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Abstract—In the paper the use of a complex form of the 
harmonic balance method for the analysis of the dynamic 
systems with polynomial nonlinearities is described. Two 
examples are considered, combination resonances are 
investigated, bifurcation curves are constructed. 
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I. INTRODUCTION 

Yet 50-60 years ago harmonic balance method was one 
of the main methods of investigation of nonlinear systems 
[1, 2], but in recent decades more popular, perhaps, is the 
method of the Poincare maps [3].And while not denying 
advantages of the latter we would like to note some 
attractive features of the first one that slightly open the 
door to the global analysis of dynamic systems. And our 
purpose here is to draw this to the attention of the 
researchers. Really, the harmonic balance method gives an 
opportunity to reduce analysis of the differential equations 
to the solving of polynomial equations. Then, with use  of 
the Newton polyhedra theory [4] we can determine the 
number of all solutions of the system of polynomial 
equations and applying after it the interval approaches [5] 
you may identify all solutions of polynomial equations 
and perform, in such a way, global analysis of dynamic 
system essentially. The first step in this direction is the 
reduction of differential equations to the systems of 
polynomial equations. For dynamic systems with 
polynomial nonlinearities this can been done successfully 
with use of the complex version of the harmonic balance 
method. Below we illustrate this fact by examples of 
analysis of two dynamic systems. 

II. ONE-MASSES V IBRATING SYSTEM 

Here we consider the equation [6] 
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which in dimensionless form describes the motion of one-
masses vibrating machine with force or kinematic 
excitation [7]. According to the harmonic balance method 
its solution we find in the view 
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where N  is the number of harmonics taking out into 
consideration. The expansion (2) is connected with the 
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substituting (2) into (1), performing the obvious 
transformations and equating coefficients of equal powers 
of eiητ

 you may get the system of polynomial equations 
with respect to Cn
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where ],[,, NNmknknn −∈−−−  and q is a control 

parameter. If q = 1 the system (3) describes T = 2π / η-
periodical regimes, that are  basic and superharmonic 
motions, if q = 2,3,… subharmonic ones. Now 
consistently changing one of the parameters and solving 
(3) you may construct bifurcations curves. This procedure 
is realized with the help of the original software [8].The 
points of bifurcation in it are found by control the sign of 
the system Jacobian , stability of the regimes in the first 
approximation is studied with the help of the Floquet-
Lyapunov theory, the finding of isolated branches of the 
bifurcation curves is realized by changing initial 
conditions in the specified part of the phase space with use 
of the quasi-random Sobol sequence [11]. Below in Fig.1 
amplitude- and phase-frequency characteristics (AFC and 
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PFC) are presented for certain parameters of the model in 
the zones of super-, principal and sub-resonances. The 
unstable regimes are indicated by the dash lines. The 
basins of attraction (BOA) are found by the scanning 
method [12]. 

 

Fig. 1. AFC (a), PFC (b) and BOA (c) of (1) for µω0 = 0.1, β = 0,  

γ = 0.5, P = 10, where ( )m
kA , ( )m

kϕ  – are the amplitude and initial 

phase of k-th harmonic of m-th regime 

of the quasi-random Sobol sequence [11]. Below in Fig.1 
the amplitude- and phase-frequency characteristics (AFC 
and PFC) are presented for certain parameters of the 
model in the zones of super-, principal and sub-
resonances. The unstable regimes are indicated by the 
dash lines. The basins of attraction (BOA) are found by 
the scanning method [12]. 

III.  TWO-MASSES V IBRATING SYSTEM 

Consider the principal schema of a vibrating machine 
(Fig.2) and dimensionless equations of its motion [12] 
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displacement of frame, x2 – displacement of a working 
organ, ∆ = 10–3 m, m0 – unbalanced mass, m1 – mass of a 
frame, m2 – mass of a screen box, k0 – stiffness of 
isolators, k1, k2, k3– parameters of elastic ties and k'1, k'2, 
k'3 – of dissipation, r – eccentricity of an exciter, µ – 
coefficient of dissipation, η =  ω/ω1, ω – frequency of an 
vibroexciter, ω1 – the first natural frequency of a 
vibromachine, τ = ω1t. The exciter is supposed to be 
ideal. Similarly (1), solutions of (4) are found in the form 
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After substitution (5) into (4) and equating the 
coefficients we get the system of polynomial equations 

with respect to 
)1(

nc  and nc
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where ],[,, NNmjnjnn −∈−−− . Considering oscillations 
in the frequency zone located between the natural ones 
(Fig.3) and using the frequency ratio featured in literature 
[12] we changed initial conditions in the chosen part of 
the phase space and discovered pure resonances of the 
order 2:1, 3:1 and 1:3 with the help of the multistart 
method. In Figs.4, 5 and 6 there are presented the 
corresponding AFC and PFC of the frame and screen box 

(6) 
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(The unstable regimes are not marked here). 
Computations are fulfilled  

 
Fig. 2. Principal schema of the vibrating machine 

for five harmonic components in (5), i.e. N = 5, for the 
vibrating machine having the following values of its main 
parameters: m1 = 650 kg, m2 = 550 kg, k0 = 0.12·106 N/m, 
k1 = 5.5·106 N/m, m0 = 50 kg, r = 0.088 m, µ = 0.0008 sec. 
It was supposed here 11 kk =′ , 032 =′=′ kk . 

Without dwelling on the results we only mention that 
the analysis of PFC is quite useful here and helps to find 
out certain peculiarities of the regimes. For example in 

Fig.4  the presence of opposite regimes is explained when  
the superharmonic resonance 2:1 is excited because  of the 
even harmonic phase difference on π radians. 

IV.  CONCLUSION 

Of course on the way  of the harmonic balance method 
use for the global analysis of dynamic systems there is a 
number of unresolved problems. Here we mention only 
one of them. The matter is that for the motions of 
dynamic systems there correspond such solutions of the 
polynomial systems (4) and (7) for which n nc c−= , but 

the Bernstein’s theorem [13] gives the total number of its 
solutions.  The following example shows how it is 
important. For three harmonics taken out in consideration 
in expansions (2) and the value η = 4.0 the number of all 
solutions of (3), determined with the help of the program 
MixedVol [14], which realizes the computation of mixed 
volumes of the Newton polyhedra, equals 414, while the 
number of  the ‘complex conjugate’ solutions, determined 
by the multistart method, proved equal to 6 only. 

 

 
Fig. 3. AFC and PHC of linear system 
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Fig. 4. Superharmonic resonance 2:1, k13 / k11 = 1 

 

 

 

Fig. 5. Superharmonic resonance 3:1, k13 / k11 = 1 
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Fig. 6. Subharmonic resonance 1:3, k13 / k11 = 1 
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