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The effect of the surface on edge dislocation glide in the crystal with point defects both
on the surface and in the bulk is studied theoretically. It is shown that the drag force
of dislocation can be reduced by the image forces to several orders of magnitude in
nanoscale region.
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1. Introduction

Crystal surface can essentially affect different properties of the crystal, including

plastic ones.1 In nanocrystals, the role of the surface is highly important. As it is

known, the plastic properties of crystals are to a considerable extent formed by

dislocation motion. The moving dislocations interact with different point defects

distributed both on the surface and in the bulk of crystal. The image force action

on moving dislocations is numerically studied in Refs. 2–6, however, influence of

these forces on the dislocation drag by point defects has not been investigated yet.

The velocity range of dislocation motion in the crystal can be subdivided into

two: a region of thermally activated motion, where local barriers created are over-

come due to thermal fluctuations, and a dynamic one, where the kinetic energy of

dislocation motion is greater than the energy of interaction with local bariers, which

is why the dislocation motion can be described by dynamic equations. Though the

dynamic range includes the velocities of motion 10−2c ≤ v � c, where c is velocity

of propagation of transverse sound waves, however the dynamic mechanisms of dis-

sipation may be important for fluctuations overcoming the barriers by the moving

dislocation. Moreover, for soft metals (copper, zinc, aluminum, lead, etc.) the region

of high velocities starts at relatively low external stresses.

The dynamic drag of dislocations by point defects chaotically distributed in

crystal bulk was studied in Refs. 7–9. Reference 10 investigates a motion of edge

dislocation in parallel to the free crystal surface containing point defects. It was
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shown that the velocity dependence of the force of dislocation drag by surface

point defects is nonmonotonic. The influence of image forces was not considered

there.

This paper deals with the investigation of image forces effect on the dynamic

drag of dislocations by point defects chaotically distributed both on the crystal

surface and in the bulk. We show that the image forces greatly reduce the resistance

of point defects to edge dislocation motion in the near-surface layer.

2. Model and Calculation

Let an infinite edge dislocation be moving under the influence of a continuous

external stress σ0 in the positive direction of axis OX at a constant velocity v and

in parallel to crystal surface XOY. The dislocation line is parallel to axis OY, the

Burgers vector being parallel to axis OX. For crystal points z ≤ 0. The dislocation

glide plain coincides with plane z = −L. The dislocation position is defined by the

function

X(z = −L, y, t) = vt+ w(z = −L, y, t) , (1)

where function w(z = −L, y, t) describes random fluctuations of the dislocation

elements in the glide plane relative to the undisturbed dislocation line.

The equation of dislocation motion may be written in the following form:

m

{

∂X2

∂t2
− c2

∂2X

∂y2

}

= b[σ0 + σi
xz + σS

xz + σV
xz] −B

∂X

∂t
. (2)

Here σS
xz and σV

xz are tensor components of the stresses created on the dislocation

line by point defects chaotically distributed on the surface and in the bulk of the

crystal, respectively; σi
xz are image forces acting on the dislocation due to avail-

able free surface, b is the modulus of dislocation Burgers vector, m is the mass of

dislocation unit length, B is the damping constant dependent on phonon, magnon,

electron or another dissipation mechanism characterized by a linear dependence

of dislocation drag force on the velocity of its slip, c is the propagation velocity

of transverse sound waves in the crystal. As was shown in Ref. 7, the drag force

induced by a field of randomly distributed defects depends only slightly on the

phonon mechanisms of dissipation because of the smallness of the dimensionless

parameter α = Bbv/(mc2), which is small in most cases.

Let us study how the image forces affect the type of dislocation oscillation

spectrum. To calculate the image force acting on the dislocation we use the standard

method of images.11 According to this method, the dislocation image is constructed

such that the sum of the stresses of dislocation σd
ik and its image σi

ik on the free

surface are equal to zero. If σd
ik + σi

ik 6= 0, we add a term calculated using stress

function ψ to satisfy the boundary conditions.

Let us construct a simple image of the edge dislocation (Fig. 1). Under super-

position of stresses created by the dislocation and its image all stress components
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Fig. 1. Semi-infinite crystal with point defects on the surface and in the bulk. Edge dislocation
and its image.

Fig. 2. The velocity-dependence of the drag force for different values of defect concentration.
(n4 > n3 > n2 > n1 = 0). Point defects are distributed in infinite crystal bulk.

on the three surface, apart from σxz, turn to zero. After simple algebra we get ad-

ditional stresses occuring on the dislocation line due to the free surfaces as follows:

σi
xz = M

x(12zLz2
−

− 4zLx2 + z4
−

− x4)

r6
, (3)

M =
µb

2π(1 − γ)
, r =

√

x2 + z2
−

, z
−

= z − L . (4)

On the undisturbed dislocation line the stresses are equal to zero: σi
xz = 0 for

x = 0, and the surface does not affect the linear edge dislocation in the glide plane

parallel to that surface. However, the surface changes the dislocation oscillation

spectrum. Expanding σi
xz(vt + w; y) with respect to small parameter w/L and
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Fig. 3. Distance-dependence of the drag force for different values of defect concentration (n3 >

n2 > n1). Point defects are distributed in semi-infinite crystal bulk.

changing variables to the system of dislocation mass center we obtain the oscillation

spectrum

ω2 = c2p2

z + ∆2, ∆ = ∆S =
1

L

√

bM

2m
≈

c

L
. (5)

Index s means that in this case the gap value is defined by the image forces caused

by the free surface. Below it will be shown that other interactions can contribute

to the spectral gap, in particular, the collective effects of point defects distributed

in crystal bulk. Thus, the edge dislocation glide is, in a sense, equivalent to the

motion of a pair of dislocations.9 In this case, a pair is formed by the dislocation

and its image.

Using the results of Ref. 10 we can write the dislocation drag force by point

surface defects

F =
nSb

2

4πm

∫

dqxdqy|qx| · |σxz(qx, qy, z)|
2δ(q2xv

2 − ω2(qy)) , (6)

where nS is the surface concentration of point defects, δ(q2
xv

2−ω2(qy)) is the Dirac

delta function, ω(qy) is the dislocation oscillation spectrum. In our case, condition

L∆S � v cannot be satisfied, as L∆S ≈ c � v, i.e. only condition L∆S � v is

satisfied. Then the drag force may be written in the following form:

Fd = n0Sε
2

Sµb

(

R

L

)3(

c

v

)
11

2

exp

(

−
2c

v

)

. (7)

Here n0 = nSR
2 is the dimensionless surface concentration of point defects, µ

is the shear modulus, εS is the dimensionless misfit parameter of surface defect,

characterizing its power,R is a value of the order of defect radius,R ≈ b. To simplify

the formula we approximate dislocation mass by m ≈ ρb2, where ρ is the crystal



Final Reading
July 6, 2009 14:34 WSPC/147-MPLB 02019

Dynamic Drag of Dislocation by Point Defects 2045

density, as well as the relation c2 = µ/ρ. The analysis shows that in the dynamic

region the drag force is exponentially small. One can say that the dislocation drag,

related to the dislocation excitations by surface impurities, is locked. Thus, the free

surface does not generate force acting on the dislocation in the glide plane, but it

suppresses the origination of dislocation oscillations in this plane and, as a result,

locks the dynamic drag of the dislocation by surface defects.

The gap in the spectrum of dislocation oscillations, that occurred due to the

free surface, affects dislocation drag by not only surface point defects but also

the defects distributed in crystal bulk. But the interaction of those defects with

dislocation initiates a spectral gap too. The dynamic interaction of defects with the

dislocation can be of collective character and in the form of independent collisions

and it is determined by the dislocation velocity.8

Let us denote the time of dislocation interaction with impurity atom as τdef ≈

R/v. The time of perturbation propagation along the dislocation for a distance

of the order of the average distance between defects ld is denoted by τdis ≈ ld/c.

In the region of independent collisions v > v1 = R∆d the inequality τdef < τdis

is satisfied, i.e. the dislocation element for the time of interaction with the point

defect is not affected by other defects. In this region point defects do not create a

gap in the dislocation spectrum. In the region of collective interaction (v < v1 ) we

have τdef > τdis, i.e. during the time of dislocation interaction with point defect this

dislocation element has time to receive a signal from other defects. The collective

interaction of defects creates the spectrum gap

∆d =
c

b
(n0V ε

2)1/3 =
c

l
, (n0V ε

2)−1/3 = l ≈ ld . (8)

Here n0 is the dimensionless concentration of point defects, n0V = nVR
3. De-

pendence of the drag force by point defects on dislocation velocity in an infinite

crystal is schematically shown in Fig. 2. The values of v > v2 = v1
√

Bdef/B =

2πε
√

(1 − γ)n0V µbc/3B correspond to the region where the phonon drag exceeds

drag by defects. In the region v < v2 the drag by defects dominates, and values

v1 < v < v2 correspond to the region of independent collisions, while for v < v1 we

have the collective interaction region.

When the edge dislocation is moving in near-surface layers of the crystal with

point defects chaotically distributed in crystal bulk, the gap in the dislocation

spectrum is defined as

∆2 = ∆2

S + ∆2

d , (9)

where ∆S is described by Eq. (5). To analyze the dislocation drag we consider three

limiting cases:

Case 1. ∆d � ∆S; b∆d � v

This is the collective interaction region in which the defect contribution to spectral

gap value strongly exceeds the image force contribution, ∆ ≈ ∆d. By using Eqs. (5)
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and (8), we obtain that region boundaries are approximately present inequalities

(bc/v) � l andL� l. In this case, the drag force is defined by the expression

Fd = µb(n0V ε
2)

1

3

v

c
. (10)

Case 2. ∆S � ∆d; b∆S � v

In this case, the image forces are the main contributors to gap formation. Boundaries

of the region are defined by the inequalities (bc/v) � L and l � L. In the region

the drag force depends on distance to the surface

Fd = µbn0V ε
2
v

c

(

L

b

)2

. (11)

Case 3. b∆d � v; b∆S � v

This is the independent collision region. Its boundaries are defined by the inequali-

ties (bc/v) � l � L, if l � L, and (bc/v) � L� l, if L� l. In this range the drag

force is not sensitive to the presence of spectrum gap, and, for the same in Ref. 7,

it is inversely proportional to the dislocation velocity

Fd = µbn0V ε
2
c

v
. (12)

3. Conclusion

As follows from the analysis, the existence of surface essentially influences the edge

dislocation drag only in Case 2. To estimate the role of surface effect we take the

ratio of drag forces in Case 2 and in Case 1:

Fd2

Fd1

=

(

L

l

)2

. (13)

For n0V ≈ 10−4, ε ≈ 10−1, L ≈ 10b we obtain (Fd2/Fd1) ≈ 10−2, i.e. surface effect

reduces the drag force by two orders of magnitude. So, the existence of surface

makes the drag force of the dislocation by point defects much weaker. Figure 3

schematically presents the Fd(L)-dependence.

In our case, the thickness of the near-surface layer (with dominating surface

effect) typically varies from several nanometers to tens of nanometers, so the present

results can be useful for the analysis of the nanocrystal properties.
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