УДК 681.3

A.A. Баркалов, Е.В. Струнилин, В.Н. Струнилин Донецкий национальный технический университет vstrun@dgtu.donetsk.ua

Уменьшение емкости управляющей памяти композиционного микропрограммного устройства управления

Предлагается метод уменьшения емкости управляющей памяти в схеме композиционного микропрограммного устройства управления с общей памятью. Метод основан на преобразовании адресов микрокоманд в коды расширенных наборов микроопераций. Предложены три модификации метода, направленные на уменьшение аппаратурных затрат в схеме блока адресации микрокоманд.

Ключевые слова: уменьшение емкости управляющей памяти, композиционное микропрограммное устройство управления с общей памятью, преобразование адресов микрокоманд, микрооперация, блок адресации микрокоманд

Введение

Практически каждая цифровая система включает в свой состав блок устройства управления (УУ), координирующий взаимодействие остальных блоков системы [1]. При реализации схем УУ возникает задача уменьшения аппаратурных затрат [2,3], решение позволяет уменьшить устройства. Методы решения этой задачи зависят характеристик реализуемого алгоритма управления и особенностей элементного базиса [4]. В настоящей работе рассматривается метод решения этой задачи при реализации схемы УУ по линейной граф - схеме алгоритма (ГСА) с использованием СБИС типа FPGA (fieldprogrammable gate array) [5,6]. В этом случае целесообразно использовать композиционного микропрограммного устройства управления (КМУУ) [4]. Это УУ состоит из блока микрокоманд (БАМ) адресации И управляющей памяти (УП). Известные методы КМУУ, как оптимизации схем ориентированы на уменьшение аппаратных затрат в схеме БАМ [7]. Исключение составляют методы [8,9], что связано с особенностями КМУУ с разделением кодов [7]. В настоящей работе предлагается адаптация этих методов особенностям КМУУ с общей памятью.

Целью исследования является уменьшение управляющей памяти КМУУ за счет введения преобразователя адресов микрокоманд в коды расширенных наборов микроопераций.

Задачей исследования является разработка метода синтеза КМУУ с общей памятью, позволяющего уменьшить число блоков встроенной памяти в схеме УУ. При этом алгоритм управления представляется в виде ГСА [1].

Основные определения и общие положения

Пусть алгоритм управления цифровой системы представлен в виде ГСА Γ , которая характеризуется множеством вершин $B = E_1 \cup E_2 \cup \left\{b_0, b_1\right\}$ и дуг E, соединяющих эти вершин. Здесь E_1 — множество операторных вершин, содержащих наборы микроопераций из множества микроопераций (МО) $Y = \{y_1,, y_n\}$; E_2 - множество условных вершин, содержащих элементы множества логических условий (ЛУ) $X = \{x_1,, x_1\}$; b_0 - начальная вершина; b_E - конечная вершина Γ CA Γ . Введем ряд определений [7].

соседних вершин существует дуга < $b_{gi}, b_{gi+1} > \in E$, где $i = 1, ..., F_g - 1$.

Определение 4. Операторные линейные цепи называются псевдоэквивалентными ОЛЦ (ПОЛЦ), если их выходы связаны с входом одной и той же вершины $\Gamma CA \Gamma$.

Любая ОЛЦ α_g имеет произвольное число входов, обозначаемых I_g^k $(k=1,...,F_g)$ и образующих множество I_g , и точно один выход, обозначаемый символом O_g .

<u>Определение 5</u>. Граф-схема алгоритма Γ является линейной Γ CA, если число ее операторных вершин не менее, чем в два раза превосходит число ОЛЦ.

Пусть для ГСА Г получено множество ОЛЦ $C = \{\alpha_1,...,\alpha_G\}$, где каждая ОЛЦ $\alpha_g \in C$ включает максимально возможное число компонент [7]. Пусть $I(\Gamma)$, $O(\Gamma)$ — соответственно множество входов и выходов ОЛЦ ГСА Г. Каждая вершина $b_q \in E_1$ соответствует микрокоманде MI_q , имеющей адрес $A(b_q)$. Выполним адресацию микрокоманд так, чтобы выполнялось условие

$$A(b_{qi+1}) = A(b_{qi}) + 1,$$
 (1)

где $g \in \{1, ..., G\}$, $i \in \{1, ..., F_g - 1\}$. В этом случае для интерпретации линейной ГСА Г можно использовать модель КМУУ с общей памятью (рис. 1), обозначаемую в дальнейшем символом U_1 . Эта модель включает блок адресации микрокоманд (БАМ), счетчик (СТ), блок УП и триггер выборки (ТВ). Устройство U_1 функционирует следующим образом.

По сигналу Start в СТ записывается нулевой адрес, соответствующий началу микропрограммы, интерпретирующей ГСА Γ , одновременно триггер ТВ устанавливается в единичное состояние (Fetch=1) и микрокоманды могут выбираться из блока УП. Если СТ содержит адрес $A(b_q)$ и $b_q \notin O(\Gamma)$, то одновременно с набором микроопераций $Y(b_q)$, записанных в вершине $b_q \in E_1$, УП формирует сигнал y_0 . Если y_0 =1, то содержимое СТ увеличивается на единицу по сигналу Clock. При этом выполняется безусловный переход, соответствующий равенству (1). В том случае, если $b_q \in O(\Gamma)$, то сигнал y_0 не формируется, а блок БАМ вырабатывает функции возбуждения СТ

$$\Phi = \Phi(T, X) . \tag{2}$$

В этом случае по сигналу Clock в CT формируется адрес перехода из выхода некоторой ОЛЦ $\alpha_q \in C$. Если < b $_q$, b $_E > \in E$, то блок УП формирует сигнал у $_E$, вызывающий установку триггера ТВ в нулевое состояние. При этом Fetch = 0, выборка микрокоманд прекращается и КМУУ U_1 прекращает функционирование.

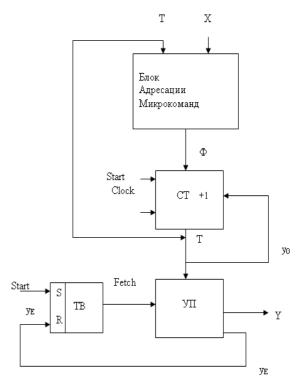


Рисунок 1 — Структурная схема КМУУ U_1

При реализации схем КМУУ U₁ на FPGA схемы БАМ, СТ и ТВ строятся на LUT элементах, а блоки EMB используются для реализации управляющей памяти.

Основные идеи предлагаемого метода

В управляющей памяти КМУУ U_1 хранится $M = \left| E_1 \right|$ макрокоманд, каждая из которых соответствует одной вершине $\mathbf{b}_{\mathbf{q}} \in \mathbf{E}_1$. Для адресации микрокоманд используется $\mathbf{R}_{\mathbf{M}}$ адресных разрядов, где

$$R_{\mathbf{M}} = \left| \log_2 \mathbf{M} \right|. \tag{3}$$

Назовем множество $Y(b_q)\subseteq Y$ микроопераций, записанных в вершине $b_q\in E_1$, набором микроопераций (НМО). В УП хранятся расширенные наборы микроопераций (РНМО), включающие МО $y_n\in Y$ и две дополнительные переменные y_0 и y_E . Пусть в УП храниться M_1 различных РНМО. Для их кодирования достаточно R_1 двоичных переменных, где

$$R_{\mathbf{I}} = \left| \log_2 M_1 \right|. \tag{4}$$

При выполнении условия

$$R_{I} < R_{M} \tag{5}$$

ёмкость УП может быть уменьшена за счет введения преобразователя адреса (ПА) микрокоманды в код РНМО. Это приводит к модели КМУУ $\rm U_2$ (рис. 2).

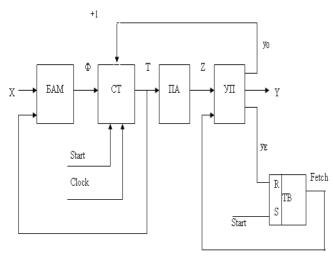


Рисунок 2 — Структурная схема КМУУ U_2

Очевидно, принципы функционирования КМУУ U_1 и U_2 совпадают. Разница заключается в том, что в КМУУ U_2 адреса микрокоманд преобразовываются в коды РНМО. Для кодирования РНМО используются переменные $\mathbf{z}_{_{\mathbf{I}}} \in \mathbf{Z}$, где $|\mathbf{Z}| = \mathbf{R}_{_{\mathbf{I}}}$. В настоящей работе предлагается метод синтеза КМУУ U_2 .

Метод синтеза КМУУ U_{γ}

Предлагаемый метод синтеза включает следующие этапы:

- 1. Формирование множества ОЛЦ $C = \{\alpha_1,...,\alpha_G\} \text{ по } \Gamma CA \Gamma.$
- 2. Построение множества расширенных кадров микроопераций V.
- 3. Если условие (5) выполняется, то синтез КМУУ $\rm U_2$ продолжается.
- 4. Кодирование PHMO $\mathbf{v_m} \in \mathbf{V}$ двоичными кодами $\mathbf{K(v_m)}$.
- 5. Формирование содержимого управляющей памяти.
- 6. Адресация микрокоманд ${
 m MI}_{
 m q}$ использованием (1).
- 7. Построение таблицы переходов КМУУ U_2 .
 - 8. Формирование системы функций (2).
- 9. Формирование таблицы преобразователя адреса.
- 10. Реализация схем блоков КМУУ $\,{\rm U}_2\,$ в заданном элементном базисе.

Рассмотрим более подробно некоторые из этих этапов. Множество ОЛЦ С формируется с использованием известных методов [7]. Пусть для некоторых ГСА Γ_1 имеем $C = \{\alpha_1, ..., \alpha_{17}\}$ и M=58. Очевидно, эта ГСА является линейной, так как M/G = 58/17 = 3,41 > 2. При этом $R_{M} = 6, \quad \Phi = \{D_{1}, ..., D_{6}\}$ и $T = \{T_1, ..., T_6\}.$ Пусть множество V включает $M_1 = 30$ различных РНМО. Это множество формируется следующим образом. Если вершина $b_q \in E_1$ не является выходом ОЛЦ $\alpha_g \in C$ (то есть $b_q \notin O(\Gamma)$), то в набор $Y(b_q)$ добавляется переменная y_0 . Если $\mathbf{b}_q \in \mathrm{O}(\Gamma)$ и $<\mathbf{b}_q, \mathbf{b}_E> \not\in \mathrm{E}$, то набор $\mathrm{Y}(\mathbf{b}_q)$ не меняется. В противном случае (< b_q , b_E $>\in E$), в набор $Y(b_{\alpha})$ вводится переменная y_E . Так как $M_1 = 30$, то $R_1 = 5$, условие (5) выполняется и синтез КМУУ U_2 имеет смысл.

Пусть код $K(v_m)$ совпадает с R_I разрядным двоичным эквивалентом индекса m ($m=\overline{1,M_1}$). В рассматриваемом примере имеем $K(v_1)=00001,\ K(v_2)=00010$ и так далее. Это позволяет сформировать содержимое УП. Пусть $v_2=\{y_1,y_3,y_0\}$, тогда по адресу 00010 будут записаны единицы в столбцах y_0,y_1 и y_3 . Такая процедура выполняется для всех РНМО $v_m\in V$.

Адресация микрокоманд (1) выполняется по известной методике [7]. Для формирования таблицы переходов КМУУ U_2 необходимо построить систему формул перехода для вершин $b_q \in O(\Gamma)$. Этот этап также выполняется по известной методике [7].

Таблица ПА имеет столбцы $\,A(b_q^{})\,,\,\,k(v_q^{})\,,$ $\,Z_q^{}$, $\,q$, где $\,q=\overline{1,H}\,.$

Пусть для ОЛЦ $\alpha_6=<$ $\mathbf{b}_6,$ $\mathbf{b}_{16},$ $\mathbf{b}_{17}>$ имеем $A(b_{15})=001110$. Тогда, согласно (1), получаем $A(b_{16})=001111,$ $A(b_{17})=010000$. Пусть вершине $\mathbf{b}_{15}\in \mathrm{I}(\Gamma)$ соответствует набор $\mathbf{v}_6=\{\mathbf{y}_0,\mathbf{y}_7,\mathbf{y}_{11}\},$ вершине $\mathbf{b}_{16}\in \mathbf{D}^6$ - набор $\mathbf{v}_{11}=\{\mathbf{y}_0,\mathbf{y}_5,\mathbf{y}_{17}\}$ и вершине $\mathbf{b}_{17}\in \mathrm{O}(\Gamma)$ - набор $\mathbf{v}_{18}=\{\mathbf{y}_3,\mathbf{y}_9\}$. Это приводит к следующему фрагменту таблицы ПА (табл. 1).

Таблица 1. Фрагмент таблицы ПА для КМУУ $\rm\,U_{2}$

$A(b_q)$	k(v _q)	Z_q	q
001110	00110	Z_3Z_4	15
001111	01011	$Z_2Z_4Z_5$	16
010000	10010	$z_1 z_4$	17

Отметим, что система $Z \in Z(T)$ может быть реализована либо на блоках EMB, либо на LUT элементах. Последний этап синтеза связан с применением промышленных САПР и выходит за рамки нашей статьи.

Модификация структуры КМУУ U_2

Рассмотренный метод может быть модифицирован так, что бы он позволял уменьшить число LUT элементов в схеме БАМ. Для этого необходимо уменьшить число входов в блоке БАМ. Дальнейшее уменьшение числа LUT возможно при одновременном уменьшении числа входов и термов в функциях $D_r \in \Phi$. В настоящей работе предлагаются три подхода к решению этой задачи.

Пусть каждому выходу $b_q \in O(\Gamma)$ соответствует уникальный РНМО $v_m \in V$. При этом ОЛЦ, выход которых связан с входом вершины b_E , не рассматриваются. В этом случае коды $K(v_m)$, соответствующие выходам ОЛЦ, могут рассматриваться как коды выходов ОЛЦ. Это приводит к модели U_3 (рис. 3).

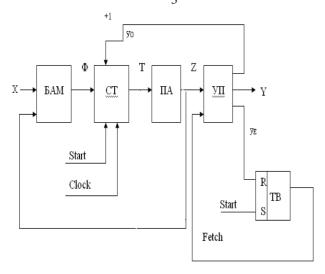


Рисунок 3 – Структурная схема КМУУ U_3 В КМУУ U_3 блок БАМ реализует функции $\Phi = \Phi(X,Z)$. (6)

При выполнении (5) система (6) имеет меньше входов, чем система (2). Это приводит к уменьшению числа LUT элементов в схеме БАМ $\rm U_3$ по сравнению с КМУУ $\rm U_2$.

Пусть $\pi_c = \{B_1,...,B_I\}$ — разбиение множества ОЛЦ С на классы псевдоэквивалентных ОЛЦ. Закодируем каждый класс $B_i \in \pi_c$ двоичным кодом разрядности R_B , где

$$R_{\mathbf{B}} = \left| \log_2 I \right|. \tag{7}$$

Используем для кодирования классов $\mathbf{B_i} \in \pi_{\mathbf{C}}$ переменные $\tau_r \in \tau$, где $|\tau| = \mathbf{R_B}$. Блок ПА можно использовать для преобразования адресов выходов ОЛЦ $\alpha_{\mathbf{g}} \in \mathbf{C}$ в коды классов $\mathbf{B_i} \in \pi_{\mathbf{C}}$. Это приводит к КМУУ $\mathbf{U_4}$ (рис. 4).

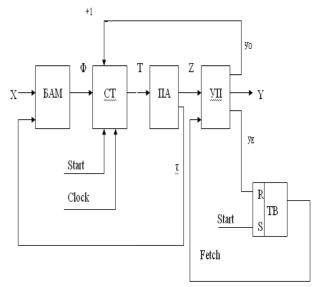


Рисунок 4 — Структурная схема КМУУ U_{Δ}

В КМУУ
$$\, {\rm U}_4 \,$$
 блок БАМ реализует функции
$$\Phi = \Phi(X,\tau) \, . \eqno(8)$$

Система (8) имеет меньше входов и термов, чем система (2).

Если существуют условия для использования КМУУ U_3 , то функции Z могут быть использованы для реализации преобразователя кодов ПК. Это ведет к КМУУ U_5 (рис. 5).

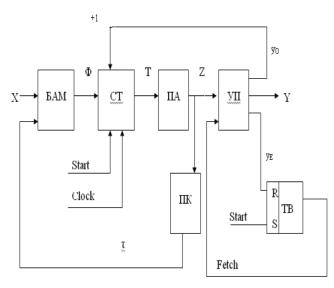


Рисунок 5 - Структурная схема В КМУУ U_{5}

В КМУУ U₅ блок ПК реализует систему функций

$$\tau = \tau(Z) \ . \tag{9}$$

Применение этого метода имеет смысл, если суммарная сложность блоков ПА и ПК в КМУУ U₅ меньше, чем сложность блока ПА в КМУУ U_4 .

Заключение

Предлагаемый метод основан преобразовании адресов микрокоманд в расширенных наборов микроопераций.

При выполнении условия (5) метод позволяет уменьшить число встроенных блоков памяти в схеме КМУУ с общей памятью. В КМУУ U₁ требуется управляющая память, имеющая емкость

$$V(U_1) = 2^R M \cdot (N+2)$$
. (10)

В КМУУ $\,{\rm U}_2\,$ этот параметр уменьшается до

$$V(U_2) = 2^{R_1} \cdot (N+2)$$
. (11)

Однако в КМУУ U2 вводится блок ПА, имеющий емкость

$$W(U_2) = 2^R M \cdot R_I. \tag{12}$$

Применение предлагаемого метода имеет смысл при выполнении условия

$$(V(U_1)/(V(U_2) + W(U_2))) > 1.$$
 (13)

$$\begin{split} &(V(U_1)/(V(U_2)+W(U_2)))>1\,. \\ &\text{работе} & \text{также} & \text{предложены} \end{split}$$
три модификации U_2 , модели позволяющие уменьшить сложность схемы блока адресации микрокоманд. Дальнейшие исследования авторов будут направлены на разработку методов синтеза КМУУ $U_3 - U_5$, а также исследование области эффективного применения предложенных методов.

Практическая значимость предложенного метода заключается в уменьшении аппаратных затрат в схеме КМУУ с общей памятью по сравнению с известными методами.

Литература

- 1. Baranov S. Logic and System Design of Digital Systems / S. Baranov.- Tallin: TUT Press, 2008.-266 pp.
- 2. Баркалов А.А. Синтез микропрограммных автоматов на заказных и программируемых СБИС / А.А. Баркалов, Л.А. Титаренко. – Донецк: УНИТЕХ, 2009. – 336 с.
- Соловьев В.В. Логическое проектирование цифровых систем на ПЛИС / В. Соловьев, М.: Горячая линия-Телеком, 2008. – 376 с. А. Климович. -
- DeMicheli G. Synthesis and Optimization of Digital Circuits. McGrow-Hill. 1994. №4. 636 pp.
 - 5. Altera Devices [Электронный ресурс]. – Режим доступа: www.altera.com
 - 6. Products & Services [Электронный ресурс]. – Режим доступа: www.xilinx.com
- 7. Barkalov A.A. Logic Synthesis for Compositional Microprogram Control Units / A. Barkalov, L. Titarenko. – Berlin: Springer, 2008 – 272 pp.
- Баркалов А.А. Оптимизация схемы композиционного микропрограммного устройства управления с разделением кодов / А.А. Баркалов, Р.В. Мальчева, А.А. Красичков, Халед Баракат // Радиоэлектроника и информатика. – 2006. – №1. – С. 46–50.
- Баркалов А.А. Применение преобразования адресов в КМУУ с разделением кодов / А.А. Баркалов, Р.В. Мальчева, А.А. Красичков, Халед Баракат // Труды седьмой МНПК «Современные информационные и электронные технологии», 22-26 мая 2006 г. – Одесса. – 2006. – С. 182.

Надійшла до редакції 20.02.2011