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C L A S S I C A L  M O D E L  C O N T A I N I N G  A P H A S E  T R A N S I T I O N  

A. Yu. Zakharov and I. K. Loktionov UDC 536.7 

A relationship has been established between interatomic-potential characteristics and thermodynamic functions 
for one-component Pair-interaction classical systems. A sufficient condition for a phase transition is deduced 
from first principles. There is a region around the critical point in which scale laws are violated; in particular, 
the isochoric specific heat is large but finite at the critical point. 

The following questions have to be answered to obtain a description of the origin of phase transitions: 1) which 

interaction potentials lead to phase transitions and which do not? 2) What is the relationship between the interaction-potential 

parameters and the phase-transition characteristics? Existing theories are in essence phenomenological and do not answer these 

questions. 

The thermodynamic potentials of a system enable one to establish whether it does or does not have a phase transition. 

The purpose of the present paper is to present an asymptotically exact calculation in the thermodynamic limit and to analyze 

some thermodynamic functions for one-component classical systems and establish a sufficient condition for a phase transition. 

A previous paper [1] demonstrates that the following is the statistical sum Z for a one-component classical system 

containing N identical particles in a volume V: 
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in which /3 is reciprocal temperature, 0 + ( ~ - )  the sets of all wave vectors for which the Fourier transform ~r of the 

interatomic central potential v(r) is positive (negative), and the positive functions v• are defined as 

v-Z= (K) = 5 v (K), tr 6 _o-, (2) 

in which Jo(0) and Io(0) are Bessel functions and D are the dimensions of the space. 

We first calculate the integrals on the right in (I) in the thermodynamic limit (N, V --, oo; N/V = n = const). The 

integral with respect to fl+ contains Jo(0) and is calculated at once because max J0(0) = J0(0) = 1, and p ~ 0 ]J0(0)l < 1, 
{p} 

for all P ~ 0. The function is J0(0) = 1 --  (02/4) in the region of a point P0 = 0, so 
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Fig. 1. Dependence of the position of  the minimum 

point F(p) on the parameter g(x'). 

and the contribution from the repulsion in x space in (I)  is 

V/2)  . . . .  In (1 + n3v + 
( 2 , 0  0 , ( u ) ) .  

The situation is somewhat more complicated with the integral 

(4) 

qo = exp  N l n  1o(p) 4n[~v- (to') pdp. 
0 

(5) 

The main contribution to the integral for N --, oo comes from the region of the point of  minimum value Po in the function 

/:' (p) = (p2/nflv- (to') ) --41nlo (p). (6) 

The position of  the Oo point is substantially dependent on the parameter g(x')  = 1/p43v- (x'): if g(x')  > 1, then P0 -- 0; while 

if 0 < g(x') < 1, the point Po = 0 becomes a point of maximum in F(o) (an analog of the Higgs phenomenon), and the 

minimum is determined by the nonzero root of  

(g ( /c ' )  - - 2 I  o (p)/plo (p)) p = O. (7) 

Figure 1 shows schematically the dependence of  the position of the minimum point in F(p) on the parameter  g(~'). 

Then if the set 9 -  is not empty, there exists a singular point on the temperature axis 

To= max  {nv-( tc ' ) )=nv-(no) ,  (8) K' (-: 2 - 

having the property that the Po point represents a minimum in (6) for T > T c for all x ' ,  and then the integral in (5) for all K' 

is 

(D = (2 / N) n3v- (u') (9) 
1 - n ~ v -  (,,'j" 

The (9) representation does not apply for T _< T c at least for some of the wave vectors from f~-. 

Consider the case T _> T c. We expand F(p) near P0 = 0 up to terms of the fourth order to get 

[ I )] ' n ~ v -  (K ' )  ] J n:~-~,- (K ' )  
(10) 
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(erfc(x) is the error function). This means that passing to the limit N ~ oo in (5) gives (9) only for 1 --  n/3v- (r') ~ 0, and 

otherwise it is simply zero. Therefore, the two limiting transitions (thermodynamic and T ~ Tc) do not commutate. Also, one 

naturally distinguishes several parts in the temperature dependence of the thermodynamic functions for T _ To: 

1. The high-temperature region max [n~rc(r) l < < 1, when the substance is close to an ideal gas. 

2. The region of intermediate temperatures max I n/39(x) = 1, in which there is an appreciable contribution from the 
{,} 

interactions. 

3. The precritical region 

N-i"<< (1--  max (nl~v- (~r )) << 1, (11) 

in which the (5) integral is represented asymptotically accurately by (9) and 

l f d~162 f d~162 ' } l n Z = - - ( V / 2 )  I,) (2~)Dln(l+n~v+(tc))q- ~ l n ( l - - n ~ - ( t r  q-- j (2~)o 
(-'2+) ('2--) 

+ N~ (v (0) --nr~ (0))/2 + lnZ,,~. 

(12) 

In this region one gets singular behavior in the thermodynamic functions on account of the spurious (apparent) pole on the right 

in (9). The collective-variable method has been used [2] to obtain an expression for the Helmholz free energy that is similar 

to (12). 

4. The critical region 

0 ~  ( l - - m a x  (n[~u- ( ~ ' ) ) )  ~ N  -l'z, (13) 

in which (9) and (12) are unsuitable. Therefore, to calculate the integral ~ in that case, one should use the (10) approximation, 

from which one readily gets (9) for max(n~v-(x')) < <  1. Here we do not consider the region below T c. 

We derive the pressure P, internal energy U, and isochoric specific heat C v outside the critical region, i.e., for T --  
T c > >  N-I/2: 

P=P,a- -  ( T / 2 )  ~ d~162 / In ( l  +n~v( t r  n~v(tr / 
J (2~) z~ I, J; (14) 
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(15) 

(16) 

All the integrand functions on the right in (14)-(16) are nonnegative outside the critical region, so switching in the atomic 

interactions increases the isochoric specific heat and reduces the internal energy and pressure (we note that the isotherms for 
real gases in the (P, V) plane always lie below the corresponding isotherms for an ideal gas). 

Formulas (14)-(16) are not applicable in the critical region (0 < T -- T c < N- In ) .  The main interest attaches to the 

behavior of C v in the region of T c. We use (10) with the approximation 

exp(x-~165 ( x ~ 0 ) ,  (17) 

to derive the most singular part of the specific heat, which is due to the contribution from f/-: 

(-2--) 

1 - w ( ~ )  ]2 
+ ?l ' 

(18) 
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in which w(x) = 1 - -  v -1 (x)/v- (Xo), with K o defined in (8), and 0 = (T - -  Tc)/T c. This integral contains two small 

parameters: 0 and (~-N) -1/2. The singular behavior of the specific heat is due to the infrared divergence as those parameters 

tend to zero. If for Ix[ --, x 0 we have that w(x) oc ([g] - -  @m, then 

C:,.,,~g oc (O --  (=N)- ,12) -% ~ = {22-- D " m ,  xo = O, 
1 ,; m,  Ko ~- O. 

If OrN) -1/2 is absent, this formula gives typical scaling behavior for the specific heat; in particular, free Euclidian field 

theory results [3] are obtained with m = 2. The size of the temperature region in which the scaling laws are violated is 

dependent on the dimensions of the system. 

We are indebted to Ya. I. Granovskii for stimulating discussions on these topics. 
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