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THE CALCULATION OF DINAMIC DURABILITY OF ELASTIC DE-
FORMED SISTEMS

The deformed systems with distributed parametees adten used in the
equipments of different branch of industry. There eod structures with distrib-
uted masses witch have loads from interaction wikier objects as well as local-
ized masses that determined inertial loads. Thenpbes of such systems with dis-
tributed / localized mass are shafts of rollinglsnitransport pipelines of overland
equipment and deep-water mining complexes, airgfand pumping systems, bor-
ing flight of drilling rigs for oil and gas wellsnd of pit-shafts and special-purpose
wells of big diameters, pipelines of drain and ueatihg systems, pipelines of suc-
tion-tube dredge, and others.

Dynamic processes of such systems are describeliffbyential equation in
partial derivative, the solutions are presentedigsnfunctions. The eigenfunctions
are always orthogonal at the absence localizedesabsit the eigenfunctions are
weighted orthogonal for the systems with step-Véeissection. This fact essen-
tially complicates the solution of dynamic tasks.

Transverse vibrations of homogeneous rods undfardifce boundary condi-
tions are specified in the monograph [1]. Simileslgpems about natural vibrations
are discussed in [2] for double-step rod. Variasks$ about dynamics of homoge-
neous rods with localized masses are describeg].in [

% Let’'s examine the general task
jj P — about transverse vibrations of the
2 .'V'l_ o _Lﬂ____ 'V'p. __*__ rod systems of step-variable hard-
! N _ ness with localized masses

- | - M;(i=12,...,p) (fig. 1) [4].

_ _ Transverse vibrations of such
Flgl Calculation scheme of rod SyStem System section is examined sepa-

rately for each parts and then con-
jugation conditions are used for the system parts
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—t+a"—-=0, i=12,...p, (1)
ot? > ox*

where y; &t )- transverse displacement of rod sectionsart, a,-2 =% E Ji,

m — bending harshness and linear mass of the parsspondently.

At first we study natural vibrations of such systenthout localized mass.
Boundary conditions should be specified for theisoh of the equation (1)



Laya =0; Loyy 0=0J L3y, =0; Layp 0. (2)

x=0 X = x=| X =]

The type of liner differential abstract functidr)(j =1,...4) at the condition

(2) corresponds to following way of rod system efigisg: rigid fixing, pinning
and free end. Moreover, it is necessary to spetigy connection conditions at
x=({i=223..,p-1).

Yi (i, t) = Vi (i 1);
Yi (1, 1) = Vi 42 (1, 1);
EiJiyi(li,t) = EisqdisaYiea (lint);
Ei i yi'(li 1) = EjadivaYia(li 1),
Let’s study the properties of the eigenfunctiornsgduse it is necessarily for

the solution of tasks on natural and forced vibragi The eigenfunctions of the
boundary problem are specified as

3)

Xn(¥) = _ﬁl(e(n =) = €lli1 =) X (). @

where g(x) - unit function, X,,;(x) - the eigenfunctions of corresponding bound-

ary problem (1).
Make use of well known formula [1] for each part
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(‘*’ﬁ _(’oﬁw)lan,ixm,idxzaiz(xm,ix;;’,i = Xni Xmi + Xni Xmi = Xmi Xn, | L (5)
i-1 i-1

wherew, - natural frequency of vibration.

The integrals (5) are summed over whole systems $bim (5) are equal to
zero for extreme parts of the system because dbdbedary condition (2). Using
the connection condition (3) we obtain

| _
(o -a ) X, Xoix= 5 £ (1 —1]<xmi ()X () = X (1) X2 ) +
0 i=1 m m ,

+1
+ X0 ()X () = X (1) X5 (7))
It is evident from (6) that the orthogonality ofetleigenfunctions is possible
only if linear masses is equal =m,; else they are orthogonal with weight

(6)

P09 = X (efl =) =&l =), @



When let’s study the influence of local masseshmndrtogonality of the ei-
genfunctions of concerned boundary problem. Presehiocal massy/; at x =5

leads to changing last equation of (3) to the foifg

EiJi(y'(s +0t) - y"(5 —0.1)) = M; ¥(s.1). (8)
The condition (8) is put though the eigenfunctions
m m M
Xni(s +0)_Xn,i (s -0 =_a§—‘]_lxn,i(si)- 9)
(|

If integral (5) is put as sum of two integral oveterval [l;_;;s -0] and
[51 +0;|i], we obtain the following equation from formulag énd (9) at the condi-
tion a, # &,
| 2
i M. a:
J X o €= =2 X (5) X () (10)

Il—l

The equation (10) signifies the ortogonality of thigenfunctions with weight
in this case on the segmght;l; ]|

P2i(X)=m +M;d(x - §), (11)
whered(x) - Dirak delta function.

The ortogonality with weight of the eigenfunctioosgiven boundary prob-
lem is obtained combining the results (7) and (11)

P0) = X.(m + ;30 = 5)) (el =) ~efl5 = ). (12

The formula (12) for weight corresponds to genénabry of the eigenfunc-
tions [5].
The squared norm of the eigenfunctions with weigjlakefined like

I
IJp(x)xr%(x)olx = $m [ X2 () + M;X2i(5). (13)
0
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It is necessarily to introduce wave numbbfg; = w?/a? and turn to differen-

tiation over z=k,;x for using well-known equation for calculation tequared

norm of the eigenfunctions [1]. Then the connectionditions (3) for the eigen-
functions assume the form



Xini (1) = Xpjiea(li);

Kn,i Xn,i (i) =Kni+1Xni+(li);

kS i X (1) = kZiaEisndiaa Xia();”
ki Eidi X (1) = k31 Ei s di a1 X iaa (1),

(14)

where the differentiation is done over variahle

The case of rigid fixing of the rod system endsxamined below as an ex-
ample. We obtain the equation for the squared rddntaking into consideration
the boundary conditions

+ Ii 1 m
Ip(x)X (x)dx-z xn.(l )[k“: X (1) - k”ii;xn.+1<l )]—2<mxn,i(li)xn,i<li)—

X0 X a0+ L X ) =X a01)-
(15)

Moy 1yx" rn+1x+|x+|]
[km m() m() kn,|+1 nll() n|1()

+L‘1(m (Xé’u (|i))2_m+1( Xl )) ) rrb( g.p(li))2+§1Mixr?,i (§)

The equation (15) assumes the following form takirtig account connection
conditions (14) and turning to differentiation ower

p-1
Jp(x)x (gax="5 B[y (2 00 = 20 G X200+
(16)

|—1 4(1)n k E| +1J|+1j

ml 2 Ma ), Epdpl (on R P 2
+ Xni Ii l_ + Xn I + Mani .
! ,()[ m} ot Ko + M)

The squared norm of the eigenfunctions is defineularly for other way of
system end fixing. For example penultimate memb€i6) should be replaced by

- Eodel e Xz, in th f pinning and bymIX2 (1) for the f
e Xnp(Xg p(1) in the case of pinning an bZ'mp np(l) for the free
n

end.

It is easy to obtain from (16) well-known equation the squared norm of the
eigenfunctions with weighp(x) =1 [1] in the case of homogenous rod.

In much the same way it is possible to examineesponding tasks for longi-
tudinal vibrations of step-variable section rodteys with localized masses. In this
case the equation of longitudinal vibrations-gfart is given by



azui ) 62ui

ot2 % ox2

where u(x,t) - longitudinal displacementai2 =gFK/m, EFR,m - correspon-
dently longitudinal harshness and linear mass etgstem.

The equation for the eigenfunctions is obtainedhfaonjugation conditions at
X= Ii

Xni ) =X ();
EiF Xn,i (1) = BiwaFaa Xp ().

(17)

The characteristic of the eigenfunctions is thdofeing in concerned case
(Fig. 2)

! L 1 1 ' '
(6 - ) X Xix= S B [ —j(xn,i ()i 1)~ Xomy ()X 1)).(18)
0 =1 m My
It results from equation (18) and the conjugationditions (17) that the ei-
genfunctions are also orthogonal with weight (1&Kirig into account localized

masses.
The squared norm of the eigenfunctions is calcdlate

Ip(x)x (9ax=23 EF 0, )[l X5 )[1— ”‘j X, )( %D
ok !

i= +1

(19)

+ml X2, (h)(l‘ nr]nﬂ] + E;;%pl (XA,p(I))Z + ,%Mi Xni(s)

The equation (19) corresponds to fixing end ofrttesystem.
Penultimate member in (19) should be replaced%byﬁ,p(l) in the case of

free end.

Taking into account that the mathematical modeltéwsional vibrations to-
tally coincides with the model for longitudinal vdtions the equations (18) and
(19) are correct with substitution of hardnesseaiston (compression) on corre-
sponding hardness at torsion.

It is necessary to define the eigenfunctions, heecbnjugation conditions and
the boundary conditions for examination of natwibrations. Homogeneous sys-
tem of linear algebraic equation wigtp (2p) unknowns is obtained as a result.
The equation for determination of natural vibratfoeguency is defined if the de-
terminate of indicated system is equated to z€ro [2

The Fourier method for the eigenfunctions with weiL2) could be used for
examination of forced vibrations and applicatiorthef formula (19) simplifies this
problem.



Obtained results could be used for rough calculatreethod of dynamic of

« variable section rod system if the form of this rod
M $ section is approximated as step figure.
2% v T The task about longitudinal impact during dou-

ble-step drill column descending is examined in de-
tail as an example (fig/ 2)[6].

The boundary and initial conditions (2) take the
following forms in this case

L
)7

Mo(l,t) + EoFU’(1,t) =0; u(0t) =0. (20)
ux,0 =0, ux.0)=-v,. (21)

Here M- mass of cutter with weightM, - tackle
system massy, - descending velocity of column in
coalfacek,; =w,/a;.

Fig. 2. Calculation scheme of The weight function and the eigenfunctions
drill column have the forms:

, 0<x<l,,
p(x)={ml i .
m, + M,0(x—1), |; <x<I;

Xn,i (x) = Ah,i COSkn’iX+ Bn,i Sinkn'i X, 1=12, (22)

HereM;=0, as so as this mass is in coalfapac(2).

Given below formulas are followed from the boundanyl conjugation condi-
tions (17) for two parts of the drill column

M1=0

Ah1C0%Kn 1l + B Sinky a1y = Ay 2 COK, olp + B 58Nk, oly; 23)
E1FiKn1(=An2SiMm 111 + Bh1COK, 4l1) = ExFoky o(=Ay 2SIy 211 + By 2 €086, A1),

=~ Mt (A2 Ok ol +Br 2SNk o) + ExFoky 2(—Ah 2 2| + By 2036, 1) =0

After simplification the determinate of the homogeuns system (23) is put to
zero, then the equation for determination of tlgeefunctions and the natural fre-
quency of the drill column vibration are defined

sinA, (A ,a& cosnA , +a?sinnA ) +cosh (A EsinnA,, —acosnA,) =0; (24)

Aol
whereh, =Ap; =" 21,r]:al|2,a=\/%,§:'vl2_
ayl, ajly B Fimy myl,

Well-known special case of the homogeneous colunhns[fined from (24)
undera =1,1,=0, I, =1.




Longitudinal impact occurs under slackening of klaod-tackle system
(which don’t interact with column) for drilling rggof rotary type or spindle drills
and it is possible to puf =0, therefore

asinA,sinnA, —cosAk,cosnA, =0. (25)

Well-known frequency equation [1] is defined fro@b) for special case of
homogeneous columf =1, n=0).

The coefficientsB,,; , A, , B, , are defined from the system (23). Taking into

account that the eigenfunctions are defined aceumtconstant, it is possible to
put B, 1 = 1and the following equation is defined from thetsys (23)

(26)

A, 2 cosK,, oly + By 5 sink; 5ly =sink, qly;
= Ay 20 Sink, ol + By 0 cOSk,, 5y = cosk,, qq.

The eigenfunctions are obtained from the solutibthe system (26)

X Sinkn,lx; 0< XSll;
( ) ) A’],Z Cog(nlzx + BH,Z Sinkn,zx, Il <X< I’

where:

: Ay 1 . A8
A, =sinA,cos "1 — ~sin“ "L cos\ ;
! a, o a,

1 Aa , . Aja
B,, = C0S"1COS\,, +SinA, sin~"1,
“a a a,

and proper numbers, are defined from the system of equations (25).

Longitudinal displacements are produced as eigetifums expansion taking
into account first initial condition (21)

u(x,t) = iCan(x)sin%t. (27)
n=1

Then we should satisfy second initial condition%)(2l'he following equation is
defined by Fourier method with weight accordingtbeme

C N2 w, =V (mljsmknlxdx+ mzj(Ahzcoskn X+ B, ,sink, 2x)dx) (28)

Iy

where

=i a2 Y oo s )



the squared norm of the eigenfunctions, which d¢ated by formula (19).
Value of series coefficients (27) are calculatehfi(28)

Aq,z[Sif‘{/]galll J - Sir‘{—jgalJJ -
Volf ml(l— COSAn) + Mpha, 2 2

C,=- a
" WL 1] - B, z(co{)‘”all ] —~ co{—)l”alj]
’ ayly ay

So the stresses of the column are calculated foomula

2. E1CrKn1 €0k ixsinagt,  0< x<ly;

n=1

o(x,t) = (29)

Z EZann,Z(_Ah,Z Sinkn,zx + Bn,z COSkn,2X)SinCUht, |1 <x<l.
n=1

Calculation stresses consist of two componentsssés from motion velocity
variation g@ - (29) and stresses from sudden application ofimal weight -

o® | Maximum value of second component of the stregees not outnumber
doubled value of static stresses [1] and calculatibthem is not complicated pro-
cedure.

. . al,ma
The variation of maximum non-
. ) 0 a
dimensional stresseso; = "t 1 A AAA b,
E.v, vy v
1Vo

from nondimensional timeirzell—1t at 0,5
1
x =0 and drilling depth 200 m is pre-

sented on Fig. 3. 0 05 10 15 |
Oma Fig. 3. The variation of maximum
’ N nondimensional stressed) at drill-
4 N ing depth 200 m
\ These stresses appear at the joint drill
\ column and cutter. The parameters of the
35 I\ spindle drill column is used for the calcula-
n \ N tion.
\ It is evident from Fig. 3 that the be-
25 havior of the column stresses corresponds to

-0 5 100 15 I, m Impact processes nature.
: o The variation of total maximum dy-
Fig. 4. The distribution of the : y
. namic stresse®  _O g T 0 omax at ve-
maxmum stresse max '



locity of column descending, =2 m/sand drilling depth 200 m is presented on
Fig. 4.

Thus stressed-deformed state of double-step diilinen of drilling rig under
impact loads could be totally examined using prepodependences and permissi-
ble operative conditions could be determined.
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