| Парциальное          | Количество абсорбированного SO₂ |                        |                      |                       |                                    |  |  |
|----------------------|---------------------------------|------------------------|----------------------|-----------------------|------------------------------------|--|--|
| давление $P_{SO2}$ , | n SO <sub>2</sub> /1000         | моль SO <sub>2</sub> / | <i>m</i> NMΠ/1000    | г SO <sub>2</sub> /кг | нм <sup>3</sup> SO <sub>2</sub> /т |  |  |
| Па                   | м <sup>3</sup> газа (смеси)     | кг NMП                 | нм <sup>3</sup> газа | ΝМП                   | ΝМП                                |  |  |
| 67                   | 27,4                            | 0,049                  | 0,56                 | 3,10                  | 1,08                               |  |  |
| 133                  | 54,8                            | 0,097                  | 0,56                 | 6,21                  | 2,17                               |  |  |
| 267                  | 109,5                           | 0,194                  |                      | 12,42                 | 4,34                               |  |  |
| 400                  | 164,3                           | 0,291                  |                      | 18,64                 | 6,51                               |  |  |
| 533                  | 219,1                           | 0,388                  |                      | 24,85                 | 8,69                               |  |  |
| 667                  | 273,8                           | 0,485                  |                      | 31,07                 | 10,86                              |  |  |
| 933                  | 383,4                           | 0,680                  |                      | 43,50                 | 15,22                              |  |  |
| 1333                 | 547,7                           | 0,971                  | ]                    | 62,14                 | 21,74                              |  |  |

**Таблица 4.** Поглощение диоксида серы из дымовых газов N-метилпирролидоном при 20°C

Таким образом, содержащиеся в дымовом газе водяные пары будут незначительно ухудшать поглотительную способность предлагаемого для извлечения SO<sub>2</sub> из дымовых газов абсорбента.

Интересно отметить, что N-метилпирролидон хорошо регенерируется от  $SO_2$  при повышении температуры. При температуре выше  $100^{\circ}$ С продувкой воздухом можно удалить практически весь диоксид серы из N-метилпирролидона, и получив газ с высоким содержанием  $SO_2$  направить его на дальнейшую переработку.

Таким образом, N-метилпирролидон является весьма перспективным поглотителем кислых компонентов из отходящих газовых потоков промышленных производств.

## Литература

- 1. Коуль А.Л., Ризенфельд Ф.С. Очистка газа. М.: Изд. Недра, 1968. 532 с.
- 2. Процесс "Purisol"// Hydrocarbon Process, 1979. V. 59. N 4. Р. 117–119.
- 3. Исследование физико-химических основ процессов очистки газов от сероводорода, двуокиси углерода и других компонентов органическими поглотителями. Отчет по х/т 77-231, Донецк, 1979. 89 с.
  - 4. Крешков А.П. Основы аналитической химии. М.: Химия, 1976. 472 с.
  - 5. Богословский В.Е., Микалюк Г.И., Шамалин А.И. // ЖПХ, 1972. LVX. —С. 1154–1157.
- 6. Афанасенко Л.Д., Ярым-Агаев Н.Л., Калиниченко В.П., Куковинец Е.В. Методика создания серосодержащих газовых потоков с постоянным содержанием кислых компонентов // Наукові праці ДонНТУ. Серія: Хімія і хімічна технологія, 2008. Вип. 137. С. 105–108.
- 7. Ярым-Агаев Н.Л., Матвиенко В.Г., Поваляева Н.В. Растворимость сероводорода в N-метилпирролидоне // ЖПХ, 1980. № 11. С. 2456–2461.

© Куковинец Е.В., Калиниченко В.П., Ярым-Агаев Н.Л., Афанасенко Л.Д., Кац Г.Е., 2010

Поступила в редакцию 25.12.2009 г.

УДК 547.9+541.63+538.27

Пехтерева Т.М., Суйков С.Ю., Галат В.Ф., Папаянина Е.С., Зимцев С.П., Зернова Г.Б. (ИнФОУ им. Л.М.Литвиненко НАН Украины)

## УСТАНОВЛЕНИЕ КОНФОРМАЦИИ И ИЗОМЕРНОГО СОСТАВА 3,4-ЭПОКСИКАРАНА МЕТОДАМИ 1D И 2D ЯМР-СПЕКТРОСКОПИИ

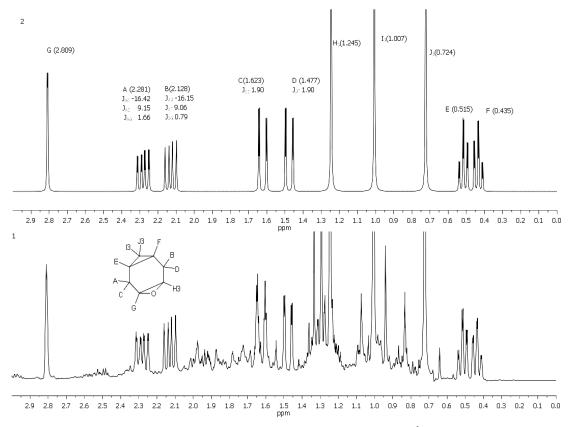
Для 3,4-эпоксикарана установлена геометрическая структура, выполнено полное отнесение сигналов в спектре <sup>1</sup>Н ЯМР, определены значения КССВ НСН, НССН, определена преимущественная конформация.

Ключевые слова: 1D и 2D спектроскопия ЯМР, 3,4-эпоксикаран, отнесение сигналов, структура, конформационный состав.

Исследование пространственного строения органических молекул приобрело исключительную важность в связи с изучением биологически значимых молекулярных и надмолекулярных структур — как природных, так и синтетических — ввиду того, что во многих случаях именно пространственная организация элементов молекулярного образования играет решающую роль в проявлении тех или иных биологических свойств.

Молекулы с напряженными циклическими структурами представляют как правило значительный прикладной интерес и сложный объект для теоретических исследований. Во многих случаях именно пространственная организация элементов молекулярного образования играет решающую роль в проявлении тех или иных биологических свойств. Как было показано в [1] установление геометрических параметров таких структур в виде решения прямой задачи в настоящее время технически невозможно. В исследованиях используется комбинация подходов прямой и обратной задачи. Наиболее широкое применение для установления пространственной структуры молекулы в растворе имеет ЯМР-спектроскопия.

Часто ключевым моментом в решении такой задачи является получение максимально возможного объема информации из спектральных данных, в частности ЯМР, молекул. В случае сложных каркасных молекул, дающих даже на высокопольных приборах сильносвязанные спектры с перекрыванием сигналов разных групп, решение ее требует привлечения различных методов и методик ЯМР и представляет довольно сложную экспериментальную задачу.


Среди каркасных карбоциклических соединений большой интерес вызывают производные терпеноидов, в частности карана [1]. Целью настоящей работы было получение максимально возможного набора ЯМР-спектральных данных для последующего использования их в исследовании структуры 3,4-эпоксикарана.

Ранее в работе [2] проводилось изучение конформации 3,4-эпоксикарана методом ЯМР-¹Н спектроскопии. Поскольку работа была выполнена на спектрометре с частотой 100 MHz ,авторам не удалось провести полный анализ спектров и полное отнесение сигналов и констант спин-спинового взаимодействия (КССВ) ¹H-¹Н с целью установления конформации 3,4-эпоксикарана в растворе. В работах [3,4] приведены ¹³С-спектральные данные для этого соединения.

ЯМР-спектральный анализ соединения 3,4-эпоксикарана выполнен нами с использованием одномерной 1D спектроскопии:  $^1$  H,  $^{13}$ C, DEPT; двумерной 2D спектроскопии: HETCOR  $^1$ H- $^{13}$ C (HSQC), COSY, NOESY. Углеродные спектры совпадают с приведенными в работах [3, 4]. Для уточнения значений КССВ  $^1$ H- $^1$ H применен расчетный метод (с использованием библиотеки fastNMR [5]) моделирования формы линии экспериментального спектра. Химические сдвиги и значения КССВ  $^1$ H- $^1$ H приведены в таблице 1 и на рисунках 1—4. Получено хорошее совпадение экспериментальных и расчетных КССВ НСН и НССН гексанового цикла. Согласованность экспериментальных и расчетных протонных спектров иллюстрирует рис. 1.

Использование метода двумерной гетероядерной корреляции HSQC позволило однозначно провести отнесение полос в протонном спектре к каждому из трех циклов молекулы 3,4-эпоксикарана. В качестве спектров гетероядерной корреляции мы применили инверсную методику HSQC(GP) с использованием импульсов магнитного поля. Привлекательной особенностью методики по сравнению с обычным HETCOR экспериментом является значительно меньшее время, что позволяет получать спектры с очень высокими значениями отношения сигнал/шум за приемлемое время (близкое ко времени накопления рутинного спектра 1D <sup>13</sup>C).

**ХИМИЯ** 



**Рис. 1.** Экспериментальный(1) и рассчитанный(2) <sup>1</sup>H-ЯМР спектры 3,4эпоксикарана в растворе CDCI<sub>3</sub> на частоте 400 МГц

**Таблица 1.** Химические сдвиги <sup>1</sup>H, <sup>13</sup>C и КССВ <sup>1</sup>H-<sup>1</sup>H в спектре 3,4-эпоксикарана



| № атома<br>углерода | δ <sub>н</sub> , м.д. <sup>б</sup> | δ <sub>н</sub> , м.д. <sup>в</sup> | δ <sub>C</sub> , м.д. <sup>б</sup> | Ј <sub>НН</sub> , Гц <sup>в</sup>                                                                                  |
|---------------------|------------------------------------|------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1                   | 0,46                               | 0,435                              | 14.3                               | $^{3}J_{1,2a}=1,90;^{3}J_{1,2e}=9,06;$                                                                             |
| 2                   | 1,48(a)<br>2,14(e)                 | 1,477(a)<br>2,128(e)               | 23.5                               | <sup>2</sup> J <sub>2,2</sub> =-16,15; <sup>4</sup> J <sub>2e,4</sub> =0,79;                                       |
| 3                   | -                                  | -                                  | 54.2                               | -                                                                                                                  |
| 4                   | 2,80                               | 2,809                              | 56.7                               | $^{3}J_{4,5e}=1,66; ^{3}J_{4,5a}=0;$                                                                               |
| 5                   | 1,63(a)<br>2,31(e)                 | 1,623(a)<br>2,281(e)               | 19.4                               | <sup>2</sup> J <sub>5,5</sub> =-16,42; <sup>3</sup> J <sub>5e,6</sub> =9,15; <sup>3</sup> J <sub>5a,6</sub> =1,90; |
| 6                   | 0,53                               | 0,515                              | 16.4                               |                                                                                                                    |
| 7                   | -                                  | -                                  | 15.6                               |                                                                                                                    |
| 8                   | 0,74                               | 0,724                              | 14.6                               |                                                                                                                    |
| 9                   | 1,02                               | 1,007                              | 27.9                               |                                                                                                                    |
| 10                  | 1,26                               | 1,245                              | 23.1                               |                                                                                                                    |

Примечание:

- а) Спектры записаны на спектрометре ЯМР фирмы «Bruker» Avance II 400 (<sup>1</sup>H 400 MHz, <sup>13</sup>C-100 MHz), в растворе CDCl<sub>3</sub>(5 % моль), температура 293 К.
- б) Химические сдвиги приведены в растворе CDCl<sub>3</sub>. в) Химические сдвиги <sup>1</sup>H и КССВ <sup>1</sup>H-<sup>1</sup>H получены анализом формы линии экспериментального спектра в растворе CDCI<sub>3</sub> с использованием библиотеки fastNMR [5].

Двумерный гомоядерной спектр COSY (рис. 3) обеспечил прямое наблюдение системы ССВ <sup>1</sup>H-<sup>1</sup>H в молекуле соединения.

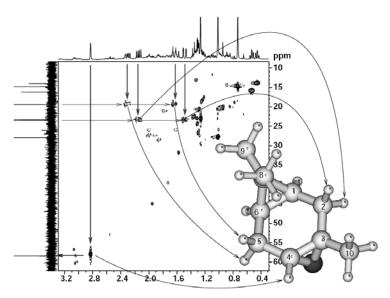



Рис. 2. ЯМР HSQC спектр 3,4-эпоксикарана в растворе CDCl<sub>3</sub> на частоте 400 МГц

Как можно видеть на рис.1, в протонном спектре значительное смещение в сильное поле претерпевают два протона с химсдвигами 0,46 и 0,53 м.д. Сделать отнесение сигналов к  $H^1$  или  $H^6$  протонам позволяет метод HSQC  $^1$ H-  $^{13}$ C (рис. 2). Провести анализ химсдвигов (а) и (е)  $H^2$ и  $H^5$  позволяет также метод гетерокорреляции. Экспериментальные и расчетные значения КССВ НСН , HCCH и HCCCH приведены в табл.1. Для протонов  $H^1$  и  $H^2$ (е) значение вицинальной КССВ НССН (9,06 Гц.) согласуется с диэдральным углом близким к нулю. Для  $H^1$  и  $H^2$ (а) (КССВ НССН 1,90 Гц.) диэдральный угол близок к 90°. То же самое мы наблюдаем для  $H^5$  (а и е) с  $H^6$ .

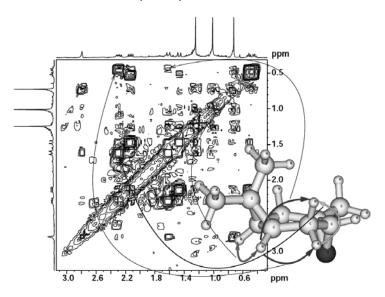



Рис. 3. ЯМР COSYDQ спектр 3,4-эпоксикарана в растворе CDCI<sub>3</sub> на частоте 400 МГц

Известно, что данное соединение может существовать в виде двух изомеров с цис- и транс-расположением трехчленных циклов. Для каждого изомера предполагаются возможными две конформации — ванны и кресла. Авторы работы [6] высказали предположение для аддукта дихлоркарбена с 3-кареном о преимущественной конформации ванны и транс-изомерном расположение трехчленных циклов. В работе [7] для 2—эпоксикарана высказано предположение о транс-расположение гемм-диметильной группы пропанового цикла и эпоксидного цикла с конформацией гексанового цикла в форме

полукресла. Однако экспериментальные значения КССВ НССН  $H^1/H^2(a,e)$  и соответственно  $H^6/H^5(a,e)$  (таблица 1) близки, что не позволяет однозначно ответить на вопрос о конформации молекулы 3,4-эпоксикарана.

В работе [1] высказано предположение о существовании данного соединения в растворе в двух формах: ванны (I) и инвертированной полуванны (II). Причем равновесие смещено в сторону формы II. В [8] высказано предположение о том, что для формы (II) КССВ  $^4$ H/ $^5$ H (a,e) будут иметь равные значения.

Полученный нами двумерный спектр NOESY (рис. 4), в котором наблюдаются кросс-пики между  $H^4$  и  $H^5$  (e) и  $CH_3(10)$  и  $H^2$ (e) свидетельствует в пользу транс-расположения малых циклов и подтверждает конформацию ванны для молекулы 3,4-эпоксикарана. Об этом свидетельствуют также наблюдаемое нами (рис.1, табл.1) в протонном спектре значимое различие КССВ НССН  $^4H/^5H(a.e)$ .

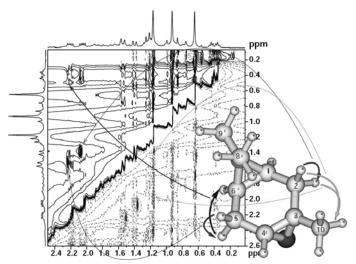



Рис.4. ЯМР NOESY спектр 3,4-эпоксикарана в растворе CDCI<sub>3</sub> на частоте 400 МГц

Необходимое для анализа геометрии моделирование было проведено в GAMESS [9].

Таким образом, в работе:

- выполнено полное отнесение сигналов в спектре <sup>1</sup>Н ЯМР
- определены значения КССВ НСН, НССН
- определена конформация молекулы 3,4-эпоксикарана.

## Литература

- 1.Ткачёв А.В. Химия возобновляемого растительного сырья: исследование терпеноидов растений Сибири и дальнего востока: дисс.... докт. хим. наук, 1996. РФ. Новосибирск, ИОХ СО РАН.
- 2. Арбузов Б.А., Самитов Ю.Ю., Бикеев Ш.С. О конфигурации и конформациях окисей бициклических терпенов на основе псевдоконтактных химических сдвигов в спектрах ПМР // ДАН СССР, 1974. Т. 216. № 3. С. 550–553.
- 3. Химические сдвиги ядер <sup>13</sup>С производных бицикло[4.1.0]гептана / Т.И. Пехк, Х.Э. Кооскора, Э.Т. Липпмаа и др. // Весці АН БССР, 1977. № 1. С. 96–103.
- 4. Coxon J.M. Carbon-<sup>13</sup>C Nuclear Magnetic Resonance Spectra of pinane monoterpenoids [Text] / J.M.Coxon , J.Hydes, P.J.Steel // J.Chem.Soc. Perkin Trans. II, 1984. № 8. P. 1351–1355.
- 5.Galat V.F. Fast NMR: A Prigh performance NMR simulation tool / V.F.Galat // Book of Abstracts: Methods and applications of computational chemistry. 2nd International symposium. Kyiv, Ukraine, 2-4 july 2007.-Kyiv-Kharkiv, 2007.-P.43- в подзаг:NAS UKRAINE, stc Institute of molekular biology and genetics NAS Ukraine.computational center of molekular structure and internationals, Jackson state university. USA, Technology park» Institute for single crystals». Ukrainian-amerycan laboratory of computational chemistry.

6. Верещагин А.Н. Синтез и строение аддуктов  $\Delta^3$ -карена с дигалоид карбенами [Текст] / А.Н.Верещагин, С.Г.Вульфсон, Б.А. Арбузов // Доклады АН СССР, 1967. — Т. 177. — № 5. — С. 1081–1083.

- 7. Исследование пространственной структуры  $\Delta^4$ -карена и его окиси [Текст] / Б.А.Арбузов [ и др.] // Изв.АН СССР, сер.хим., 1969. № 10. С. 2163–2169.
- 8. Арбузов Б.А, Самитов Ю.Ю, Аганов Л.В., Клейман Ю.Л. К вопросу о конфигурации, конформациях и температурной зависимости спектров ПМР ⊕– и ⊕-окисей △³-карена // Доклады АН СССР, 1969. Т. 184. № 2. С. 341–344.
- 9. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. J.Comput.Chem. 14, 1347-1363(1993).

© Пехтерева Т.М., Суйков С.Ю., Галат В.Ф., Папаянина Е.С., Зимиев С.П., Зернова Г.Б., 2010

Поступила в редакцию 17.02.2010 г.

УДК 621.794.42:546.56

**Даценко В. В.** (Харьковский национальный автомобильно-дорожный университет)

## ИЗУЧЕНИЕ ИОНИЗАЦИИ МЕДИ В КИСЛЫХ МЕДНОХЛОРИДНЫХ РАСТВОРАХ

Изучен механизм и кинетика процесса ионизации меди в кислых меднохлоридных растворах. Рассчитаны макрокинетические параметры реакции химического растворения меди в различных растворах. Установлена взаимосвязь между каталитическим характером процесса ионизации меди и межионными взаимодействиями в растворе.

Ключевые слова: ионизация меди, механизм, кинетика, каталитическая природа растворения.

Проблема и ее связь с научными и практическими задачами. Изучение механизма и кинетики процесса ионизации меди в кислых меднохлоридных растворах имеет значение не только с позиций развития теоретических представлений о процессе растворения меди в различных средах, но и о поведении других многовалентных металлов в аналогичных условиях. Полученные экспериментальные результаты могут способствовать совершенствованию процесса размерного травления меди и ее сплавов, созданию новых составов травильных растворов заданными характеристиками, продлению сроков службы травильных растворов за счет увеличения «емкости» ПО растворяемому металлу, разработке ресурсосберегающих способов переработки и регенерации отработанных технологических медьсодержащих растворов.

Анализ исследований и публикаций. Общепризнанный автокаталитический механизм ионизации меди, предложенный в работах [1–4], применим к разбавленным растворам меди(II) в присутствии анионов, не образующих комплексов с ионом–катализатором  $Cu^{2+}$ . Установленные ранее закономерности нельзя распространить на всю концентрационную область растворов меди, либо применить к растворам, содержащим анионы, образующие комплексы с ионами меди(I) и (II).

**Постановка задач исследования.** Цель работы заключалась в определении макрокинетических параметров реакции химического растворения меди в различных растворах и определении механизма процесса. Задачами