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As is known, plastic properties of crystals are essen�
tially controlled by motion features of dislocations,
i.e., linear defects of the crystal structure, and their
interactions with other structural defects. A moving
dislocation can overcome potential barriers caused by
such defects in two ways, depending on its motion
velocity. Slowly moving dislocations stop in front of
such barriers and can overcome them via thermal fluc�
tuations. An increase in the velocity of dislocations
results in that their kinetic energy exceeds the energy
barrier height, creating conditions for dynamic over�
coming obstacles without thermal fluctuations. This is
the so�called dynamic region of velocities, whose
lower bound is defined by the inequality v ≥ 10–2c,
where c is the propagation velocity of transverse sound
waves in the crystal [1]. Dislocation drag in this region
is essentially controlled by the energy transfer from
dislocations to various elementary excitations in the
crystal; however, at high concentrations of impurities
and other lattice defects, the dynamic interaction of a
dislocation with these defects becomes substantial and
significantly affect on its mobility and crystal proper�
ties caused by dislocation motion. Dissipation mecha�
nisms based on this interaction are temperature�inde�
pendent; therefore, their contribution to dynamic
drag increases with decreasing temperature, when
phonon and magnon mechanisms are “frozen”, losing
their efficiency. At high defect concentrations, their
effect on dislocation dynamics can be significant even
in the region of room temperatures.

Interest in the study of dislocation motion in the
dynamic region has recently noticeably increased [2–
5], which is caused, on the one hand, by the impor�
tance of dislocation dynamics to understand processes

in crystals in the low�temperature region [6, 7], during
high�speed tension [8], or under shock loads [9–11],
in particular, those caused short�wavelength laser radi�
ation of huge power [12–14]; on the other hand, by
active applications of molecular dynamics method in
this region [15–17]. The dynamic behavior of disloca�
tions also affects the formation of metal properties
when using the new promising welding, i.e., explosion
welding [18].

As noted above, the interaction of dislocations with
structural defects has a significant effect on their
dynamic motion. One of the most important and
abundant crystal structure defect types are dislocation
loops which can be formed in crystals (e.g., during
irradiation [19], upon annealing and hardening [20])
and have a significant effect on straight dislocation
glide, hence mechanical properties of crystals [20, 21].
A significant number of papers are devoted to the the�
oretical study of dislocation loops (see, e.g., [15, 16,
22–25]).

The interaction of immobile dislocation loops with
immobile dislocations is studied in detail in the mono�
graph [25]. The authors of [15] used the discrete dislo�
cation dynamics method to analyze the interaction of
the dislocation network with prismatic dislocation
loops. In [16, 26–28], the interaction of a moving edge
dislocation with loops in iron, copper, and α�zirco�
nium was studied by the molecular dynamics method.
The problem of the orientational dependence of this
interaction is analyzed in detail in [29]. The paper [30]
is devoted to the theoretical study of the edge disloca�
tion motion in an elastic field of structural defects of
various scales: dislocation loops and point defects. It
was shown that the dependence of the total force of
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dynamic drag of dislocations under certain conditions
can contain two minima and two maxima; in this case,
the position of the maxima correspond to the maxi�
mum value of drag by each of indicated defect types,
while minima correspond to the velocities at which the
transition from the dominance of one defect type to
the dominance of another occurs. The dissipation
mechanism studied in [30] consists in the irreversible
of the kinetic energy of translational motion of dislo�
cations to the energy of their flexural vibrations in the
glide plane. As follows from [31–33], the dislocations
dynamics in the presence of such dissipation mecha�
nism depends on the shape of the dislocation vibration
spectrum. It was shown that the gap in the vibration
spectrum of a dislocation moving in an elastic field of
circular dislocation loops, under certain conditions,
leads to the appearance of dry friction not only in the
case considered in [30], but also in a number of other
cases, in particular, during a dislocation pair motion in
the crystal and a single dislocation motion in the sur�
face region.

As a rule, real crystals contain two or several types
of defects whose effect on dislocation glide is con�
trolled by their concentration and power. First, let us
analyze the case studied in [30], i.e., dislocation glide
in an elastic field of defects with not only different
dimensions, but also different characteristic sizes. The
case in point is dislocation loops and point defects. For
point defects, the characteristic scale is their radius
which is comparable in order of magnitude with the
lattice constant. For loops, this is the loop radius
which can exceed the point defect radius by an order
of magnitude and larger.

Let an infinite edge dislocation glides under a con�
stant external stress σ0 in the positive direction of the
OX axis with constant velocity v (see the figure). The

dislocation line is parallel to the OZ axis, the disloca�
tion Burgers vector is parallel to the OX axis. The dis�
location glide plane coincides with the XOZ plane, and
its position is defined by the function

(1)

Dislocation loop planes are parallel to the dislocation
glide plane, and their centers are randomly distributed
in the crystal. Let us consider the case where all dislo�
cation loops are prismatic. For simplicity, let all loops
be identical, i.e., having identical radii equal to a and
identical Burgers vectors b0 = (0, –b0, 0) parallel to the
OY axis. The dislocation equation of motion can be
written as 

(2)

where  is the component of the tensor of stresses

caused by point defects in the dislocation line,  is
the component of the tensor of stresses caused by pris�
matic loops in this line, B is the damping constant
caused by phonon, magnon, or electron dissipation
mechanisms, m is the mass of the unit dislocation
length, and c is the propagation velocity of transverse
sound waves in the crystal.

Here, as in [29–33], we suppose that the condition
[Bbv/(mc2)] � 1 is satisfied, which allowing us to
ignore the effect of the constant on the force of dislo�
cation drag by structural defects.

The force of dynamic drag of the moving edge dis�
location by prismatic dislocation loops, according to
[30], can be calculated by the formula

(3)

where ω(qz) is the dislocation vibration spectrum and
nL is the volume concentration of loops.

In the case at hand, the dislocation vibration spec�
trum is given by 

(4)

In [30], the gap Δ in the vibrational spectrum appears
due to the collective interaction of defects with a dis�
location and, according to [31], is described by the
formula

(5)

where ε is the defect mismatch parameter, ld is the
average distance between point defects randomly dis�
tributed in the crystal volume, and n0d is the dimen�
sionless concentration of these defects. The existence
of the gap significantly changes the mechanism of dis�
location drag by loops, in particular, the velocity
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dependence of this force becomes nonmonotonic.
After simple algebra, the expression for the desired
drag force can be written as 

(6)

In [30], approximate analytical expressions of this
force were derived for various velocity ranges of the
dynamic region. Then we will analyze the velocity
interval v < vL, where the characteristic velocity vL is
defined, according to [30], by the expression vL = aΔ.
For the case where the gap is caused by the collective
effect of point defects, the expression for this velocity
takes the form 

(7)

The drag force in this velocity interval, according to
[30], can be approximately described by the following
expression 

(8)

Here μ is the shear modulus and γ is the Poisson ratio.
This is exactly the dry friction force, i.e., the drag force
independent of the velocity. The appearance of the dry
friction effect during moving dislocation drag by dislo�
cation loops is controlled by two major factors: the
shape of the elastic field of dislocation loops and the
presence of the gap in the vibration spectrum of a
moving dislocation. The gap should be such that the
condition v < vL would be satisfied, but the dislocation
glide velocity should arrive at the dynamic drag region,
i.e., the inequalities 

(9)

should be valid.
Thus, for the appearance of the dry friction effect,

the presence and value of the spectral gap are impor�
tant; the origin of this gap has no fundamental impor�
tance. In [30], the gap arose due to the collective inter�
action of point defects with a moving edge dislocation;
its shape is defined by formula (5). In this case, the
dynamic drag force itself, after simple algebra, can be
described by the expression 

(10)

As follows from the obtained expression, the force of
dynamic drag of the edge dislocation by prismatic
loops in the velocity region under study depends not
only on the loop concentration, but also on the point
defect concentration: an increase in the concentration
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of these defects results in an increase in the spectral
gap size, hence, to a decrease in the force of disloca�
tion drag by loops.

Let us perform numerical evaluations to ensure
that the velocities under study remain within the
dynamic region. For typical values ε ≈ 10–1, a ≈ 10b,
b ≈ 3 × 10–10 m, c ≈ 3 × 103 m/s, and n0d ≈ 10–4, we
obtain vL ≈ 10–1c ≈ 300 m/s, i.e., the velocities v < vL

at which the dry friction effect appears are in the
dynamic velocity interval. But if the loop size is a ≈
100b, at the same point defect concentration we obtain
vL ≈ c, i.e., the appearance of this effect becomes pos�
sible almost at all dynamic region velocities.

Thus, as noted above, the feasibility of the dry fric�
tion effect requires the gap in the dislocation vibration
spectrum. This gap can arise, in particular, due to the
interaction of dislocations composing a mobile dislo�
cation pair. The nucleation and motion of such pairs is
very typical of easy glide, especially for strong defor�
mations or under local bending moments [20]. The
vibrational spectrum of dislocations forming a pair was
obtained in [34]. In this case, the dislocation spectrum
gap is given by 

(11)

where ldis is the dislocation length, D is the quantity on
the order of the crystal size, and d is the distance
between the glide planes in which edge dislocations
forming the dislocation pair move. In the case of
dynamic glide of such a pair in the field of immobile
dislocation loops, dry friction can occur at velocities
v < vL = aΔdis ≈ c(a/d). Let us estimate the order of
magnitude of the critical velocity vL in this case. It is
clear, that for a ≈ d we will obtain vL ≈ c, i.e., the effect
under study can occur in the entire dynamic motion
region under study. For a ≈ 100b and d ≈ 10b, we obtain
the velocity vL exceeding the speed of sound. This
means that the effect feasibility condition v < vL will
also be satisfied in the entire dynamic velocity region,
and the velocity vL is not attainable in this case at all.
But if a ≈ 10b and d ≈ 100b, we obtain vL ≈ 10–1c, i.e.,
the velocity region in which this effect is possible sig�
nificantly narrows.

Using formulas (8) and (11), we derive the expres�
sion for the force of the dynamic drag of dislocations
by prismatic loops in the case at hand, 

(12)

The gap in the dislocation vibration spectrum can also
arise under image forces when a dislocation glides par�
allel to the free surface. This case was analyzed in
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detail in [32], where it was shown that the edge dislo�
cation motion parallel to the crystal surface is in a
sense equivalent to the motion of a dislocation pair,
i.e., an actual dislocation and its image. According to
[32], the spectral gap appeared in this case is defined
by the expression 

(13)

Here lS is the distance from the crystal free surface to
the dislocation glide plane. Then, for the dynamic
drag force of edge dislocations, we obtain the formula

(14)

Generalizing all above cases, we can conclude that the
arising drag force of dry friction type can be approxi�
mately written in the form

(15)

Here L is the characteristic scale of the interaction
causing the spectral gap. If the gap results from the
collective interaction of point defects with a disloca�
tion, L has the meaning of the average distance
between defects (L = ld); if the gap is caused by the
interaction of dislocations forming a mobile pair, L is
the distance between dislocations (L = d); if the gap
results from the image forces, the characteristic scale is
the distance between the surface and the dislocation
glide plane (L = lS).

Thus, the analysis performed allows the conclusion
that the appearance of the gap in the dislocation vibra�
tion spectrum results in that the dynamic drag of edge
dislocations by prismatic dislocation loops takes the
form of dry friction. Its value is defined by both the
concentration and sizes of dislocation loops and the
characteristic scale of the interaction causing the spec�
tral gap.

In real crystals, dislocation loops are quite often
arranged in parallel planes. Let these planes be equi�
distant (the distance between them is DS) and the aver�
age loop concentration in each plane be almost iden�
tical and equal to nS (the number of dislocation loops
per unit area). Using the results of [29], expression
(15) for the dry friction force can be written as 

(16)

where n0S = nSa2 is the dimensionless loop concentra�
tion on the plane.

To numerically evaluate the value of the effect
under study, we use the data of [29, 31, 35]. Let an edge
dislocation move in the crystal containing dislocation
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loops and point defects. For the typical values μ = 5 ×
1010 Pa, b = 3 × 10–10 m, a = 100b, DS = 30b, γ = 0.3,
and n0S = 10–3, we obtain F0 ≈ 8 × 10–3 N/m. At the
dimensionless point defect concentration n0 = 10–4,
the average distance between them is L = ld ≈ 20b.
Then the force of dislocation drag by loops is FL ≈ 1 ×
10–3 N/m. For comparison, let us estimate the force of
dislocation drag by phonons in the region of room
temperatures. For the typical value of the phonon
damping constant B = 10–4 Pa s and the dislocation
glide velocity v = 10–2c ≈ 30 m/s, we find that the force
of phonon dislocation drag is F ≈ 3 × 10–3 N/m. Thus,
at high loop concentrations, the dry friction force in
the order of magnitude is comparable with the force of
phonon dislocation drag, which usually dominates in
the region of room temperatures. As the dislocation
glide velocity increases, the effect of the force under
study weakens, since the phonon drag force is propor�
tional to the velocity, while the dry friction force is
independent of it. As the temperature is lowered, the
role of dry friction increases, since this dissipation
mechanism is temperature�independent, and the effi�
ciency of phonon scattering mechanisms significantly
decreases.

Thus, the dry friction effect caused by the dynamic
interaction of dislocations with dislocation loops can
have a significant effect on dislocation glide, especially
in the low�temperature region.
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