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TO THE QUESTION OF FORMING BIHARMONIC OSCILLATIONS IN
TWO-MASSES NONLINEAR VIBRATING MACHINES UNDER IDEAL
HARMONIC EXCITATION

The principle scheme of two-masses vibrating machine with polynomial
characteristics of elastic ties and ideal harmonic excitation is considered. With the help of
harmonic balance method its dynamics is studied in the frequency zone located between two
natural ones. For certain parameters of the system existence of superharmonic resonance 2:1
is discovered, the influence of nonlinearity and asymmetry of elastic characteristics and
dissipation factor upon the behavior of the system and number of its regimes are described.
The possibility of forming of practically significant biharmonic oscillations is demonstrated.
Key words: vibromachine, antiresonance, polyharmonic vibration, harmonic balance method,
bifurcation diagram, numerical analysis

1. Statement of the problem

In industry there are used vibrating machines with biharmonic oscillations of working
organs. Traditionally such oscillations are realized with the help of two exciters having
different frequencies [1]. But it is well known that in nonlinear systems the oscillations
sometimes become quite complicated and may have pronounced polyharmonic character [2].
Usually these phenomena take place for certain parameters of the dynamical system when, the
so-called, combination resonances take place. By this reason, the purpose of this article is to
investigate principle possibility of forming practically important oscillations in two masses
vibrating machine having polynomial elastic ties and harmonic excitation.

2. Principle scheme and mathematical model
The principle scheme of such vibrating machine is shown in Figure 1, where m; —

mass of a frame, m, — mass of a working organ, mp — unbalanced mass, r — eccentricity of
an exciter,  — frequency of an vibroexciter, kg — stiffness coefficient and kg — coefficient

of viscous resistance of shock absorbers, k(x)=k;+ky, x+Kk3 x2 — stiffness coefficient and
uk' (x), where Kk'(x)=ki+ksx+ks x? ,— resistance coefficient of the elastic ties

connecting frame and working organ, F, =kj x+ks G + K3 x3 — its elastic characteristic,
ki, ko, k3 — parameters of the elastic ties and ki, k5, k3, — of dissipation, x — coefficient

of inelastic resistance of absorbers and elastic ties, P(t)=mg rw? cosmt — constraining force

of inertial vibroexciter.
As generalized coordinates we take x;, — displacement of the frame and x,, —
displacement of the working organ.
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Figure 1 — The principal scheme of a vibrating machine

Using Lagrange equations [3] we get the equations of the motion
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Then subtracting one of them from the other one, denoting x=x, — Xy , turning to the
variable 7 =y t, where @, — the first natural frequency of a vibromachine and introducing

non-dimensional variables & =x,/4, &=x/A4, where A =103 m we represent
mathematical model of the vibromachine in the form
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Values of the physical parameters of the vibromachine are mg =50 kg, my =700 kg,
m, =550kg, Kg=0.12-10° N/m, k;=55-10 N/m, r=0.088 m, x=0.0008 s,
ko =Kg, k1 =kq and the working frequency of the engine @ =100 rad/s. We suppose below
the possibility of changing 7, ky, kg, k5, k3 only.

3. Method of investigation
The steady motions of the machine we find by the harmonic balance method [4].
According to it solutions of the system (1) we find in the form of finite complex expansions
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where N is a number of harmonics taken into consideration. It is supposed that the
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After substituting (2) into (1) and equating coefficients of equal powers of "7 one
may get the algebraic system of equations with respect to c,
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where n,n—j,n—j—me[-N,N]. Dimension of this system equals 2(2N+1). Then
consequently changing one of the parameters of the system (1) and solving the system (3) one



may find bifurcation diagrams of the system, in particular, the amplitude- (AFC) and phase-
frequency characteristics (PFC). Computations are fulfilled for five harmonic components in
(2) were taken into account, i.e. N =5. The corresponding software are worked out as the
toolbox of the program MATLAB and described in [5].

4. Results

Here we considered the frequency zone located between the natural ones (see
Figure 2) and studied the pure resonances of lower order. The rectangular symbol in figure
shows the present working frequency of the machine. One may mention that this is the
frequency of antiresonance, — very small oscillations of the frame and quite sufficient motions
of the working organ.

The main practical results are the following.
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Figure 2 — AFC for different values of the degree of nonlinearity of the elastic characteristics

Using correlation pw=|py|wy +|pz|w, [6], Where p,p;,pp € Z in this zone with

the help of our software we succeeded to find only the resonances of 3:1, 2:1 and 1:3.
For linear dissipation (k5 =k3 =0) the corresponding bifurcation diagrams (AFC and PFC)

are shown in Figures 3-5.

By our opinion the superharmonic resonance 2:1 (see Figure 4) is the most
interesting among it for practical purposes, it is rather intensive and gives an opportunity to
form biharmonic oscillations which are necessary for practice. Really, one may compare, for
example, motions that are recommended for concentration tables [1] and oscillations
generated in superharmonic zone for =20 (see Figure 6). The relative value of the second
harmonic Ay / Ay in displacement of the working organ forms approximately 12+15% and
skew of it approximately equals 2¢, —¢; =0.08 7 (see Figure 4). But one of the essential
faults of superharmonic resonances of even order is the existence of two opposite regimes
(see regimes 1 and 2 in Figure 6), that may create certain difficulties when you start the
engine.

Trying to strengthen one of the superharmonic regimes we introduce asymmetry into
elastic ties, this attempt is demonstrated in Figure 7. From the view of the PFC it may be
stated that two opposite regimes continue to exist, but the practical results of this measure
hardly may be interpreted surely without getting their basins of attraction.
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Figure 3 — Superharmonic resonance of order 3:1

It is also necessary to mention that the discovered resonance is quite stable to level of
dissipation in the system. This fact is demonstrated in Figure 8 where the bifurcation
diagrams (the amplitude and phase frequency response) are given for asymmetric elastic ties
and nonlinear resistance. It is interesting that in this case the view of PFC already shows the
existence of a single polyharmonic regime for =17, for example. But, truly saying, some
certain changes also take place in the amplitude-phase correlations (see diagrams of
accelerations in Figure 8). Thus, shift phase of the second harmonic with respect to the first
one equals already 2¢, —¢ =0.257.

It is also important to notice that the resonance 2 : 1 in this vibrating machine may be
realized without essential changes in its construction and for the same angle velocity of the
engine @=100 rad/s by choosing only the parameters of the main elastic ties. Calculations
which were performed on the base of correlations (1) and expression for the first natural
frequency

2
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n
show that for getting the value of non-dimensional frequency r =17 the stiffness of the linear

part of the main elastic ties must be taken k; =0.36-10° N/m instead of its initial value
equal ky =5.5-10% N/m.
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Figure 4 — Superharmonic resonance of order 2:1
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Figure 5 — Subharmonic resonance of order 1:3
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Figure 6 — Diagrams of digplacements (a) and accelerations (b) of vibromachine for
superharmonic resonance 2 :1 and =20
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Frame Working organ

=]

0 14 \ 20 25 3a 35 40 10 15 20 25 30 35 40

U Ui

SIREIATIN TN g o LA g i g W[
k_lmoo...\l.u ..... \JV\JU ______ \f 'R :2000 """ V """"""" V ---------- V --------- v

0 05 1 15 0] 15
PFC .- \ T X T

075
0a

. 0.25
+k i}
-0.25
05
-0.75

T e L T
WwoW = O

Figure 8 — Superharmonic resonance 2 : 1 for nonlinear dissipation (k5 =ko, k3 =kg) and
kiz/ki1=1, k1o /ky1=-0.5

5. Conclusions

So, the carried out investigations demonstrate the principal possibility of forming
practically significant polyharmonic oscillations of the working organ of the vibrating
machines by use of nonlinear elastic ties and realization of the superharmonic resonance of
the second order. These oscillations exist for broad range of the parameters and quite stable to
the level of dissipation. But one needs to keep in mind that the frame of the machine is also
pulled into these motions and as a result quality of foundation insulation has become worse.

To the number of advantages of such way of forming polyharmonic vibrations one
may include the presence only one harmonic exciter and the necessity to make just small
changes in the machine construction. But some problems connected with the design of such
ties still remain.

The limited capacity of the engine is also one of the interesting and important factors
which can make adjustments upon the process of forming polyharmonic vibrations and, by
this reason, must be taken into account too.
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acummempuu ynpy2oil Xapakmepucmuxu 4 Ouccunayuu
Ha nogedeHue CUCMeMbl, ONUCAHO YUCTO ee PENCUMOS.
[Ipooemoncmpuposana 803mMoHCHOCHb POPMUPOBAHUSL
NPAKMUYECKU 3HAYUMBIX OULAPMOHUYECKUX KONeOAHUI.
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