

158

025.12

PIECEWISE-LINEAR NEURAL MODELS FOR PROCESS CONTROL

(University of Pardubice, Faculty of Electrical Engineering and Informatics, Department of Process
Control, Pardubice, Czech Republic)

INTRODUCTION

Artificial Neural Network (ANN) is a popular methodology nowadays with lots of practical and
industrial applications. Therefore, the aim of the contribution is to explain how to use ANN with
piecewise-linear activation functions in hidden layer in process control. To be more specific, there is
described technique of controlled plant linearization using ANN nonlinear model. Obtained linearized
model is in a shape of linear difference equation.
1 ANN FOR APPROXIMATION

 According to Kolmogorov's Superposition Theorem, any real continuous multidimensional
function can be evaluated by sum of real continuous one-dimensional functions [1]. If the theorem is
applied to ANN, it can be said that any real continuous multidimensional function can be approximated
by certain three-layered ANN with arbitrary precision. Topology of that ANN is depictured in Fig. 1.
Input layer brings external inputs x1, x2 xP into
ANN. Hidden layer contains S neurons, which process
sums of weighted inputs using continuous, bounded
and monotonic activation function. Output layer
contains one neuron, which processes sum of weighted
outputs from hidden neurons. Its activation function
has to be continuous and monotonic.

So ANN in Fig. 1 takes P inputs, those inputs
are processed by S neurons in hidden layer and then by
one output neuron. Dataflow between input i and
hidden neuron j is gained by weight w1

j,i. Dataflow
between hidden neuron k and output neuron is gained
by weight w2

1,k. Output of the network can be
expressed by following equations.

P

i

jiijja
1

1
,

11
 (1)

jaj yy
111 (2)

S

i

iia
1

1
21

,1
2

1
2

 (3)

1
22

ayy (4)

In equations above, 1(.) means activation functions of hidden neurons and 2(.) means output
neuron activation function.

As it is mentioned above, there are some conditions applicable for activation functions. To
satisfy those conditions, there is used mostly hyperbolic tangent activation function (eq. 5) for neurons
in hidden layer and identical activation function (eq. 6) for output neuron.

jaj yy
11 tanh (5)

1
2

ayy (6)

Mentioned theorem does not define how to set number of hidden neurons or how to tune
weights. However, there have been published many papers which are focused especially on gradient

w1
1,1

w1
S,P

w1
1

w1
2

w1
S

w2
1

w2
1,1

w2
1,S

Input

Layer

Hidden

Layer

Output

Layer

ya
1

1

ya
1

2

ya
1

S

y1
1

y1
S

ya
2

1 y2
1y1

2
w2

1,2

x2

x1

x3

xP

y

w1
1,1

w1
S,P

w1
1

w1
2

w1
S

w2
1

w2
1,1

w2
1,S

Input

Layer

Hidden

Layer

Output

Layer

ya
1

1

ya
1

2

ya
1

S

y1
1

y1
S

ya
2

1 y2
1y1

2
w2

1,2

x2

x1

x3

xP

y

Fig. 1. Three-layered ANN

159

training methods (Back-Propagation Gradient Descend Alg.) or derived methods (Levenberg-
Marquardt Alg.) [2].
2 SYSTEM IDENTIFICATION BY ANN

System identification means especially a procedure which leads to dynamic model of the
system. ANN has traditionally enjoyed considerable attention in system identification because of its
outstanding approximation qualities. There are several ways to use ANN for system identification. One
of them assumes that the system to be identified (with input u and output yS) is determined by the
following nonlinear discrete-time difference equation.

In equation above, is nonlinear function, k is discrete time and n is difference equation order.
The aim of the identification is to design ANN which approximates nonlinear function (.).

Then, neural model can be expressed by (eq. 8).

MMM

In (eq. 8), represents well trained ANN and

yM is its output. Formal scheme of neural model is
shown in Fig. 2. It is obvious that ANN in Fig. 2 has
to be trained to provide yM as close to yS as possible.
Existence of such a neural network is guaranteed by
Kolmogorov's Superposition Theorem and whole
process of neural model design is described in detail in
[2].

3 PIECEWISE-LINEAR MODEL
As mentioned in section 1, there is recommended to use hyperbolic tangent activation function

for neurons in hidden layer and identical activation function for output neuron in ANN used in neural
model. However, if linear saturated activation function (eq. 9) is used instead, ANN features stay
similar because of resembling courses of both activation functions.

 1for1

11for

1for1

1

11

1

ja

jaja

ja

y

yy

y

 (9)

The output of linear saturated activation function is either constant or equal to input so neural
model which uses ANN with linear saturated activation functions in hidden neurons acts as piecewise-
linear model. One linear submodel turns to another when any hidden neuron becomes saturated or
becomes not saturated.

Let us presume an existence of some dynamic neural model which uses ANN with linear
saturated activation functions in hidden neurons and identic activation function in output neuron. Let us
also presume m = n = 2 for making process easier. ANN output can be computed using eqs. (1), (2),
(3), (4). However, another way for ANN output computing is useful. Let us define saturation vector z
of S elements. This vector indicates saturation states of hidden neurons see (eq. 10).

1for1

11for0

1for1

1

1

1

i

i

i

y

y

y

 (10)

Then, ANN output can be expressed by (eq. 11).

 (11)

z-1

yM(k)

z-1

z-1

z-1

u(k)

z-1

yM(k)

z-1

z-1

z-1

u(k)

Fig. 2. Neural model

160

where :

S

i

iiiii

i

S

i
ii

i

S

i
ii

i

S

i
ii

i

S

i
ii

wwzzwwc

wzwb

wzwb

wzwa

wzwa

1

1
,1

2
,1

2
1

2

4,
1

1

,1
2

2

3,
1

1

,1
2

1

2,
1

1

,1
2

2

1,
1

1

,1
2

1

1

1

1

1

1

Thus, difference equation (11) defines ANN output and it is linear in some neighbourhood of
actual state (in that neighbourhood, where saturation vector z stays constant). Difference equation (11)
can be clearly extended into any order.

In other words, if it is designed neural model of any nonlinear system in form described above,
it is simple to determine parameters of linear difference equation which approximates system behaviour
in some neighbourhood of actual state. This difference equation can be used then to the actual control
action setting due to any of classical or modern control techniques.

4 EXAMPLE
Exemplary nonlinear controlled system is defined by difference equation (12).

 (12)

Firstly, system is controlled with PI controller tuned by trial and error. Control response for
defined reference wS is shown in Fig. 3. Then, piecewise-linear neural model and Pole Assignment
technique [3] are used for control (Fig. 4). Compared each other, there comes clear improvement with
piecewise-linear neural model.

5 CONCLUSIONS

Fig. 3. Control response with PI
controller

The paper is focused on usage of neural network with linear saturated activation functions in
process control. Neural model with such a neural network within is suitable for controller design using
any of huge set of classical or modern control techniques. As example, there is presented control of
nonlinear discrete plant using Pole Assignment technique. Comparison to control performance provided
by PI controller proves great improvement. The work has been supported by the funds No. MSM
6046137306 and No. MSM 0021627505 of Ministry of Education of the Czech Republic and No. MEB

Fig. 4. Control Response with Piecewise-Linear

Neural Model

161

0810003 of Ministry of Education of the Czech Republic and Ministry of Education of the Slovak
Republic.

Literatura
1.HECHT-NIELSEN, R. In: Proc 1987

IEEE International Conference on Neural Networks. Vol. 3, 1987, pp. 11-13. IEEE Press.
2.HAYKIN, S. Neural Networks: A Comprehensive Foundation. Prentice Hall. New Jersey, 1994.

ISBN 0023527617
3.HUNT, K. J., Ed. Polynomial Methods in Optimal Control and Filtering. Peter Peregrinus Ltd.

Stevenage, 1993. ISBN 0-86341-295-5.

(

- -

-

T

j s

0 ,t T

 (1)

 (2)

l s sk ,

k s ,
T

s -
T

x x s

T
y y s .

 x y

T
x x x

, (3)

x x ss y y ss

T

s . H j -

0 ,t T

* *

, 1,s i s it t

 , 1,
0

, 0,1, 2,... ,
s i lM

s isi s i l j si
l

h j b t t M , 1 0s i si (4)

