Лабораторная работа 72

ВЫНУЖДЕННЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ. РЕЗОНАНС В КОЛЕБАТЕЛЬНОМ КОНТУРЕ

Цель работы – построить резонансные кривые, изучить условия, при которых наблюдается резонанс напряжений, определить резонансную частоту и индуктивность колебательного контура.

Приборы и принадлежности: генератор звуковой частоты, микроамперметр, колебательный контур.

Общие положения

Чтобы вызвать вынужденные колебания в колебательном контуре, нужно включить последовательно с его элементами переменную эдс

$$\varepsilon = \varepsilon_0 \cos \Omega t \,, \tag{1}$$

где ε_0 – амплитудное значение эдс,

 Ω – частота вынуждающей эдс.

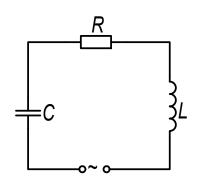


Рисунок 1

Для замкнутого контура (рис. 1) сумма падений напряжений на ёмкости и активном сопротивлении равна сумме эдс самоиндукции, возникающей в катушке, и приложенной эдс:

$$\frac{q}{C} + iR = L\frac{di}{dt} + \varepsilon_0 \cos\Omega t \tag{2}$$

Проведя математические преобразования, это уравнение можно привести к следующему виду:

$$\frac{d^2q}{dt^2} + 2\beta \frac{dq}{dt} + \omega_0^2 q = \frac{\varepsilon_0}{L} \cos\Omega t \tag{3}$$

Здесь введены следующие обозначения:

$$\frac{R}{L} = 2\beta \,, \tag{4}$$

где β – коэффициент затухания;

$$\frac{1}{LC} = \omega_0^2, \tag{5}$$

где ω_0 – собственная частота колебаний колебательного контура.

Уравнение (3) является дифференциальным уравнением вынужденных электромагнитных колебаний. При установившихся вынужденных колебаниях решение уравнения (3) имеет вид:

$$q(t) = q_0 \cos(\Omega t - \varphi) \tag{6}$$

Сила тока в колебательном контуре при установившихся колебаниях

$$i = \frac{dq}{dt} = -q_0 \Omega \sin(\Omega t - \varphi) = i_0 \cos(\Omega t - \psi), \tag{7}$$

где $i_0 = q_0 \Omega$ – амплитуда силы тока,

 $\psi = \phi - \pi/2$ – сдвиг фаз между током и приложенной эдс.

Можно показать, что амплитудное значение силы тока равно

$$i_0 = \frac{\varepsilon_0}{\sqrt{R^2 + \left(\Omega L - \frac{1}{\Omega C}\right)^2}}.$$
 (8)

Резонансом называется явление резкого возрастания амплитуды вынужденных колебаний при совпадении частоты вынуждающей эдс с собственной частотой ω_0 колебательного контура. Из формулы (9) следует, что амплитуда силы тока в колебательном контуре достигает максимального значения, если

$$\Omega L - \frac{1}{\Omega C} = 0. \tag{9}$$

Циклическая частота Ω_{pe_3} , соответствующая максимальному значению силы тока в колебательном контуре, называется резонансной. Из формулы (10):

$$\Omega_{\text{pes}} = \frac{1}{\sqrt{LC}}.$$
(10)

Сравнение формул (10) и (5) позволяет сделать вывод, что резонанс в колебательном контуре наступает при совпадении частоты вынуждающей эдс с собственной частотой колебательного контура.

Рассмотренный в работе случай резонанса называют резонансом напряжений, т. к. при этом падения напряжений U_C на ёмкости и U_L на катушке равны по величине и противоположны по знаку.

Экспериментально в работе измеряют не циклическую частоту Ω , а линейную ν . Учитывая, что $\Omega=2\pi\nu$, из формулы (11) можно получить выражение для расчёта общей индуктивности контура :

$$L = \frac{1}{4\pi^2 v_{\text{pe}_3}^2 C} \tag{11}$$

Описание экспериментальной установки

Экспериментальная установка (рис. 2) состоит из колебательного контура, набора резисторов, микроамперметра, которые размещены на монтажной панели. Колебательный контур подключается к генератору звуковых колебаний. Он служит источником переменной эдс. Активное сопротивление контура можно менять с помощью переключателя.

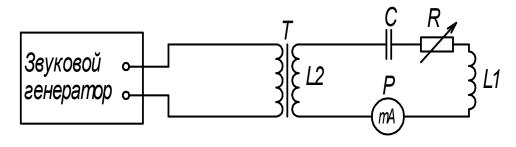


Рисунок 2

Подготовка к работе

(ответы представить в письменном виде)

- 1. Какова цель работы?
- 2. Какие величины измеряются в работе непосредственно?
- 3. Какой график надо построить по результатам эксперимента?
- 4. Запишите формулу, по которой в этой работе рассчитывается общая индуктивность контура. Поясните смысл обозначений.

Выполнение работы

- 1. Записать значения ёмкости C конденсатора и сопротивлений резисторов R_1 , R_2 , R_3 .
- 2. Подключить колебательный контур к звуковому генератору.
- 3. Включить звуковой генератор в сеть и дать ему прогреться 2-3 минуты.
- 4. Переключателем сопротивлений установить наименьшее значение сопротивления R_1 .
- 5. Ручку «усиление» генератора установить в среднее положение.
- 6. Множитель частоты генератора установить на «х1».
- 7. Вращая ручку лимба генератора найти приблизительный интервал частот, на котором ток возрастает, достигает максимального значения с последующим спадом. Если стрелка микроамперметра зашкаливает, то уменьшить усиление. Если на данном множителе максимальное значение силы тока не достигается, то перейти на множитель «х10».
- 8. Установить на лимбе генератора начальное значение частоты найденного интервала. Записать в таблицу значение частоты ν и соответствующее ему значение силы тока i.
- 9. Изменяя частоту генератора в выбранном пределе, записывать соответствующие ей показания микроамперметра, сняв 12-15 точек.
- 10. Произвести измерения согласно п.п. 8, 9 при других активных сопротивлениях (R_2 и R_3). Ручку «усиление» не трогать!

Оформление отчёта

1. Расчёты

- 1. Построить графики зависимости i = f(v) для каждого сопротивления на одних координатных осях.
- 2. Определить из графиков частоту ν_{pe3} , при которой ток достигает максимального значения (резонансную частоту).
- 3. Рассчитать общую индуктивность контура по формуле (12).

2. Защита работы

(ответы представить в письменном виде)

- 1. В чём состоит явление резонанса в колебательном контуре?
- 2. Запишите формулу, по которой рассчитывается резонансная частота колебаний в контуре.
- 3. Проанализируйте графики и сделайте вывод о том, как зависит максимальное значение силы тока от величины активного сопротивления контура.

протокол

измерений к лабораторной работе № 72

Выполнил(а)	Группа
Ёмкость конденсатора $C = $	

№	ν,	$R_1 =$	$R_2=$	$R_3=$
п/п	v, Гц	<i>i</i> ₁ , мкА	<i>i</i> ₂ , мкА	<i>i</i> ₃ , мкА
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

Дата	Подпись преподавателя	