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1. INTRODUCTION

The velocity of dislocation glide in a crystal
depends on the interaction of dislocations both with
each other and with phonon, magnon, and electron sub-
systems of the crystal [1–3]. The dynamic retardation
of the motion of single dislocations at point defects was
investigated earlier in [4–8]. As was shown in our pre-
vious works [5, 6], this retardation depends substan-
tially on the spectrum of dislocation vibrations, which,
in turn, is significantly affected by the interaction
between the dislocations moving in the crystal [9]. It is
known that edge dislocations located in planes parallel
to the glide plane can be arranged one above the other,
thus forming stable configurations [10, 11]. This pro-
cess provides a basis for the polygonization responsible
for the formation of dislocation walls in crystals. Under
external stresses, these clusters of dislocations can exe-
cute motion over the crystal. For a pair of dislocations
moving parallel to the surface of the crystal, the
dynamic retardation by point defects distributed over
this surface in a random manner was studied in [12].
The influence of the magnetoelastic interaction on the
spectrum of dislocation vibrations and on the dynamics
of the glide of a pair of edge dislocations in magneti-
cally ordered crystals was analyzed in [13]. It should be
noted that the effect of the phonon subsystem of the
crystal on the glide of a pair of edge dislocations was
disregarded in [12, 13].

In this paper, the motion of a pair of edge disloca-
tions in parallel glide planes in a field of point defects
distributed over the bulk of the crystal in a random
manner is investigated with due regard for the interac-
tion of dislocations with each other, with point defects,

and with the phonon subsystem of the crystal. In order
to take into account the effect of the phonon subsystem
of the crystal on the glide of a pair of edge dislocations,
the equation of motion of a dislocation is supplemented
with an additional quasi-viscous term. In essence, this
means that any dissipation mechanism associated with
the quasi-viscous retardation of dislocation motion is
included in the analysis.

2. THEORETICAL ANALYSIS

Let us consider a glide of two infinitely long edge
dislocations under a constant external stress 

 

σ

 

0

 

 in a field
of point defects distributed in the bulk of the crystal in
a random manner. The lines of these dislocation are
parallel to the 

 

OZ

 

 axis, and their Burgers vectors are
aligned parallel to the 

 

OX

 

 axis. The dislocations move
in the positive direction of the 

 

OX

 

 axis at a constant
velocity 

 

v

 

. Let us assume that the first dislocation
moves in the 

 

XOZ

 

 plane (i.e., 

 

y

 

 = 0) and that the second
dislocation moves in the plane 

 

y

 

 = 

 

a

 

, where 

 

a

 

 is the dis-
tance between the glide planes. Both dislocations exe-
cute motion in the plane 

 

x

 

 = 

 

v

 

t

 

, which is perpendicular
to the glide planes. The location of the dislocations is
determined by the functions

(1)

where 

 

w

 

1

 

(

 

y

 

 = 0, 

 

zt

 

) and 

 

w

 

2

 

(

 

y

 

 = 

 

a

 

, 

 

zt

 

) are random quanti-
ties, whose average value over the ensemble of point
defects and over the arrangement of elements of the dis-
locations is equal to zero. 

X1 y = 0 zt,( ) vt w1 y = 0 zt,( ),+=

X2 y = a z t, ,( ) vt w2 y = a z t, ,( ),+=
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The motion of each dislocation can be described by
the equation

(2)

Here, 

 

K 

 

= 1 and 2 are the ordinal numbers of the first
and second dislocations, respectively; 

 

m

 

 is the weight
of the dislocation per unit length (for simplicity, the
weights of the dislocations are assumed to be equal); 

 

B

 

is the damping constant, which accounts for the
phonon, magnon, electron, or other dissipation mecha-
nisms characterized by a linear dependence of the force
of retardation of the dislocation motion on the velocity
of dislocation glide; 

 

c

 

 is the velocity of propagation of

transverse acoustic waves in the crystal;  is the ten-
sor component of the stresses generated by point

defects along the line of the 

 

K

 

th dislocation;  =

; 

 

F

 

dis

 

 is the interaction force between the
dislocations; and 

 

N

 

 is the number of point defects in the
crystal. As in our previous work [5], we use a smooth
cutoff of the stress field of a point defect at distances of
the order of the radius of this defect:

(3)

where 

 

σ

 

xy

 

(

 

p

 

) is the Fourier transform of the tensor of
the stresses generated by the point defect, R is the
radius of the point defect, 

 

ε

 

 is the mismatch parameter,
and 

 

µ

 

 is the shear modulus. According to Kosevich
[11], the interaction force between the dislocations 

 

F

 

dis

 

can be determined from the expression

(4)

where 

 

γ

 

 is the Poisson ratio. Here, it is taken into
account that 

 

w

 

 

 

�
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 and 

 

r

 

 

 

≈

 

 

 

a

 

. As was shown by Natsik
and Chishko [4], the retarding force induced by a field
of randomly distributed defects depends only slightly
on the phonon mechanisms of dissipation because of
the smallness of the dimensionless parameter 

 

α

 

 =

 

βλ

 

v

 

/
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, where 

 

λ

 

 is the cutoff parameter, 

 

λ

 

 

 

≈
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, and 
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/
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. Since the damping constant is of the order of 

 

B

 

 

 

≤

 

10

 

–4

 

 Pa s and the weight of the dislocation per unit
length is of the order of 

 

m

 

 

 

≈

 

 10

 

–16

 

 kg/m, we have 

 

β

 

 

 

≤

 

10

 

12

 

 s

 

–1

 

. For typical values of the parameters 
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10–10 m, c ≈ 3 × 103m/s, and v ≤ 10–1 s, we obtain the
dimensionless parameter α � 1. Hence, when calculat-
ing the force of retardation of the dislocation motion by
point defects, we ignore the phonon and other mecha-
nisms of dissipation, which contribute to the damping
constant B. However, these mechanisms will be taken
into account in analyzing the total retarding force,
which acts on the dislocation.

Using the Fourier transformation and changing over
to the coordinate system related to the center of mass of
the dislocation, we obtain the vibrational spectrum of
the dislocations in the explicit form

(5)

where L is the dislocation length and D is a quantity of
the order of the crystal size. The force of retardation of
the dislocation by point defects is calculated in terms of
the second-order perturbation theory [in this case, the
bending vibrations of the dislocation in the glide plane
are assumed to be small and can be described by the
functions w1(y = 0, z, t) and w2(y = a, z, t) using the
method employed in [5–8]:

(6)

where the symbol 〈…〉  denotes averaging over the
length of the dislocation and over the random distribu-
tion of the point defects. Since the forces obtained after
the averaging are equal for both dislocations, the index
K can be omitted in the subsequent treatment. After the
appropriate calculations, we obtain the expression for
the force of retardation of each dislocation by point
defects in the following form:

(7)

Here, we introduced the following designations:

(8)

n0 is the dimensionless concentration of point defects.
The total retarding force, which acts on the moving

dislocation, can be represented in the form F = Fd + Bv.

3. RESULTS AND DISCUSSION

The dependences of the total force of retardation of
the dislocation motion on the velocity of dislocation
glide for different damping constants are schematically
depicted in Fig. 1.

Figure 2 shows the dependences of the force of
retardation of the dislocation motion on the velocity of
dislocation glide for different concentrations of point
defects at a fixed value of the damping constant. In
order to obtain analytically the qualitative dependence
of the positions of the extrema in the function F(v) on
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the parameters of the problem, we simplify relationship
(7) after prior analysis of its asymptotic behavior. For
v < v0 = R∆ (i.e., t > 1), we obtain

(9)

Then, the force of retardation of the dislocation motion
by point defects Fd is proportional to the velocity of dis-
location glide:

(10)

At v > v0 (i.e., t < 1), the force of retardation of the dis-
location motion by point defects is inversely propor-
tional to the velocity of dislocation glide:

(11)

At v = v0, the retarding force of the dislocation motion
Fd reaches a maximum. For the subsequent analysis,
the retarding force is conveniently represented as the
ratio of polynomials; that is,

(12)

Since this relationship correctly describes the behavior
of the function Fd(v), we can analyze the qualitative
features of the dislocation motion without recourse to
numerical methods. As follows from analyzing the
obtained relationship, the dependence of the total
retarding force on the velocity of dislocation glide F(v)
has a maximum and a minimum for damping constants
that are less than the critical value B0 = Bd/8. For
numerical estimation, we use the data taken from [4].
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For typical values of the mismatch parameter ε ≈ 10–1

and the dimensionless concentration of point defects
n0 ≈ 10–3, we obtain the critical damping constant B0 ≈
10–5 Pa s. In this case, the total retarding force has a
maximum at the point v0 determined by the expression

(13)

This maximum corresponds to a transition from the col-
lective interaction of the dislocations with point defects
to independent collisions between them. For the dis-
tance between the dislocations a ≈ 10b, the critical
velocity is of the order of v0 ≈ 10–1c. For a ≈ 100b, we
obtain the critical velocity v0 ≈ 10–2c. The total retard-
ing force has a minimum at the point v1 determined by
the expression

(14)

This minimum corresponds to a velocity at which the
force of retardation of the dislocation motion by point
defects (as the velocity increases, the retarding force in
this range decreases as v –1) becomes equal to the quasi-
viscous retarding force, which is induced by the inter-
action of dislocations with other (primarily with
phonon) subsystems of the crystal.

The position of the maximum does not depend on
the damping constant B (Fig. 1), whereas the position of
the minimum approaches the position of the maximum
as the damping constant B increases. At B = B0, their
positions coincide with each other and an inflection
point appears. A further increase in the damping con-
stant B leads to a smoothing of the curve, and, in the
limiting case of infinitely large values of B, we obtain a
linear dependence.
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Fig. 1. Dependences of the force of retardation of the dislo-
cation motion on the velocity of dislocation glide for differ-
ent damping constants (B5 > B4 > B3 > B2 > B1 = 0).
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Fig. 2. Dependences of the force of retardation of the dislo-
cation motion on the velocity of dislocation glide for differ-
ent concentrations of point defects (n4 > n3 > n2 > n1 = 0).
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As the concentration of point defects increases at a
fixed value of the damping constant B (Fig. 2), the posi-
tion of the maximum remains unchanged (the velocity
of dislocation glide v0 does not depend on the concen-
tration of point defects), whereas the minimum shifts
toward higher velocities.

The dependence of the retarding force on the dis-
tance between the dislocations is also nonmonotonic
and can be described by the expression

(15)

For a < a0 = (Rc/v) , the retarding force
increases in proportion to the square of the distance
between the dislocations. For a > a0, this quantity does
not depend on the distance between the dislocations. At
velocities v ≈ 10–1 s, we obtain a0 ≈ 10–9 m.

In the velocity range v0 < v < v1, the dislocation
motion is dynamically unstable because the increase in
the velocity leads to a decrease in the retarding force of
the dislocation motion. The interaction of point defects
with the dislocation in this range of velocities has the
form of independent collisions. This interaction was
investigated previously in [5, 6].

4. CONCLUSIONS

The proposed approach can be used in analyzing the
dynamics of dislocation walls.
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