ПРОЕКТИРОВАНИЕ МУЛЬТИСЕРВИСНОЙ СЕТИ НА БАЗЕ ЦГБ №14 Г. ДОНЕЦКА

Оберемок С.О., студ.; Ямилов В.К., ст. преп.

(ГОУВПО «Донецкий национальный технический университет», г. Донецк, ДНР)

Рост популярности мультисервисных сетей связи - одна из самых заметных тенденций рынка телекоммуникационных услуг за последние годы. На сегодняшний день построение мультисервисных сетей с интеграцией различных услуг является одним из наиболее перспективных направлений развития телекоммуникационных решений. Любое современное предприятие невозможно представить без телекоммуникаций и мощных информационных сетей. Не являются исключениями и государственные учреждения, а именно сеть для медицинских учреждений.

Целью работы является предоставление высококачественных услуг работникам больниц и пациентам, за счет построения телекоммуникационной сети. Объектом проектирования выступают медицинское учреждение Петровского района города Донецка.

Для достижения поставленной цели необходимо выполнить ряд задач:

- Проанализировать телекоммуникационные потребности больницы, определить виды услуг, которые будем предоставлять;
 - Рассчитать количество абонентов и спрогнозировать нагрузки на сеть;
 - Проанализировать и выбрать технологию на базе которой будем проектировать сеть;
 - Разработать структурную функциональную схему;
 - Выбрать оборудования для реализации сети;
 - Провести анализ построенной сети.

Будущая сеть должна обеспечивать такие информационные услуги:

- -доступ к сети Интернет для работников медицинских учреждений;
- -ІР-телефония
- -доступ к серверу базы данных больных;
- видео-конференц-связь.

Анализ объекта проектирования.

В качестве объекта выступает центральная городская больница № 14 Донецка, которая расположена в центре Петровского района. Это довольно крупное трёхэтажное учреждение, состоящее приблизительно из 390 кабинетов. Больница обслуживает населения всего Петровского района (один из самых больших по площади и населению район Донецка).

В больнице № 14 города Донецка имеется терапевтическое отделение, отделение общей хирургии, а также инфекционное отделение и травматологическое отделение. ЦГКБ №14 располагает довольно неплохими диагностическими возможностями (выполняются лабораторные исследования на базе собственной лаборатории, имеется возможность произвести рентгенографию, флюорографию, УЗИ), работают квалифицированные врачи. Однако отделения больницы имеют широкий профиль и потому здесь не лечатся тяжелые и специфические патологии, больные с такой патологией отправляются в более специализированные клиники, в основном, областного значения -ИНВХ имени Гусака, ДОКТМО.

Телекоммуникационная инфраструктура представлена прямыми городскими телефонными номерами и различным компьютерным оборудованием, не объединенным в единый сетевой сегмент. Общее количество сотрудников медицинского учреждения составляет 500 человек. Больница располагает 15 городскими телефонными номерами, установленными в кабинетах врачей и регистратуре. Учреждение располагает 60 персональными компьютерами. В сеть Интернет имеют доступ 20 компьютеров. Также компьютеры должны будут иметь доступ к серверу базы данных больных.

Выбор концепции построения будущей сети.

Больница является жизненно важным учреждением и поэтому проектирование телекоммуникационной сети является необходимым для более продуктивной, организованной работы. В качестве практической ценности ожидаемых результатов работы выступает повышение эффективности работы за счет использования общих ресурсов сети. У сотрудников появляется возможность работать с информацией, которая хранится на сервере. Сеть предоставляет возможность выхода в Интернет.

Текущая кабельная инфраструктура больницы не отвечает современным требованиям и поэтому не может быть использована в дальнейшем. Она требует полной замены.

Мультисервисные сети позволяют предоставлять новые услуги для людей. В мультисервисных сетях подразумевается возможность предоставление разнородных телекоммуникационных услуг по единой инфраструктуре передачи данных.

Под понятием мультисервисной сети понимают сеть, в рамках которой передаются разнородные типы трафика (трафик реального времени и передача данных) в рамках одного физического канала. Для решения такой проблемы построим IP-сеть с доступом к Интернет и предоставлением услуг IP-телефонии. . Прежде всего это связано с конечной стоимостью внедрения IP-сети, высоким уровнем гибкости и возможность безболезненного расширения и отсутствием необходимости создания сложной кабельной инфраструктуры.

К преимуществам создания ІР-сети отнесем следующие:

- высокий уровень гибкости и возможность безболезненной реконфигурации;
- возможность подключения в любой точке;
- возможность расширения сети без высоких затрат;
- высокий уровень интеграции с современными телефонными сетями.

К недостаткам следует отнести следующие:

- стоимость телефонных аппаратов и других абонентских устройств в несколько раз превышает стоимость тех же устройств для ТфОП;
 - необходимость создания высокоскоростных магистралей;
 - решение проблемы прямого питания конечного активного абонентского оборудования.

Информационная модель сети.

Абоненты разного класса имеют разные права в сети. Для более удобного восприятия следует разработать информационную модель, в которой надо привести услуги, предоставляемые в сети.

Для разработки информационной модели перечислим услуги, которые будут представлены в сети:

- -доступ к сети Интернет для работников медицинских учреждений;
- -ІР-телефония
- -доступ к серверу базы данных больных;
- видео-конференц-связь.

На основании определенных типов услуг, можно выделить несколько абонентских категорий с соответствующим набором услуг. Перечень категорий и услуг приведены в таблице 1. Выполнен анализ существующей структуры телекоммуникационной сети больницы. Определена актуальность создания новой сети. Проведенный анализ абонентского состава и его количества, а также разработана информационная модель с соответствующим набором услуг. Как говорилось ранее, общее количество сотрудников больницы составляет 500 человек. Конечно же не все имеют доступ к телекоммуникационным услугам. В таблице 2 представлена характеристика телекоммуникационной инфраструктуры больницы.

Таблица 1 – Перечень категорий и услуг

No	Название категории	Состав категории	Типы услуг	
1	Категория №1	Руководство	-телефония	
		больницы,	-доступ к сети Интернет;	
		сотрудники	-доступ к серверу базы данных больных	
		регистратуры	и регистратуры;	
			- видео-конференц-связь.	
2	Категория №2	Врачи и	-доступ к сети Интернет;	
		медицинский	-доступ к серверу базы данных больных	
		персонал	и регистратуры;	
			-телефония	
3	Категория №3	Технический и	- телефония.	
		обслуживающий		
		персонал		

Таблица 2 – Характеристика телекоммуникационной инфраструктуры

No	Наименование	Количество	
1	Общее количество сотрудников	500	
2	Количество абонентов телефонной связи	120	
3	Количество пользователей сети Интернет	390	
4	Количество пользователей базой данных	400	
5	Количество пользователей имеющий	200	
	доступ к видео-конференц-связи		

Как видно из таблицы, общее количество абонентов телефонной связи 120 человек.

В основе данной методики расчета трафика лежат вероятностные характеристики потоков данных, генерируемых различными сетевыми приложениями.

Для использования этой методики необходима следующая информация:

- примерная структура сети;
- количество абонентов в каждом узле сети;
- распределение абонентов по различным классам обслуживания;
- перечень предоставляемых сетевых услуг;
- характеристики услуг.

Расчет трафика представлен в таблице 4.

Таблица 4 – Расчёты трафика в узлах

Услуга Узел	Узел А	Узел В	Узел С			
1	2	3	4			
Интернет	46,6 мбит/с	33,3 мбит/с	38,33 мбит/с			
IР-телефония +ТфОП	0,6 мбит/с	0,2 мбит/с	0,2 мбит/с			
База данных	12,2 мбит/с	8,7 мбит/с	6,94 мбит/с			
Видео-конфсвязь	5 мбит/с	2,5 мбит/с	2,5 мбит/с			
∑ Внутрений	40,64 мбит/с	27,82 мбит/с	29,78 мбит/с			
∑ Внешний	23,76 мбит/с	16,88 мбит/с	18,18 мбит/с			
∑ Трафик= 157 мбит/с						

Структурная схема сети.

- FTP-сервер будет использоваться как база данных больных.
- VoIP-сервер для IP-телефонии сотрудников с выходом в ТфОП.
- Сервер ВКС будет использоваться для видео-конференц-связи.
- Центральный коммутатор будет установлен на 1 этаже в больнице. Коммутаторы распределения будут подняты на этаж. Коммутаторы доступа разведены по этажам.

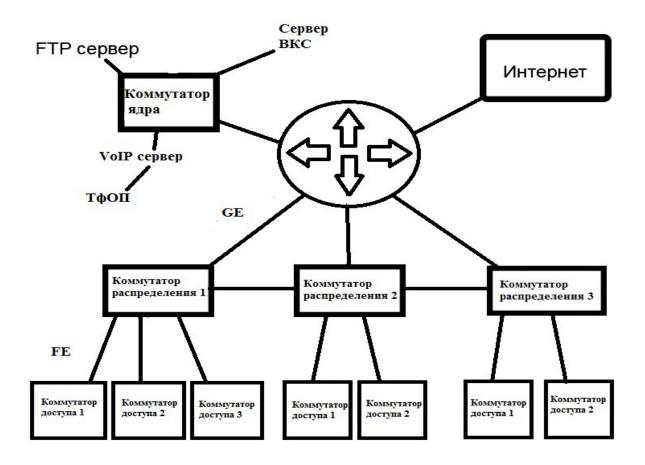


Рисунок 1 – Структурная схема сети

Выводы. В данной статье выполнен анализ существующей структуры телекоммуникационной сети больницы. Определена актуальность создания новой сети. Проведенный анализ абонентского состава и его количества, а также разработана информационная модель с соответствующим набором услуг.

Перечень ссылок

- 1. Компьютерные сети. Таненбаум Э. 4-е изд. СПб.: 2003. 992 с.
- 2. Компьютерные сети. Принципы, технологии, протоколы. В.Г. Олифер, Н.А. Олифер. 4-е изд. СПб.: 2010. 944 с.
 - 3. Основы телетрафика мультисервисных сетей. Степанов С.Н.2010.-392 с.