ОСОБЕННОСТИ СТРУКТУРЫ НЕПРЕРЫВНОЛИТОЙ МЕДНОЙ ЗАГОТОВКИ В ЗАВИСИМОСТИ ОТ ЕЕ ДИАМЕТРА

Кирюшкин А. А. Донецкий национальный технический университет

В настоящее время наметилась тенденция в развитии техники и технологии обработки цветных металлов по переходу от дискретных к непрерывным и совмещенным процессам литья и прокатки. Это позволяет существенно повысить производительность установок, качество продукции, обеспечить существенную экономию дорогостоящих материалов, улучшить технико-экономические показатели. Непрерывными и совмещенными процессами в мире производят 95% медной проволочной заготовки и лишь 5% методом прокатки на сортовом стане. При этом примерно половина всего объема производства рафинированной меди перерабатывается в проволочную заготовку или катанку диаметром от 8 до 20 мм для последующего производства проволоки, кабеля и других проводников тока.

Целью данной работы является изучение особенностей строения непрерывнолитых заготовок из меди марки М1 круглого сечения в зависимости от их диаметра.

Были исследованы образцы непрерывнолитых заготовок из меди марки M1 диаметром 8, 12,5, 16 и 20 мм. В ходе выполнения работы с помощью биологического микроскопа изучались макро- и микроструктуры, также при помощи него измерялись размеры зерен. Микротвердость зерен медных заготовок измерялась на микротвердомере марки ПМТ-3.

На рисунках 1 и 2 представлены макроструктуры в поперечном и продольном сечении заготовок диаметром 8 (a), 12,5 (б), 16 (в), 20 (г) соответственно.

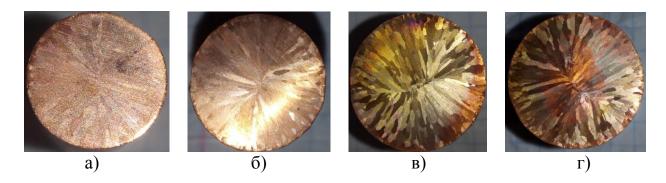


Рисунок 1 — Макроструктура в поперечном сечении заготовок диаметром 8 (a, X4,5), 12,5 (б, X3), 16 (в, X2), 20 (г, X1,5) мм

Из приведенных рисунков видно, что почти вся структура состоит из столбчатых зерен и лишь в центре образцов присутствуют мелкие зерна. Это

свидетельствует о том, что охлаждение заготовок осуществлялось быстро от краев к центру, в котором охлаждение замедлилось.

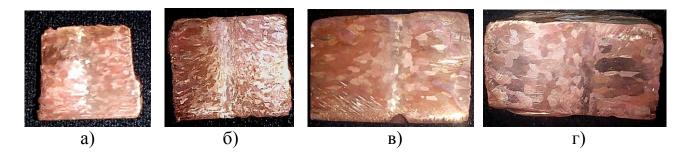


Рисунок 2 — Макроструктура в продольном сечении заготовок диаметром 8 (a, X3), 12,5 (б, X2,5), 16 (в, X2,5), 20 (г, X2,5) мм

При детальном рассмотрении можно заметить, что на некоторых образцах наблюдается смещение центра кристаллизации. Это объясняется тем, что возможно кристаллизатор имел неравномерную температуру.

Для выяснения причины такого распределения зерен в структуре были измерены размеры зерен и их микротвердость. Результаты замеров приведены в таблице 1.

Таблица 1 — Размеры зерен в продольном направлении и микротвердость (0,2 H) меди в зависимости от диаметра заготовки

Диаметры заготовки, мм	Размеры зерна, мм				Микротвердость, Н/мм ²	
	Размах значений		Среднее значение		Размах	Среднее
	Длина	Ширина	Длина	Ширина	значений	значение
8	0,3-0,5	0,2-0,4	0,4	0,3	628-598	613
12,5	0,7-1,05	0,2-0,35	0,88	0,28	644-598	621
16	1,0-1,3	0,4-0,8	1,15	0,6	613-584	598
20	2,1-3,1	0,5-0,7	2,6	0,6	598-570	584

Из таблицы видно, что с увеличением диаметра непрерывнолитых заготовок увеличивается размер зерна, а микротвердость снижается. Снижение твердости с увеличением диаметра заготовки объясняется замедлением кристаллизации в заготовках с большим сечением в сравнении с заготовками, которые имеют меньший диаметр.

Таким образом, были исследованы особенности формирования структуры в непрерывнолитых медных заготовках разного сечения, и установлено, что с увеличением диаметра заготовки увеличивается размер формируемого зерна и такие зерна имеют меньшее значение микротвердости. Также было установлено явление смещения центра кристаллизации (рис.2 в, г), что объясняется неравномерностью охлаждения медной заготовки в кристаллизаторе.