Engineering Simulation, 1995, Vol. 13, pp. 115-122 ©1995 OPA (Overseas Publishers Association)
Reprints available from the Publisher Amsterdam B.V. Published under license by
Photocopying permitted by license only Gordon and Breach Science Publishers SA

Printed in Malaysia

Implementation of Compilation Logic Modeling
with Delays

A. I. ANDRYUKHIN
Institute of Applied Mathematics and Mechanics, National Academy of Sciences of the Ukraine,
Donetsk

(Received March 24, 1993)

This paper considers a method for processing delays in compilation logic modeling that
extends the field of application of the latter.

The development of technology in the manufacture of LSI circuits has necessitated
research in sufficient detail into the response of the device under design to the arrival time
of the input signals and their delays in its structural components. There are a great many
ways to describe the dynamic behavior of various devices, including the construction of
time diagrams, models with Boolean time functions, automata models [1], continuous-logic
models [2], [3], an so on. The need to process vast data arrays when designing VLSI
circuits has aggravated the requirements for the automation of this process, and logic
modeling has become a fairly important tool in the design and testing of such circuits.

Logic modeling with delays is most accurate in reflecting the behavior of logic circuits
in digital computing and control systems, but imposes heavy demands on the speed of
modeling. The asynchronous event simulation algorithm in interpretative implementation
takes account of the couplings between signals in the communication lines of the device
being modeled by means of two lists of data: a queue of the currently active elements and
a queue of future events [4], [5].

The queue of future events is necessary to take account of signals occurring after some
delay with respect to the current clock period. This queue is a dynamic structure, and
there are numerous ways to organize and process it [5], [8]. A specific feature of handling
the queue of future events is the processing of what is known as the overflow wheel. The
processing difficulties are due to limited computer memory capacities and long
propagation delay times.

The development of the Turbo family compilers has made it possible to cut down the
time spent in the compilation approach to the implementation of logic modeling systems
in the case of changes made in the design of the device in hand. The possibility of
obtaining rapidly the necessary data structures to process elements with new properties by
means of an invariable modeling algorithm materially eases the introduction of alterations
in the system. The principal work in that case is associated with designing the operation

115

116 A. 1. ANDRYUKHIN

programs for the elements.

The compilation modeling technique is faster than its interpretative counterpart, but
the difficulties arising with this technique in accounting for delays restrict its field of
application to combinatorial and synchronous sequential circuits [9].

Let us consider 2 method allowing these difficulties to be largely circumvented. The
method is based on the well-known representation of logic circuit elements in the form of
a model comprising an ideal logic element and an inertial delay element connected in
series [10], [11]. The essence of the method is the automatic construction of an
intermediate description of the logic circuit in hand on the basis of its initial description
by way of introduction of special elements whose operation under the control of an event-
driven algorithm monitor program allows various types of delays to be simulated, and the
generation of a program that is a compilation implementation of the event simulation
algorithm for the modified circuit.

It should be noted that it is only the program model of the circuit that is the
compilation type model. The program modules of the circuit elements are designed
individually and are connected together at the editing stage. This approach has been
realized in the IKSM compilation system described in [12]. At the present time there is
no clear distinction between purely compilation- and purely interpretative-type approaches
in the implementation of modeling systems. Most efficient are therefore those modeling
systems which make use of the advantageous properties of the both types of models [14].

The IKSM hierarchical compilation modeling system is a compilation type modeling
system because it lacks any common interpreter program whose input data are the
description of the device and the input stimuli. In this system, a program is written in C
language for each device, which implements the modeling of only this particular device
and uses its tabular description. A modification of the design requires no substantial
expenditure of time in recompilation, for the alteration of the description of the device is
effected by a common semantic-syntactic analyzer. So, the system is an interpretative type
modeling system.

The automatic modification of the initial circuit for an inertial delay and propagation
delays is illustrated in Figure 4, b presented in [9]. The change of the initial ELEMENTS
and CONNECTIONS tables corresponding to the circuit modification for propagation
delays is described as follows.

We designate the data of each entry in the CONNECTIONS table describing some
circuit by the symbols D, K, DI, and KI, where D (DI) is the name of the predecessor
(successor) element and K (K1), the serial number of the predecessor (successor) contact,
and execute the following operations for each entry in the CONNECTIONS table.

1. Form the unique delay element name DK for the element D at the output contact
K by concatenating the identifiers D and K.

2. Add to the ELEMENTS table the element DK of universal propagation delay type.

3. Replace each entry <D, K, DI, KI> in the CONNECTIONS table by the two
entries <D, K, DK, I> and <DK, 2, DI, KI>.

The condition of delay elements is defined by the structure of the internal parameters
described below, each particular structure corresponding to a particular type of delay.
Changing the variable F causes the control monitor to put the delay element on the active

COMPILATION LOGIC MODELING 117

element queue, its input X and output Y remaining unchanged. The input data of the
program modules of the delay elements are their internal parameters, the input X, and the
serial number M of the model clock period.

The condition of a propagation delay element is defined by the following internal
variables: T - the model Y-entry time; YT - the value of the output Y at the instant T; Pl
(P2) - the indicator of the first (last) element in the chain of events for the given delay
element; F - the flag indicating that the delay element is put on the active event queue;
and DT - the delay value.

The chain of events for the delay element at the instant M of the model time, which
describes thé variation of the input X during the time (M—DT, M—1) is illustrated in
Figure 1 and is a unidirectional list consisting of the data structures E = (TE, XE, PE),
where TE is the model Y-variation time, XE is the value of Y at the instant TE, and PE
is the indicator of the next event E.

r——] - - - T — B |

Figure 1

Let us define the operation ALLOCATE (DEALLOCATE) (X), the function of which
is to allocate (deallocate) a computer memory space for the variable X. We use the symbol
P — X to designate the variable X whose address is defined by the indicator P. The
indefinite value of the indicator and the address of the variable X will be designated N and

118 A. 1. ANDRYUKHIN

A(X), respectively. Consider the following assumptions as to the operation of the delay
element: the element changes its output (Y = YT) at the model instants of time T, Pl —»
TE, (P1 - PE) - TE, ..., and so on; the events are processed on the FIFO principle; the
element finishes its self-activation (F = 0) with an empty chain (P1 = N) and T = M and
then initiates itself again (T = 0) and changes its output (Y = YT); with a nonempty chain
and T = M, the given events Pl — E are transferred to the static memory space of the
delay element; with a nonempty chain, a change of the input X of the delay element causes
a new event to be added at the end of the queue.

Let us write down the operation algorithm of a propagation delay element with due
regard for the notation adopted.

1. If P1 is not equal to N, go to 7.

2.1fT =0, then F =1, T = M+DT, YT = X, and output.

3. If T = M, then Y = YT, otherwise go to 5.

4.1f X = YT, thenT = 0, F = 0, and output; otherwise YT = X, T = M + DT,
F = 1, and output.

5. If X = YT, then F = 1 and output. :

6. Allocate (E). Set P1, P2 = A(E), Pl »XE =X, P1>TE =M + DT, F = 1,
and output.

7.1fX = P2 > XE, goto 11.

8. Allocate (E).

9. Set P2 = PE = A(X).

10. Set P2 = P2 > PE, P2~ XE = X, P2 > TE = M+DT.

11. If M is not equal to T, then F = 1 and output.

12.Set Y= YT, YT = P1 > XE, T = Pl = TE.

13. If P1 = P2, then deallocate (P1 - E), set P2, P1 = N, F = 1, and output.

14. Set P2 - PE = P1, P1 = P1 > PE.

15. Deallocate (P2 - PE) —~ E.

16. Set F = 1 and output.

The indicator P2 — PE is used as a working field in point 15.

Let us explain the essence of the main items of the above algorithm. An element will
be referred to as active if it changes the value of its output. This occurs at the instants
M = T, where T is replaced in the course of processing with M+DT, Pl - TE, and so
on. Otherwise use will be made of the term passive. In point 2, there takes place the
processing of the start of operation of the delay element and its initialization. In points 3
and 5, there occurs the processing of the passive element, its input remaining constant,
and in points 3 and 4, the processing of the active element, depending on its input value.
To illustrate, with the input remaining unchanged, setting F = 0 instructs the event-driven
monitor to eliminate this element from the further processing. In points 8 through 10, a
new event is put on the queue, and in points 12 through 15, the inverse operation —
deletion — is performed.

Figure 2 shows changes in the input X (solid line) of the delay element and the
corresponding values of its output Y (dashed line) in the case of binary modeling alphabet,
and Figure 3 illustrates schematically the condition of the data and event queue of the
delay element.

COMPILATION LOGIC MODELING

Figure 2

L= o

Figure 3

20 1N
l E1
28 1 |P1 L] 25 N
[‘ €2
23 1 |P 1 “2 N
—
2 E3
25 1 (P 1 4 | PE L] a4
T
—
E3
42 11 2| 4 N

as

119

Thus, the operation of the universal delay element consists in its regular self-activation

120 A. 1. ANDRYUKHIN

(by way of its being put on the active element queue at F = 1), which continues for as
long as the element stores in its own dynamic memory the varying values of its input and
the instants at which they are sent to the output. The event-driven monitor starts
processing that part of the circuit which follows the delay element once the latter has
changed its output. The delay functions which were previously simulated by means of a
next event queue are now being performed by the delay element itself. This causes the
queue to vanish (it is replaced with the dynamic chains of events of the delay elements)
and makes it possible to use a simpler event-driven synchronous algorithm to model the
modified circuit.

The result of modeling with inertial delays depends on the location of the delay, i.e.,
is it located at the input or the output of the element. In both cases, use is made of a
universal inertial delay element, whose operation consists in ignoring the input signal X
if it is applied in less than DT model clock periods. The condition of this delay element
is defined by the following internal parameters: T - the model Y-entry time; YT - the value
of the output Y at the instant T; Y - the current value of the output ¥; and DT - the inertial
delay value.

The operating algorithm of the inertial delay element has the following form.

1.LIfX=1Y, goto7.

JIfX = YT, goto 5.

If T = M, set Y equal to YT.

Set YT = X, T = M+DT, F = 1, and output.

. If T'is equal to M, set Y = YT, F = 0, and output.
. Go to 4.

. If X is equal to YT, set F = 0 and output.

. Go to 3.

The approach described differs from interpretative implementation in that the
asynchronous modeling with delays reduces to the synchronous modeling of the
appropriate modified circuit. There are no more dynamic structure (time wheel and
overflow wheel) organization and processing problems. The construction and operation
of such structures are replaced by the software implementation of independent delay
element modules and their operation in the course of modeling. The simplicity of the
software implementation enables one to change delay values in the course of modeling by
using different static data structures in defining the delay elements.

Among the disadvantages of this approach is the time wasted to check the operation
of the delay elements in each model clock cycle, which is similar to the software inquiry
by a processor of the condition of the ports [13], [14]. This is essential where the active
element queue only contains long-delay elements. Such a situation being typical, software
implementation does not rule out the possibility of detecting it and prolonging automatical-
ly the model time by so much clock cycles as will make up a period not too long to allow
any changes to occur in the model in its course. The minimum duration of this period is
T—M for all the elements in the active queue. This procedure is very important for the
efficiency of modeling where use is made of the event simulation principle. One can also
note a faster putting of an event on the dynamic list of delay elements, compared to the
time wheel, for no time is wasted in the search for the beginning of the list for a certain

COMPILATION LOGIC MODELING 121

instant of time.

The evaluation testing of the implementation has shown that modeling with delays
prolongs the modeling time by no more than 270%. Taking into account the high speed
of synchronous modeling (it takes some 20 s for the IKSM system using a 16-MHz IBM
AT 286 computer to model on 110 patterns a circuit including 70 Series 155, 561, and
586 50-input elements), the approach described above can be considered quite a success.

REFERENCES

. V. V. Karibskii, P. P. Parkhomenko, E. S. Sogomonyan, and V. F. Khalchev, Osnovy
tekhnicheskoi diag iki (Fund: Is of technical diagnostics)(Moscow: Energiya, 1976)(in
Russian).

2. V. L Levin, Dinamika logicheskikh ustroistv i sistem (Dynamics of logic devices and systems)
(Moscow: Energiya, 1980)(in Russian).

3. V. L. Levin, Avt ika i Telemekhanika No. 8: 3-22(1990).

4.P. V. Savelievand V. V. Konyakhin, Funktsionalno-logicheskoe proektirovanie BIS (Functional-

logic design of large-scale integration circuits)(Moscow: Vysshaya Shkola, 1990)(in Russian).

- S. S. Badulin, Yu. M. Barnaulov, V. A. Bardyshev ef al., Avtomatizirovannoe proektirovanie

tsifrovykh ustroistv (Computer-aided design of digital devices)(Moscow: Radio i Svyaz, 1981)
(in Russian).

. K. Pradhan, Fault-Tolerant Computing (Prentice Hall, 1986).

7. V. V. Litvinov and T. P. Marianovich, Metody postroyeniya imitatsionnykh sistem (Methods for
constructing simulation systems)(Kiev: Naukova Dumka, 1991)(in Russian).

8. E. A. Avramchuk, A. A. Vavilov, and S. V. Yemelianov, Tekhnologiya sistemnogo modelirova-
niya (Systems simulation technology)(Moscow: Mashinostroyenie, 1988)(in Russian).

9. K. Kinoshita, K. Asada, and O. Kratsu, Logicheskoe proektirovanie SBIS (Logic design of
VLSIs)(Moscow: Mir, 1988)(Russian translation).

10. R. Miller, Teoriya pereklyuchayushchikh skhem (Switching circuit theory)(Moscow: Nauka,
1971)(Russian translation).

1. F. A. Mikael and A. O. Timofeev, Avtomatika i Telemekhanika No. 8: 186-188(1990).

12. A. I. Andryukhin and D. V. Speranskii, in: Proc. XI Intercollege School-Seminar "Metody i
sredstva tekhnicheskoi diagnostiki” (Methods and means of technical diagnostics)(Ivano-
Frankovsk, 1992): 99-102(in Russian).

13. V. G. Artyukhov, A. A. Budnyak, Yu. V. Lapii et al., Proektirovanie mikroprotsessornoi
elektronno-vychislitelnoi apparatury. Spravochnik (Handbook of microprocessor-basedcomputer
design)(Kiev: Tekhnika, 1988)(in Russian).

14. G. M. Yasinavichene, B. V. Burgis, E. A. Metsaev, and L.-A. K. Greblikas, Testovyi kontrol
mikroprotsessornykh BIS na proizvodstve (Testing microprocessor large-scale integration circuits
under industrial conditions)(Moscow: Radio i Svyaz, 1989) (in Russian).

w

(=2}

