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ON Γ-CONVERGENCE OF INTEGRAL FUNCTIONALS DEFINED
ON VARIOUS WEIGHTED SOBOLEV SPACES

O. A. Rudakova UDC 517.9

We consider weighted Sobolev spaces correlated with a sequence of n-dimensional domains. We prove
a theorem on the choice of a subsequence Γ-convergent to an integral functional defined on a “limit”
weighted Sobolev space from a sequence of integral functionals defined on the spaces indicated.

1. Introduction

The Γ-convergence is a special convergence of functionals accompanied in many important cases by the
convergence of solutions of the corresponding variational problems. For functionals with common domain of
definition, the notion of Γ-convergence was introduced in [1], where, for the first time, the general properties
of this convergence were described and its applications to variational problems were described. Problems of Γ-
convergence of integral functionals with common domain of definition were studied in works of many Italian
mathematicians (see, e.g., [2–4] and the bibliography in [3, 4]). These problems were also considered by Zhikov
in [5–8]. The main results of these investigations are theorems on Γ-compactness for sequences of functionals of
variational calculus and the integral representation of their Γ-limits.

For functionals with different domains of definition, including integral functionals, the notion of Γ-conver-
gence was studied, e.g., in [9–16]. In these works, the functionals were defined on nonweighted Sobolev spaces.

In the present paper, we consider weighted Sobolev spaces correlated with a sequence of n-dimensional do-
mains and integral functionals defined on these spaces. The condition that characterizes the behavior of the La-
grangians of these functionals [see condition (8) below] contains the weight function ν and a certain, generally
speaking, unbounded sequence of functions ψs. The main result of the present paper (Theorem 2) gives sufficient
conditions for the weight ν and a function that, in a certain sense, majorizes the sequence {ψs} for which there
exists a subsequence of the considered sequence of integral functionals that Γ-converges to an integral functional
defined on a certain “limit” weighted Sobolev space. In the proof of this theorem, we use some ideas of [8, 14, 17,
18]. Note that one of the essential elements of the proof (as, e.g., in [14]) is the use of special local characteristics
of the functionals under investigation. In the nonweighted case, analogous characteristics and related conditions for
the convergence of the points of minimum of the corresponding integral functionals defined on different Sobolev
spaces were studied by Khruslov [18, 19] and other authors (see, e.g., [12–14, 20, 21]).

Prior to the formulation of the result concerning Γ-compactness, we consider a general theorem on conditions
for the convergence of solutions of variational problems for functionals defined on different weighted Sobolev
spaces. In addition to the Γ-convergence of functionals, one of these conditions is the strong correlation of the
considered spaces. In general, the notion of the strong correlation of a sequence of Sobolev spaces (or, in a differ-
ent terminology, the corresponding n-dimensional domains) plays an important role in problems of averaging of
boundary-value and variational problems in domains of complex structure (see [18], where this notion was intro-
duced, and [8–13, 20, 22, 23]). The strong correlation of the spaces used in the investigation of the convergence
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of solutions of boundary-value and variational problems in “variable” (e.g., strongly perforated) domains enables
one to pass from a sequence of solutions each of which is contained in its “own” space to a bounded sequence in
a certain common space. This is the first step to the selection of a certain limit element of the original sequence
and the subsequent proof of the statement that this element is a solution of the corresponding averaged problem.
Furthermore, the strong correlation of Sobolev spaces, along with other properties of a sequence of n-dimensional
domains correlated with these spaces, leads to the coercivity of Γ-limit functionals or the coercivity and monotonic-
ity of G-limit operators for the corresponding mappings defined on these spaces (for details, see, e.g., [10, 22]).
The notion of the strong correlation of weighted Sobolev spaces used in the present paper was fairly thoroughly
studied in [24].

It should be noted that the available results of other authors concerning the Γ-convergence of integral func-
tionals defined on weighted Sobolev spaces and, on the whole, the averaging of variational and boundary-value
problems with degeneration deal either with functionals and operators with common domain of definition (see,
e.g., [17, 25, 26]) or with operators of Dirichlet problems in perforated domains [27–29]. In the latter case, e.g.,
the notion of the strong correlation of the sequence of corresponding weighted Sobolev spaces is not required be-
cause this correlation is realized “automatically.” On the contrary, the “variable” weighted spaces considered in the
present paper are aimed at variational problems of the “Neumann” type. For the investigation of the convergence
of solutions of these problems, the requirement of the strong correlation of these spaces is essential.

The present paper is organized as follows: In Sec. 2, we consider the weighted Lebesgue and Sobolev spaces
used in what follows. Necessary definitions and a general theorem on the convergence of solutions of variational
problems for functionals defined on the considered (“variable”) weighted Sobolev spaces are given in Sec. 3. The
main result of the paper (a theorem on Γ-compactness for integral functions) is given in Sec. 4. Note that this result
(without proof) was announced in [30].

2. Functional Spaces

Let n ∈ N, n ≥ 2, let Ω be a bounded domain in Rn, and let p ∈ (1, n). Assume that ν is a nonnegative
function on Ω, ν > 0 almost everywhere in Ω, and

ν ∈ L1
loc(Ω),

(
1
ν

)1/(p−1)

∈ L1
loc(Ω). (1)

By Lp(ν,Ω) we denote the set of all measurable functions u : Ω → R such that the function ν|u|p is
summable on Ω. Let Lp(ν,Ω) be a Banach space with the norm

‖u‖Lp(ν,Ω) =

⎛
⎝ ∫

Ω

ν|u|pdx

⎞
⎠1/p

.

By virtue of the Young inequality and the second inclusion in (1), we get Lp(ν,Ω) ⊂ L1
loc(Ω). Let W 1,p(ν,Ω)

denote the set of all functions u ∈ Lp(ν,Ω) such that, for any i ∈ {1, . . . , n}, there exists a generalized derivative
Diu, Diu ∈ Lp(ν,Ω). Let W 1,p(ν,Ω) be a reflexive Banach space with the norm

‖u‖1,p,ν =

⎛
⎝ ∫

Ω

ν|u|pdx +
n∑

i=1

∫
Ω

ν|Diu|pdx

⎞
⎠1/p

.
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The completeness of the space W 1,p(ν,Ω) is established by using the second inclusion in (1). The reflexivity
of this space follows from its uniform convexity, which is proved by using the Clarkson inequalities (for these
inequalities, see, e.g., [31]).

By virtue of the first inclusion in (1), we have C∞
0 (Ω) ⊂ W 1,p(ν,Ω). Denote the closure of the set of functions

C∞
0 (Ω) in W 1,p(ν,Ω) by

◦
W 1,p(ν,Ω). Let

◦
W 1,p(ν,Ω) be a reflexive Banach space with the norm induced from

the space W 1,p(ν,Ω).
Further, let {Ωs} be a sequence of domains in Rn contained in Ω.

By analogy with the spaces introduced above, we define functional spaces corresponding to the domains Ωs.

Let s ∈ N. Denote the space of all measurable functions u : Ωs → R such that the function ν|u|p is
summable on Ωs by Lp(ν,Ωs). Let Lp(ν,Ωs) be a Banach space with the norm

‖u‖Lp(ν,Ωs) =

⎛
⎝ ∫

Ωs

ν|u|pdx

⎞
⎠1/p

.

By virtue of the second inclusion in (1), we have Lp(ν,Ωs) ⊂ L1
loc(Ωs). By W 1,p(ν,Ωs) we denote the set

of all functions u ∈ Lp(ν,Ωs) such that, for any i ∈ {1, . . . , n}, there exists a generalized derivative Diu,

Diu ∈ Lp(ν,Ωs). Let W 1,p(ν,Ωs) be a Banach space with the norm

‖u‖1,p,ν,s =

⎛
⎝ ∫

Ωs

ν|u|pdx +
n∑

i=1

∫
Ωs

ν|Diu|pdx

⎞
⎠1/p

.

Denote the set of all restrictions of functions from C∞
0 (Ω) to Ωs by C̃∞

0 (Ωs). By virtue of the first inclusion in
(1), we have C̃∞

0 (Ωs) ⊂ W 1,p(ν,Ωs). Let W̃ 1,p
0 (ν,Ωs) denote the closure of the set C̃∞

0 (Ωs) in W 1,p(ν,Ωs).

Note that if u ∈
◦

W 1,p(ν,Ω) and s ∈ N, then u|Ωs ∈ W̃ 1,p
0 (ν,Ωs).

3. Main Definitions and General Theorem on Convergence of Solutions of Variational Problems

We introduce the following notation: If s ∈ N, then qs is a mapping of
◦

W 1,p(ν,Ω) into W̃ 1,p
0 (ν,Ωs) such

that qsu = u|Ωs for any function u ∈
◦

W 1,p(ν,Ω).

Definition 1. We say that a sequence of spaces W̃ 1,p
0 (ν, Ωs) is strongly correlated with the space

◦
W 1,p(ν,Ω)

if there exists a sequence of linear continuous operators ls : W̃ 1,p
0 (ν,Ωs) →

◦
W 1,p(ν,Ω) such that

sup
s∈N

‖ls‖ < +∞

and qs(lsu) = u almost everywhere on Ωs for any s ∈ N and u ∈ W̃ 1,p
0 (ν, Ωs).

Proposition 1. Suppose that the imbedding of
◦

W 1,p(ν,Ω) into Lp(ν,Ω) is compact and the sequence of

spaces W̃ 1,p
0 (ν,Ωs) is strongly correlated with the space

◦
W 1,p(ν,Ω). Also assume that us ∈ W̃ 1,p

0 (ν,Ωs) for
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any s ∈ N, and, furthermore, the sequence of norms ‖us‖1,p,ν,s is bounded. Then there exist an increasing

sequence {sj} ⊂ N and a function u ∈
◦

W 1,p(ν, Ω) such that

lim
j→∞

‖usj − qsju‖Lp(ν,Ωsj ) = 0.

The proof of this proposition was given in [24].

Definition 2. Assume that, for any s ∈ N, Is is a functional on W̃ 1,p
0 (ν,Ωs), and I is a functional on

◦
W 1,p(ν,Ω). We say that the sequence {Is} Γ-converges to the functional I if the following conditions are satis-
fied:

(i) for any function u ∈
◦

W 1,p(ν,Ω), there exists a sequence ws ∈ W̃ 1,p
0 (ν, Ωs) such that

lim
s→∞ ‖ws − qsu‖Lp(ν,Ωs) = 0 and lim

s→∞ Is(ws) = I(u);

(ii) for any function u ∈
◦

W 1,p(ν,Ω) and any sequence us ∈ W̃ 1,p
0 (ν,Ωs) such that

lim
s→∞ ‖us − qsu‖Lp(ν,Ωs) = 0,

the following relation is true:

lim inf
s→∞ Is(us) ≥ I(u).

Theorem 1. Suppose that the imbedding of
◦

W 1,p(ν,Ω) into Lp(ν,Ω) is compact and the sequence of spaces

W̃ 1,p
0 (ν,Ωs) is strongly correlated with the space

◦
W 1,p(ν,Ω). Assume that, for any s ∈ N, Is is a functional

on W̃ 1,p
0 (ν,Ωs), I is a functional on

◦
W 1,p(ν,Ω), and the sequence {Is} Γ-converges to the functional I. Also

assume that the function us minimizes the functional Is on W̃ 1,p
0 (ν, Ωs) for any s ∈ N, and, furthermore, the

sequence of norms ‖us‖1,p,ν,s is bounded. Then there exist an increasing sequence {sj} ⊂ N and a function

u ∈
◦

W 1,p(ν,Ω) such that the function u minimizes the functional I on
◦

W 1,p(ν, Ω),

lim
j→∞

‖usj − qsju‖Lp(ν,Ωsj ) = 0,

and

lim
j→∞

Isj (usj ) = I(u).

Proof. By virtue of Proposition 1, there exist an increasing sequence {sj} ⊂ N and a function u ∈
◦

W 1,p(ν,Ω) such that

lim
j→∞

‖usj − qsju‖Lp(ν,Ωsj ) = 0.
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Then, by virtue of the Γ-convergence of the sequence {Is} to the functional I, we have

lim inf
j→∞

Isj (usj ) ≥ I(u). (2)

Now let w ∈
◦

W 1,p(ν,Ω). Since the sequence {Is} Γ-converges to the functional I, there exists a sequence
ws ∈ W̃ 1,p

0 (ν,Ωs) such that

lim
s→∞ Is(ws) = I(w).

Using this result and the fact that, for any s ∈ N, the function us minimizes the functional Is on W̃ 1,p
0 (ν,Ωs),

we get

lim sup
j→∞

Isj (usj ) ≤ I(w). (3)

It follows from (2) and (3) that the function u minimizes the functional I on
◦

W 1,p(ν,Ω). Furthermore, setting
w = u in (3), we deduce the following relation from (3) and (2):

lim
j→∞

Isj (usj ) = I(u).

The theorem is proved.

Note that, in the nonweighted case, results analogous to Theorem 1 were obtained in [10, 11, 14].
We now make several remarks on the conditions of Theorem 1. For the compactness of the imbedding of the

space
◦

W 1,p(ν,Ω) into the space Lp(ν,Ω), the following statements are true:

Proposition 2. Suppose that t ≥ 1/(p − 1), t > n/p, t1 > nt/(tp − n), and 1/ν ∈ Lt(Ω), ν ∈ Lt1(Ω).

Then the imbedding of
◦

W 1,p(ν,Ω) into Lp(ν,Ω) is compact.

Proposition 3. Suppose that the function ν is the restriction of a certain function of the Muckenhoupt class

Ap to Ω. Then the imbedding of
◦

W 1,p(ν,Ω) into Lp(ν,Ω) is compact.

The detailed proof of these propositions was given in [24]. Note that, for weight functions satisfying conditions
similar to those in Proposition 2, imbeddings of weighted Sobolev spaces into nonweighted and weighted Lebesgue
spaces were considered, e.g., in [17, 32–35]. For the definition of the Muckenhoupt class Ap, see [36]. Represen-
tatives of this class are, e.g., functions of the form w(x) = |x|γ , x ∈ Rn \ {0}, where γ ∈ (−n, n(p − 1)).

The strong correlation of the sequence of spaces W̃ 1,p
0 (ν,Ωs) with the space

◦
W 1,p(ν,Ω) takes place, e.g.,

in the case of a special perforated structure of the domains Ωs and a certain behavior of the function ν in the
neighborhoods of “holes” (for details, see [24]). One of the main conditions of Theorem 1 is the Γ-convergence
of functionals. From the viewpoint of applications, of major interest is the investigation of the Γ-convergence of
integral functionals. The Γ-convergence of these functionals can be proved and an efficient representation for the
Lagrangian of the corresponding Γ-limit can be obtained, e.g., in the case of periodicity of the Lagrangians of the
original functionals with respect to the space variable or in the case of periodicity of the structure of the domains
Ωs (see, e.g., [6, 8, 12] for integral functionals defined on nonweighted Sobolev spaces). In the general case, of
special interest are theorems on Γ-compactness. Finally, the condition of Theorem 1 concerning the boundedness
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of the sequence of norms of minimizers of the functionals Is is satisfied if, e.g., the sequence {Is(0)} is bounded
and, for any s ∈ N and u ∈ W̃ 1,p

0 (ν,Ωs), one has Is(u) ≥ Φ(‖u‖1,p,ν,s), where Φ: [0,+∞) → R and
Φ(r) → +∞ as r → +∞. For integral functionals, these requirements are satisfied if their Lagrangians satisfy
the corresponding growth and coercivity conditions.

4. Theorem on Γ-Compactness for Integral Functionals

Let b ∈ L1(Ω), let b ≥ 0 in Ω, and let {ψs} be a sequence of functions that satisfy the following conditions:

(i) ψs ∈ L1(Ωs) and ψs ≥ 0 in Ωs for any s ∈ N;

(ii) for any open cube Q ⊂ Rn, one has

lim sup
s→∞

∫
Q∩Ωs

ψsdx ≤
∫

Q∩Ω

bdx.

Let c1, c2 > 0 and let fs : Ωs × Rn → R, s ∈ N, be a sequence of functions satisfying the following
conditions:

(iii) for any s ∈ N and ξ ∈ Rn, the function fs(·, ξ) is measurable on Ωs;

(iv) for any s ∈ N and almost all x ∈ Ωs, the function fs(x, ·) is convex on Rn;

(v) for any s ∈ N, almost all x ∈ Ωs, and any ξ ∈ Rn, one has

c1ν(x)|ξ|p − ψs(x) ≤ fs(x, ξ) ≤ c2ν(x)|ξ|p + ψs(x). (4)

By virtue of conditions (iv) and (v), the function fs(x, ·) is continuous on Rn for any s ∈ N and almost all
x ∈ Ωs. This and condition (iii) imply that the function fs satisfies the Carathéodory conditions for any s ∈ N.

Then, by virtue of condition (v), the function fs(x,∇u) is summable on Ωs for any s ∈ N and u ∈ W 1,p(ν, Ωs).
We introduce the following notation: If s ∈ N, then Js is a functional on W̃ 1,p

0 (ν,Ωs) such that, for any
function u ∈ W̃ 1,p

0 (ν,Ωs), one has

Js(u) =
∫
Ωs

fs(x,∇u)dx. (5)

Let F denote the set of all functions f : Ω × Rn → R satisfying the following conditions: The function
f(·, ξ) is measurable on Ω for any ξ ∈ Rn, the function f(x, ·) is convex on Rn for almost all x ∈ Ω, and
−b(x) ≤ f(x, ξ) ≤ c2ν(x)|ξ|p + b(x) for almost all x ∈ Ω and any ξ ∈ Rn.

It is easy to see that the function f(x,∇u) is measurable on Ω for any f ∈ F and u ∈
◦

W 1,p(ν, Ω).

Finally, we introduce the following definition: If f ∈ F , then Jf is a functional on
◦

W 1,p(ν,Ω) such that,

for any function u ∈
◦

W 1,p(ν,Ω), one has

Jf (u) =
∫
Ω

f(x,∇u)dx. (6)
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Theorem 2. Suppose that there exists a sequence of nonempty open sets Ω(k) in Rn such that the following
conditions are satisfied:

(a) Ω(k) ⊂ Ω(k+1) ⊂ Ω for any k ∈ N;

(b) lim
k→∞

meas
(
Ω \ Ω(k)

)
= 0;

(c) the functions ν and b are bounded on Ω(k) for any k ∈ N.

Then there exist an increasing sequence {sj} ⊂ N and a function f ∈ F such that the sequence {Jsj}
Γ-converges to the functional Jf .

Proof. We prove the theorem in several steps. First of all, we briefly describe them. In Step 1, we introduce
some local characteristics of the functionals Js and establish their properties necessary for what follows. The next
four steps of the proof contain constructions necessary for the transition from the indicated local characteristics to
limit functions used for the definition of a certain function f ∈ F . In Steps 6 and 7, we establish a very important
limit relation for the function f. In the next four steps, we prove the Γ-convergence of a certain subsequence of
the sequence {Js} to the functional Jf . Using the results obtained in the previous steps, we establish the corre-
sponding properties from the definition of Γ-convergence first for functions from C∞

0 (Ω) and then for functions

from
◦

W 1,p(ν,Ω).
We now pass to the exposition of these steps of the proof of the theorem.

Step 1. Let us introduce some local characteristics of the functionals Js. We set

Qt(y) =
{
x ∈ Rn : |xi − yi| < 1/(2t), i = 1, . . . , n

}
for any y ∈ Rn and t ∈ N

and

Yt =
{
y ∈ Rn : tyi ∈ Z, i = 1, . . . , n

}
for any t ∈ N.

Note that

∀t ∈ N :
⋃

y∈Yt

Qt(y) = Rn

and

∀t ∈ N, ∀y, y′ ∈ Yt, y �= y′ : Qt(y) ∩ Qt(y′) = ∅.

Further, for any t ∈ N, we set Y ′
t =

{
y ∈ Yt : Qt(y) ⊂ Ω

}
. It is clear that there exists t0 ∈ N such that the

set Y ′
t is not empty for any t ∈ N, t ≥ t0.

For any t ∈ N, t ≥ t0, s ∈ N, and y ∈ Y ′
t , we set

Vt,s(y) =

⎧⎪⎨
⎪⎩u ∈ W̃ 1,p

0 (ν,Ωs) :
∫

Qt(y)∩Ωs

ν|u|pdx ≤ t−n−3p

⎫⎪⎬
⎪⎭ . (7)
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For any t ∈ N, t ≥ t0, s ∈ N, y ∈ Y ′
t , and ξ ∈ Rn, we now set

Ft,s(y, ξ) = tn inf
u∈Vt,s(y)

∫
Qt(y)∩Ωs

fs(x, ξ + ∇u)dx. (8)

The numbers Ft,s(y, ξ) are specific local characteristics of the functionals Js.

By virtue of condition (v), for any t ∈ N, t ≥ t0, s ∈ N, y ∈ Y ′
t , and ξ ∈ Rn we have

−tn
∫

Qt(y)∩Ωs

ψsdx ≤ Ft,s(y, ξ) ≤ c2|ξ|ptn
∫

Qt(y)∩Ωs

νdx + tn
∫

Qt(y)∩Ωs

ψsdx. (9)

Moreover, the following assertions are true:

(∗1) if t ∈ N, t ≥ t0, s ∈ N, y ∈ Y ′
t , ξ, ξ′ ∈ Rn, and τ ∈ [0, 1], then

Ft,s

(
y, (1 − τ)ξ + τξ′

) ≤ (1 − τ)Ft,s(y, ξ) + τFt,s(y, ξ′);

(∗2) if t ∈ N, t ≥ t0, s ∈ N, y ∈ Y ′
t , and ξ, ξ′ ∈ Rn, then

∣∣Ft,s(y, ξ) − Ft,s(y, ξ′)
∣∣

≤ 2pc2

(
1 + |ξ| + |ξ′|)p−1 |ξ − ξ′|tn

∫
Qt(y)∩Ωs

νdx + 2|ξ − ξ′|tn
∫

Qt(y)∩Ωs

ψsdx.

Assertion (∗1) is a corollary of condition (iv). It is proved by analogy with the proof of Lemma 1 in [14].
Assertion (∗2) follows from relation (9) and assertion (∗1).

Step 2. Using condition (ii), estimate (9), and assertion (∗2), we establish that there exist an increasing
sequence {sj} ⊂ N and a sequence of functions Φt : Rn × Rn → R such that, for any t ∈ N, t ≥ t0, y ∈ Y ′

t ,

and ξ ∈ Rn, one has

lim
j→∞

Ft,sj (y, ξ) = Φt(y, ξ). (10)

By virtue of condition (ii), estimate (9), and relation (10), for any t ∈ N, t ≥ t0, y ∈ Y ′
t , and ξ ∈ Rn we

get

−tn
∫

Qt(y)

bdx ≤ Φt (y, ξ) ≤ c2|ξ|ptn
∫

Qt(y)

νdx + tn
∫

Qt(y)

bdx. (11)

Furthermore, it follows from assertion (∗1) and relation (10) that, for any t ∈ N, t ≥ t0, y ∈ Y ′
t , ξ, ξ′ ∈ Rn,

and τ ∈ [0, 1], one has

Φt(y, (1 − τ)ξ + τξ′) ≤ (1 − τ)Φt(y, ξ) + τΦt(y, ξ′). (12)

Step 3. For any t ∈ N and y ∈ Ω such that Qt(y) ⊂ Ω, let χt,y : Ω → R be the characteristic function of
the set Qt(y).
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For any k, t ∈ N, we set Yk,t = {y ∈ Yt : Qt(y) ⊂ Ω(k)}.
We introduce the following definition: If k, t ∈ N and Yk,t �= ∅, then H

(k)
t is a function on Ω × Rn such

that, for any pair (x, ξ) ∈ Ω × Rn, one has

H
(k)
t (x, ξ) =

∑
y∈Yk,t

χt,y(x)Φt(y, ξ),

and if k, t ∈ N and Yk,t = ∅, then H
(k)
t is a function on Ω × Rn such that, for any pair (x, ξ) ∈ Ω × Rn, one

has

H
(k)
t (x, ξ) = 0.

Further, for any k ∈ N, we set

nk = sup
x∈Ω(k)

ν(x) and mk = sup
x∈Ω(k)

b(x).

By virtue of condition (c), we have nk, mk ∈ [0, +∞) for any k ∈ N.

It is easy to see that, for any k, t ∈ N and ξ ∈ Rn, the function H
(k)
t (·, ξ) is measurable on Ω. Furthermore,

by virtue of estimate (11), for any k ∈ N, t ∈ N, t ≥ t0, x ∈ Ω, and ξ ∈ Rn we have

−mk ≤ H
(k)
t (x, ξ) ≤ c2|ξ|pnk + mk. (13)

This and relation (12) yield the following inequality for any k ∈ N, t ∈ N, t ≥ t0, x ∈ Ω, and ξ, ξ′ ∈ Rn :

∣∣H(k)
t (x, ξ) − H

(k)
t (x, ξ′)

∣∣ ≤ 2pc2nk(1 + |ξ| + |ξ′|)p−1|ξ − ξ′| + 2mk|ξ − ξ′|. (14)

Step 4. Let Qn denote the set of all elements of Rn with rational coordinates. Using estimate (13), we
establish that there exist an increasing sequence {ti} ⊂ N and functions h

(k)
ξ ∈ L2(Ω), k ∈ N, ξ ∈ Qn, such

that, for any k ∈ N and ξ ∈ Qn, one has

H
(k)
ti

(·, ξ) → h
(k)
ξ weakly in L2(Ω). (15)

Let E denote the intersection of the sets of Lebesgue points of the functions ν, b, and h
(k)
ξ , k ∈ N, ξ ∈ Qn.

Note that meas E = meas Ω.

For any k ∈ N, ξ ∈ Qn, and z ∈ E, we have

−b(z) ≤ h
(k)
ξ (z) ≤ c2ν(z)|ξ|p + b(z). (16)

Indeed, let k ∈ N, ξ ∈ Qn, and z ∈ E. We fix τ0 ∈ N such that Qτ0(z) ⊂ Ω. Now assume that τ ∈ N

and τ > τ0. By virtue of (15), we get

lim
i→∞

∫
Qτ (z)

H
(k)
ti

(·, ξ)dx =
∫

Qτ (z)

h
(k)
ξ dx. (17)
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Assume that t ∈ N and t ≥ max{t0, 2τ2}. Let Yk,t �= ∅. We set Y = {y ∈ Yk,t : Qt(y) ∩ Qτ (z) �= ∅} and

assume that Y �= ∅. By the definition of the function H
(k)
t , we have

∫
Qτ (z)

H
(k)
t (·, ξ)dx =

∑
y∈Y

∫
Qt(y)∩Qτ (z)

H
(k)
t (·, ξ)dx =

∑
y∈Y

Φt(y, ξ) meas
[
Qt(y) ∩ Qτ (z)

]
.

Using estimate (11) and the fact that Qt(y) ⊂ Qτ−1(z) for any y ∈ Y, we obtain

−
∫

Qτ−1(z)

bdx ≤
∫

Qτ (z)

H
(k)
t (·, ξ)dx ≤ c2|ξ|p

∫
Qτ−1(z)

νdx +
∫

Qτ−1(z)

bdx. (18)

It is easy to see that this inequality is also true if Y = ∅, as well as in the case where Yk,t = ∅. By virtue of (17)
and (18), we get

−τn

∫
Qτ−1(z)

bdx ≤ τn

∫
Qτ (z)

h
(k)
ξ dx ≤ c2|ξ|pτn

∫
Qτ−1(z)

νdx + τn

∫
Qτ−1(z)

bdx.

Passing to the limit as τ → ∞, we obtain inequality (16).

By analogy, using (15), (11), and (12), we establish that the following relation holds for any k ∈ N, ξ, ξ′ ∈
Qn, and z ∈ E :

∣∣∣h(k)
ξ (z) − h

(k)
ξ′ (z)

∣∣∣ ≤ 2pc2ν(z)(1 + |ξ| + |ξ′|)p−1|ξ − ξ′| + 2b(z)|ξ − ξ′|. (19)

Step 5. By virtue of (19), for any k ∈ N, ξ ∈ Rn, and x ∈ E there exists a number h̃
(k)
ξ (x) such that the

fact that {ξ(l)} ⊂ Qn and ξ(l) → ξ in Rn implies that h
(k)

ξ(l)(x) → h̃
(k)
ξ (x).

For any k ∈ N and ξ ∈ Rn, we introduce a function g
(k)
ξ on Ω as follows: g

(k)
ξ (x) = h̃

(k)
ξ (x) if x ∈ E,

and g
(k)
ξ (x) = 0 if x ∈ Ω \ E.

It is clear that if k ∈ N, ξ ∈ Rn, x ∈ E, {ξ(l)} ⊂ Qn, and ξ(l) → ξ in Rn, then

h
(k)

ξ(l)(x) → g
(k)
ξ (x). (20)

Further, let Ω̃ be the union of all sets Ω(k), let χ : Ω → R be the characteristic function of the set Ω̃, and let
k̄ be the mapping of Ω into N such that k̄(x) = min{k ∈ N : x ∈ Ω(k)} if x ∈ Ω̃, and k̄(x) = 1 if x ∈ Ω \ Ω̃.

Now let f be the function on Ω × Rn such that f(x, ξ) = χ(x)g(k̄(x))
ξ (x) for any pair (x, ξ) ∈ Ω × Rn.

Using (20), one can easily verify that, for any ξ ∈ Rn, the function f(·, ξ) is measurable on Ω. Moreover, by
virtue of relation (20) and estimates (16) and (19), for any x ∈ Ω and ξ, ξ′ ∈ Rn we have

−b(x) ≤ f(x, ξ) ≤ c2ν(x)|ξ|p + b(x), (21)

∣∣f(x, ξ) − f(x, ξ′)
∣∣ ≤ 2pc2ν(x)(1 + |ξ| + |ξ′|)p−1|ξ − ξ′| + 2b(x)|ξ − ξ′|. (22)
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By virtue of inequality (22), the function f(x, ·) is continuous on Rn for any x ∈ Ω. Thus, the function f

satisfies the Carathéodory conditions. Also note that, by virtue of (12), (15), and (20), the function f(x, ·) is
convex on Rn for any x ∈ Ω. It is now clear that f ∈ F .

Step 6. Let k ∈ N, η ∈ Qn, ϕ ∈ L∞(Ω), m ∈ N, m ≤ k, and z ∈ Ω(m) ∩ E. We fix τ ∈ N, τ > 1,

such that Qτ−1(z) ⊂ Ω(m). Let t ∈ N and t ≥ 2τ2. We have Ym,t �= ∅. Furthermore, by virtue of condition

(a) of the theorem, we get Ω(m) ⊂ Ω(k) and, hence, Ym,t ⊂ Yk,t. This implies that H
(k)
t (·, η) = H

(m)
t (·, η) on

Qτ (z). Then, using (15), we establish that h
(k)
η (z) = h

(m)
η (z). This and relation (20) imply that h

(k)
η (x) = f(x, η)

for any x ∈ Ω(k) ∩ E. Then, using (15), we establish that the integrals of the functions H
(k)
ti

(·, η)ϕ over Ω(k)

converge as i → ∞ to the integral of the function f(·, η)ϕ over Ω(k).

Using this result and relations (14) and (22), we establish that, for any k ∈ N, ξ ∈ Rn, and ϕ ∈ L∞(Ω),
one has

lim
i→∞

∫
Ω(k)

H
(k)
ti

(·, ξ)ϕdx =
∫

Ω(k)

f(·, ξ)ϕdx. (23)

Step 7. We introduce the following notation: If k, t ∈ N and Yk,t �= ∅, then

Ek,t =
⋃

y∈Yk,t

Qt(y);

if u ∈ C∞
0 (Ω), k, t ∈ N, and Yk,t �= ∅, then

λ
(k)
t (u) =

∑
y∈Yk,t

Φt(y,∇u(y))t−n;

and if u ∈ C∞
0 (Ω), k, t ∈ N, and Yk,t = ∅, then λ

(k)
t (u) = 0.

We show that, for any u ∈ C∞
0 (Ω) and k ∈ N, one has

lim
i→∞

λ
(k)
ti

(u) =
∫

Ω(k)

f(x,∇u)dx. (24)

Indeed, let u ∈ C∞
0 (Ω) and k ∈ N. We set

μ = sup
x∈Ω

|∇u(x)|

and fix an arbitrary ε ∈ (0, 1). It is obvious that there exists δ ∈ (0, ε) such that, for any x′, x′′ ∈ Ω that satisfy
the inequality |x′ − x′′| ≤ δ, one has |∇u(x′) −∇u(x′′)| ≤ ε. Furthermore, it is easy to verify that there exists
τ ∈ N such that τ > 2n+2nδ−1, Yk,τ �= ∅, and meas(Ω(k) \ Ek,τ ) ≤ δ meas Ω. We set

Gτ =
⋃

z∈Yk,τ

[Qτ−1(z) \ Qτ+1(z)].

Since 2n+2n/τ < δ, we have meas Gτ ≤ δ meas Ω. We fix t ∈ N, t ≥ max{t0, 2τ(τ + 1)}. It is easy to
see that Yk,t �= ∅. For any z ∈ Yk,τ , we set X(z) = {y ∈ Yk,t : Qt(y) ⊂ Qτ (z)}. Now assume that, for any
z ∈ Yk,τ , we have
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R(z) = Qτ (z) \
⋃

y∈X(z)

Qt(y).

Since all points of the set
⋃

z∈Yk,τ

R(z) belong to Gτ , we have

meas
( ⋃

z∈Yk,τ

R(z)
)

≤ δ meas Ω. (25)

We set

X = Yk,t \
⋃

z∈Yk,τ

X(z).

Assume that X �= ∅. We have

⋃
y∈X

Qt(y) ⊂ (Ω(k) \ Ek,τ ) ∪ Gτ .

Using this result and the estimates for the measures of the sets Ω(k) \ Ek,τ and Gτ presented above, we get

meas
( ⋃

y∈X

Qt(y)
)

≤ 2δ meas Ω. (26)

Further, we have

λ
(k)
t (u) =

∑
z∈Yk,τ

∫
Qτ (z)

H
(k)
t (·,∇u(z))dx −

∑
z∈Yk,τ

∫
R(z)

H
(k)
t (·,∇u(z))dx

+
∑

z∈Yk,τ

∑
y∈X(z)

∫
Qt(y)

{
H

(k)
t (·,∇u(y)) − H

(k)
t (·,∇u(z))

}
dx

+
∑
y∈X

∫
Qt(y)

H
(k)
t (·,∇u(y))dx,

∫
Ω(k)

f(x,∇u)dx =
∑

z∈Yk,τ

∫
Qτ (z)

f(·,∇u(z))dx

+
∑

z∈Yk,τ

∫
Qτ (z)

{f(x,∇u) − f(·,∇u(z))}dx +
∫

Ω(k)\Ek,τ

f(x,∇u)dx.
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Using these equalities, relations (13), (14), (21), (22), (25), and (26), the inequality n/τ < δ, an estimate for the
measure of the set Ω(k) \ Ek,τ , and properties of the number δ, we obtain

∣∣∣∣∣∣∣λ
(k)
t (u) −

∫
Ω(k)

f(x,∇u)dx

∣∣∣∣∣∣∣

≤
∑

z∈Yk,τ

∣∣∣∣∣∣∣
∫

Qτ (z)

H
(k)
t (·,∇u(z))dx −

∫
Qτ (z)

f(·,∇u(z))dx

∣∣∣∣∣∣∣ + 8p(1 + μ)p(1 + c2)(nk + mk)ε meas Ω. (27)

It is clear that this relation is also true in the case where X = ∅. Using (27) and (23), we obtain (24).
We now pass to the proof of the Γ-convergence of the sequence {Jsj} to the functional Jf . Let ci, i =

3, 4, . . . , denote positive constants that depend only on n, p, meas Ω, c1, c2, and ‖b‖L1(Ω).

Step 8. Let u ∈ C∞
0 (Ω). For any s ∈ N, we have us ∈ W̃ 1,p

0 (ν,Ωs) and

lim
s→∞ ‖us − qsu‖Lp(ν,Ωs) = 0. (28)

Let us show that

lim inf
j→∞

Jsj (usj ) ≥ Jf (u). (29)

Let a be a limit point of the sequence {Jsj (usj )}. By virtue of conditions (ii) and (v), we have a ∈
(−∞,+∞]. If a = +∞, then we obviously have a ≥ Jf (u). Now let a �= +∞. It is clear that there ex-
ists an increasing sequence {rl} ⊂ {sj} such that

Jrl
(url

) → a. (30)

Taking into account that a ∈ R and using conditions (ii) and (v), we establish that there exists a constant c ≥ 1
such that, for any l ∈ N, we have ∫

Ωrl

ν|∇url
|pdx ≤ c. (31)

Further, let ε ∈ (0, 1). By virtue of the absolute continuity of the Lebesgue integral, there exists ε1 ∈ (0, ε)
such that, for any measurable set G ⊂ Ω, meas G ≤ ε1, we have

∫
G

bdx ≤ ε.

Moreover, by virtue of condition (b) of the theorem, there exists k ∈ N such that

meas(Ω \ Ω(k)) ≤ ε1

2
,

∣∣∣∣∣∣∣
∫

Ω\Ω(k)

f(x,∇u)dx

∣∣∣∣∣∣∣ ≤ ε. (32)
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Taking the first inequality in (32) into account, we establish that there exists t′ ∈ N such that, for any t ∈ N,

t ≥ t′, the set Yk,t is nonempty and

meas(Ω \ Ek,t) ≤ ε1. (33)

It is also obvious that there exists δ > 0 such that, for any x′, x′′ ∈ Ω that satisfy the inequality |x′ − x′′| ≤ δ,

we have |∇u(x′) −∇u(x′′)| ≤ εn
−1/p
k .

We fix t ∈ N, t ≥ max{t0, t′, n/δ}. By virtue of condition (ii), inequality (33), and properties of the number
ε1, we get

lim sup
s→∞

∫
Ωs\Ek,t

ψsdx ≤
∫

Ω\Ek,t

bdx ≤ ε. (34)

For any s ∈ N, we set vs = us − qsu. By virtue of (28), there exists s′ ∈ N such that, for any s ∈ N,

s ≥ s′, and y ∈ Yk,t, we have vs ∈ Vt,s(y). Then, for any s ∈ N, s ≥ s′, the following inequality is true:

∑
y∈Yk,t

Ft,s(y,∇u(y))t−n ≤
∑

y∈Yk,t

∫
Qt(y)∩Ωs

fs(x,∇u(y) + ∇vs)dx. (35)

We fix s ∈ N, s ≥ s′. Let y ∈ Yk,t. Using conditions (iv) and (v) and properties of the number δ, we obtain
the following relation for almost all x ∈ Qt(y) ∩ Ωs :

fs(x,∇u(y) + ∇vs(x)) = fs(x, (1 − ε)∇us(x) + ε(∇us(x) + ε−1(∇u(y) −∇u(x))))

≤ (1 − ε)fs(x,∇us(x)) + εfs(x,∇us(x) + ε−1(∇u(y) −∇u(x)))

≤ fs(x,∇us(x)) + 2pεc2ν(x)|∇us(x)|p + 2pεc2 + 2εψs(x).

With regard for condition (v) and inequality (35), for any s ∈ N, s ≥ s′, we get

∑
y∈Yk,t

Ft,s(y,∇u(y))t−n

≤ Js(us) + 2pεc2

∫
Ωs

ν|∇us|pdx + 2ε

∫
Ωs

ψsdx +
∫

Ωs\Ek,t

ψsdx + 2pεc2 meas Ω.

Using this result, condition (ii), and relations (10), (30), (31), and (34), we establish that λ
(k)
t (u) ≤ a + εcc3.

Using (24) and the second inequality in (32), we conclude that a ≥ Jf (u). Therefore, inequality (29) is true.

Step 9. Let u ∈
◦

W 1,p(ν,Ω). For any s ∈ N, the inclusion us ∈ W̃ 1,p
0 (ν,Ωs) and equality (28) are true. Let

us verify inequality (29).
Let {u(l)} be a sequence of functions from C∞

0 (Ω) such that

lim
l→∞

‖u(l) − u‖1,p,ν = 0. (36)



ON Γ-CONVERGENCE OF INTEGRAL FUNCTIONALS DEFINED ON VARIOUS WEIGHTED SOBOLEV SPACES 135

For any l, s ∈ N, we set u
(l)
s = us +qs(u(l)−u). By virtue of relation (28) and the result obtained in the previous

step, for any l ∈ N we get

lim inf
j→∞

Jsj (u
(l)
sj

) ≥ Jf (u(l)). (37)

Furthermore, using conditions (iv) and (v), for any l, s ∈ N we obtain

Js(u(l)
s ) ≤ Js(us) + c4

⎛
⎝1 +

∫
Ωs

ψsdx +
∫
Ωs

ν|∇us|pdx + ‖u(l) − u‖p
1,p,ν

⎞
⎠ ‖u(l) − u‖1,p,ν .

Using conditions (ii) and (v), relations (36) and (37), and the continuity of the functional Jf , we establish that if
a is a finite limit point of the sequence {Jsj (usj )}, then a ≥ Jf (u), which proves inequality (29).

Step 10. Let u ∈ C∞
0 (Ω). We show that there exists a sequence ws ∈ W̃ 1,p

0 (ν,Ωs) such that

lim
s→∞ ‖ws − qsu‖Lp(ν,Ωs) = 0, lim sup

j→∞
Jsj (wsj ) ≤ Jf (u). (38)

Let ε ∈ (0, 1). Using the corresponding result from Step 8, condition (ii), and relation (24), we establish that
there exist numbers k ∈ N, δ > 0, and t ∈ N such that

∀x′, x′′ ∈ Ω, |x′ − x′′| ≤ δ :
∣∣∇u(x′) −∇u(x′′)

∣∣ ≤ εn
−1/p
k , (39)

t ≥ max{t0, 1/ε, n/δ}, Yk,t �= ∅, (40)

λ
(k)
t (u) ≤ Jf (u) + 2ε, (41)

∫
Ω\Ek,t

ν|∇u|pdx ≤ ε, lim sup
s→∞

∫
Ωs\Ek,t

ψsdx ≤ ε, (42)

∑
y∈Yk,t

∫
Qt(y)\Qt+1(y)

ν|∇u|pdx ≤ ε,

lim sup
s→∞

∑
y∈Yk,t

∫
[Qt(y)\Qt+1(y)]∩Ωs

ψsdx ≤ ε.

(43)

Further, assume that, for any y ∈ Yk,t, ϕy is a function from C∞
0 (Ω) such that 0 ≤ ϕy ≤ 1 on Ω, ϕy = 1

in Qt+1(y), ϕy = 0 on Ω\Qt(y), and |∇ϕy| ≤ c0t
2 on Ω (c0 > 0 depends only on n), and, for any y ∈ Yk,t

and s ∈ N, wy,s is a function from Vt,s(y) such that

∫
Qt(y)∩Ωs

fs(x,∇u(y) + ∇wy,s)dx ≤ Ft,s(y,∇u(y))t−n + εt−n. (44)
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Note that, by virtue of condition (v) and relations (39), (40), and (44), for any y ∈ Yk,t and s ∈ N we have

c1

∫
Qt(y)∩Ωs

ν|∇u(y) + ∇wy,s|pdx ≤ 2pc2

∫
Qt(y)

ν|∇u|pdx + 2
∫

Qt(y)∩Ωs

ψsdx + (2pc2 + 1)t−n. (45)

For any s ∈ N, we now set

ws = qsu +
∑

y∈Yk,t

wy,sϕy.

For any s ∈ N, we have ws ∈ W̃ 1,p
0 (ν, Ωs). Moreover, by virtue of the inclusions wy,s ∈ Vt,s(y) (y ∈ Yk,t,

s ∈ N) and the inequality t ≥ 1/ε, for any s ∈ N we get

‖ws − qsu‖Lp(ν,Ωs) ≤ ε(meas Ω)1/p. (46)

It is also clear that, for any s ∈ N, we have

Js(ws) =
∫

Ωs\Ek,t

fs(x,∇u)dx +
∑

y∈Yk,t

∫
Qt(y)∩Ωs

fs(x,∇ws)dx. (47)

By virtue of condition (v) and inequalities (42), we obtain

lim sup
s→∞

∫
Ωs\Ek,t

fs(x,∇u)dx ≤ (c2 + 2)ε. (48)

Using conditions (iv) and (v), inequalities (39) and (40), and properties of the functions ϕy, y ∈ Yk,t, we establish
that if s ∈ N, y ∈ Yk,t, and meas(Qt(y) ∩ Ωs) > 0, then the following relation holds for almost all x ∈
Qt(y) ∩ Ωs :

fs(x,∇ws(x)) ≤ (1 − ε)fs(x,∇u(y) + ϕy(x)∇wy,s(x))

+ εfs(x,∇u(y) + ϕy(x)∇wy,s(x) + ε−1(∇u(x) −∇u(y) + wy,s(x)∇ϕy(x)))

≤ fs(x,∇u(y) + ∇wy,s(x)) + 4p+1c2(1 − ϕy(x))ν(x)|∇u(x)|p

+ 2(1 − ϕy(x))ψs(x) + 2εψs(x)

+ 4pc2εν(x)|∇u(y) + ∇wy,s(x)|p + 4pcp
0t

3pc2εν(x)|wy,s(x)|p + 8p+1c2ε.

Using properties of the functions ϕy, y ∈ Yk,t, the inclusions wy,s ∈ Vt,s(y) (y ∈ Yk,t, s ∈ N), condition (ii),
and relations (10) and (43)–(45), we obtain

lim sup
j→∞

∑
y∈Yk,t

∫
Qt(y)∩Ωsj

fsj (x,∇wsj )dx ≤ λ
(k)
t (u) + c5ε

∫
Ω

ν|∇u|pdx + c6ε.
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Using this inequality and relations (41), (47), and (48), we establish that

lim sup
j→∞

Jsj (wsj ) ≤ Jf (u) + c7ε

⎛
⎝1 +

∫
Ω

ν|∇u|pdx

⎞
⎠ . (49)

Using (46) and (49), we conclude that if l ∈ N, then there exist a sequence w
(l)
s ∈ W̃ 1,p

0 (ν,Ωs) and a number
j(l) ∈ N such that

∀s ∈ N : ‖w(l)
s − qsu‖Lp(ν,Ωs) ≤ l−1, (50)

∀j ∈ N, j ≥ j(l) : Jsj (w
(l)
sj

) ≤ Jf (u) + l−1. (51)

For any l ∈ N, we set

s(l) = l + max
1≤r≤l

sj(r) .

It is obvious that {s(l)} is an increasing sequence. Now assume that the sequence {ws} is such that ws = w
(1)
s for

s ≤ s(1), and ws = w
(l)
s for s(l) < s ≤ s(l+1), l = 1, 2, . . . . Then, for any s ∈ N, we have ws ∈ W̃ 1,p

0 (ν,Ωs).
Moreover, using (50) and (51), we establish that relations (38) are true.

Step 11. Let u ∈
◦

W 1,p(ν,Ω). It is obvious that there exists a sequence {u(l)} ⊂ C∞
0 (Ω) such that, for any

l ∈ N, we have

‖u(l) − u‖1,p,ν ≤ 1/(2l) and Jf (u(l)) ≤ Jf (u) + 1/(2l).

Using these inequalities and the result obtained in the previous step of the proof, we conclude that if l ∈ N, then
there exist a sequence v

(l)
s ∈ W̃ 1,p

0 (ν,Ωs) and numbers s
(l)
1 , j

(l)
1 ∈ N such that

∀s ∈ N, s ≥ s
(l)
1 : ‖v(l)

s − qsu‖Lp(ν,Ωs) ≤ l−1, (52)

∀j ∈ N, j ≥ j
(l)
1 : Jsj (v

(l)
sj

) ≤ Jf (u) + l−1. (53)

For any l ∈ N, we set

s̄(l) = l + max
1≤r≤l

s
(r)
1 + max

1≤r≤l
s
j
(r)
1

.

It is clear that {s̄(l)} is an increasing sequence. Now let {vs} be the sequence such that vs = v
(1)
s if s ≤ s̄(1),

and vs = v
(l)
s if s̄(l) < s ≤ s̄(l+1), l = 1, 2, . . . . Then, for any s ∈ N, we have vs ∈ W̃ 1,p

0 (ν,Ωs). Furthermore,
by virtue of (52) and (53), we get

lim
s→∞ ‖vs − qsu‖Lp(ν,Ωs) = 0 and lim sup

j→∞
Jsj (vsj ) ≤ Jf (u).
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Using this result and the result obtained in Step 9, we conclude that the sequence {Jsj} Γ-converges to the
functional Jf .

The theorem is proved.

In conclusion, we make several remarks. First of all, note that conditions (a)–(c) of Theorem 2 are satisfied
if, e.g., the functions ν and b are bounded in Ω or continuous in Ω except for a closed set of measure zero.
Moreover, under the conditions of Theorem 2 and certain additional assumptions, including the so-called regular

strong correlation of the sequence of spaces W̃ 1,p
0 (ν,Ωs) with the space

◦
W 1,p(ν,Ω), the Lagrangian f of the

Γ-limit functional for the sequence of functionals {Jsj} is coercive, i.e., for a certain constant c′ > 0, almost
all x ∈ Ω, and any ξ ∈ Rn, one has f(x, ξ) ≥ c′ν(x)|ξ|p − b(x). This result was obtained in [37]. In turn,
the indicated additional conditions are satisfied in the case of a weight function ν of the form ν(x) = |x|γ ,

x ∈ Ω \ {0}, γ ∈ (−n, n(p − 1)), and domains Ωs of special perforated structure (for details, see [24]). Also
note that, on the basis of results on Γ-convergence or Γ-compactness for the functionals Js, one can obtain
analogous results for functionals of the form Is = Js + Gs, where

Gs(u) =
∫
Ωs

g(x, u)dx, u ∈ W̃ 1,p
0 (ν,Ωs);

furthermore, under proper growth and coercivity conditions for the function g
(
e.g., if g(x, η) = a0ν(x)|η|p −

g0(x)η, a0 > 0, and g0(1/ν)1/p ∈ Lp/(p−1)(Ω)
)
, the sequence of the norms of minimizers of the functionals

Is is bounded (we emphasize this fact in connection with the arguments presented at the end of Sec. 3). Finally,
note that if ψ is a nonnegative function from L1(Q1(0)) and, for any s ∈ N, ψs is a nonnegative function on
Ωs such that ψs(x) = ψ(s(x − z)) for x ∈ Qs(z) ∩ Ωs and z ∈ Ys, then conditions (i) and (ii) are satisfied,
and, furthermore, the function b takes a constant value on Ω equal to the integral of the function ψ over the cube
Q1(0).

The author expresses her deep gratitude to A. A. Kovalevskii for his interest in this work and helpful advices.
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