e

In what follows let us assume that R > 2r. Choos
of positive numbers {Em}:=1 with limit % — 1, and ¢
sequence of radii R, = 2r(1 + &), m > 1, Ry = 0.

Lemma 7. Let R > 2r.Then for any k € Z., m € N, t € [R,
two sequences of radial distributions satisfying the following conc
(1)BUPP“E=CBR —rst—I:Z:EEN o
(2) there exist constants L = L(k,R,r,e1,n),C = C(R,r,e1,n) }j
for | > L the equality

i3 +k—1(EX) = (B (\)BL1(A) + H2(N)E2 (V)| <

C(R,r,e1,n) M|~ -F+% oRmlImA|
1 t-’:}+h—-1 !

+ sy reariul.

Al = max(1, [A]),

I's £r
|

ik

holds.

To prove Lemma 7 it is sufficient to use Lemma 6 and repeat the arguments &Dm
the proof of Proposition 8 in [3].

4. The proof of main result

By Lemma 7 it follows (see [3, proof of Theorem 9]) that for any m € N, p &
[Rm—1, Rm) there are distributions Uy ; (I € N, = 1,2) with supports in Rg—r such
that for [ > L and any f € C>°(Bg) the following estimate is valid

| frs(p) — Ui, f * p1) — U2, f * p2)| (16)
—%+1 | 2|
E _E_L.H Sup a - Lo
[ (R_an] IEBR;
|| <M

where R, = 2R+ 1R, M = [2£13] + 1, and the constant c3 does not depend on _
R,T,e,,n. Substituting in (16) f for A™ f and having in mind that A"u; = vit1,
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i = 1,2, we obtain the equality (3). Let now T} = Ry, Tz = A™S. Then T3 (0) # 0,
To()\) = (—1)"A?". Thus, T} and T; have no common zeros. Moreover, T; has an
asymptotic behavior of the same type as that of the Bessel function (see [2,3]).
Hence we can apply the same procedure as above to the two radial distributions
T; and T3. By the same reasons there exist distributions U4 ; (I € N,7 = 3,4) such
that (4) holds. Theorem is proved.
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