Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра физики

ОТЧЁТ по лабораторной работе №60

ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ КЮРИ ФЕРРОМАГНЕТИКА

Выполнил студент группы	
Преподаватель кафедры физики	
Отметка о защите	

Лабораторная работа № 60

ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ КЮРИ ФЕРРОМАГНЕТИКА

Цель работы — получить зависимость индукционного тока в измерительной обмотке от температуры ферромагнитного сердечника, определить температуру Кюри ферромагнитного материала.

Приборы и принадлежности: образец исследуемого магнитного материала, измерительная обмотка, миллиамперметр с выпрямительной ячейкой, нагреватель, лабораторный автотрансформатор, термопара, милливольтметр, градуировочный график.

Общие положения

Все вещества являются магнетиками т.е. способны под действием магнитного поля намагничиваться. Намагничивание магнетика принято характеризовать магнитным моментом единицы объёма. Эта векторная величина называется намагниченностью и обозначается \vec{J} . В каждой точке магнетика намагниченность связана с напряжённостью магнитного поля \vec{H} соотношением:

$$\vec{J} = \chi \vec{H}$$
,

где χ –магнитная восприимчивость магнетика.

Безразмерная величина

$$\mu = 1 + \chi$$
,

называется магнитной проницаемостью вещества. В зависимости от величины магнитной проницаемости все магнетики подразделяются на три группы.

К первой группе относятся вещества, у которых вектор намагниченности \vec{J} направлен противоположно вектору напряжённости намагничивающего поля \vec{H} . Для этих тел магнитная проницаемость $\mu < 1$, а магнитная восприимчивость $\chi < 0$. Численное значение χ находится в пределах $(10^{-4} - 10^{-5})$. Такие тела называются диамагнетиками. К ним относятся висмут, олово, медь, цинк, вода, кварц и др.

Ко второй группе относятся вещества, у которых направление вектора намагниченности \vec{J} совпадает с вектором напряжённости намагничивающего поля \vec{H} . Для этих веществ магнитная проницаемость $\mu>1$, а магнитная воспри-имчивость $\chi>0$. Численное значение χ находится в пределах $(10^{-3}-10^{-4})$. Такие вещества называются *парамагнетиками*. К ним относятся алюминий, марганец, растворы железных и никелевых солей, кислород, азот, воздух.

K третьей группе магнетиков относятся вещества, способные обладать намагниченностью в отсутствие внешнего магнитного поля. По своему наиболее распространенному представителю – железу – они получили название ферромагнетиков. K их числу, кроме железа, принадлежат никель, кобальт, гадо-

линий, их сплавы и соединения, некоторые сплавы и соединения марганца и хрома с неферромагнитными элементами (например, сплав – 61% Cu, 24% Mn, 15% Al), а также сплавы системы неодим—железо—бор. Ферромагнетики являются сильномагнитными веществами. Их намагниченность в огромное число раз (до 10^{10}) превосходит намагниченность диа- и парамагнетиков, принадлежащих к категории слабомагнитных веществ.

Ферромагнетики обладают следующими характерными свойствами:

- 1. Имеют очень большие значения μ и χ (μ достигает значений $10^4 10^5$). Это означает, что ферромагнетики создают сильное добавочное магнитное поле.
- 2. Величины μ и χ не остаются постоянными, а являются функциями напряжённости внешнего поля. Поэтому намагниченность \vec{J} и магнитная индукция \vec{B} не пропорциональны напряжённости магнитного поля \vec{H} , а выражаются сложной зависимостью.
- 3. Имеет место остаточная намагниченность, т.е. ферромагнетик сохраняет некоторое остаточное намагничивание после устранения намагничивающего поля.
- 4. Ферромагнетикам свойственно явление магнитного гистерезиса, т.е. наблюдается необратимый характер перемагничивания.
- 5. При намагничивании ферромагнетиков происходит изменение их линейных размеров и объёма. Это явление называется магнитострикцией.

Большое значение величины магнитной проницаемости µ для ферромагнетиков объясняется наличием в них достаточно малых областей спонтанного намагничивания, называемых доменами. Домены имеют размеры порядка 1–10 мкм. В пределах каждого домена ферромагнетик спонтанно намагничен до насыщения и обладает определенным магнитным моментом. Направления этих моментов для разных доменов различны, так что в отсутствие внешнего поля суммарный момент всего тела равен нулю. При включении внешнего поля происходит ориентация не отдельных молекул, а доменов, путём их поворота и смещения границ между ними. Этим объясняется сильное намагничивание ферромагнетиков вплоть до насыщения в сравнительно слабых полях.

Для каждого ферромагнетика имеется определенная температура $T_{\rm c}$, при достижении которой области спонтанного намагничивания распадаются и вещество утрачивает ферромагнитные свойства. Эта температура называется температурой (точкой) Кюри. При температуре выше точки Кюри ферромагнетик становится обычным парамагнетиком, магнитная восприимчивость которого подчиняется закону Кюри — Вейса

$$\chi = \frac{C}{T - T_{\rm c}},$$

где C – постоянная величина; T – температура; $T_{\rm c}$ – точка (температура) Кюри.

При понижении температуры ниже точки Кюри в веществе снова возникают домены, т.е. ферромагнитные свойства восстанавливаются.

Описание экспериментальной установки

Схема экспериментальной установки приведена на рис. 1. На схеме обозначены: 1 – первичная (нагревательная) обмотка, 2 – вторичная (измеритель-

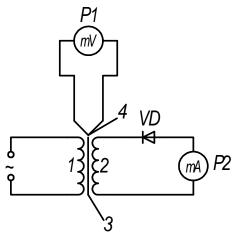


Рисунок 1

ная) обмотка, 3 — исследуемый образец, 4 — термопара для измерения температуры. Исследуемый образец помещается в нагревательную электрическую печь, изготовленную в виде спирали, намотанной на фарфоровую трубку. Образец при этом должен быть приведён в соприкосновение с термопарой, соединённой с милливольтметром. Печь питается от лабораторного автотрансформатора, включенного в сеть переменного напряжения. Этот автотрансформатор позволяет регулировать скорость нагрева и температуру печи.

Первичная (нагревательная) обмотка печи одновременно является намагничивающей.

Вторичная обмотка из медной проволоки является измерительной, ток в ней регистрируется микроамперметром, включённым последовательно с выпрямительной ячейкой.

При достижении температуры Кюри образец теряет свои ферромагнитные свойства, в результате чего ток во вторичной обмотке резко падает, что отмечается микроамперметром.

Подготовка к работе

(ответы представить в письменном виде)

- 1. В чём состоит цель работы?
- 2. Какие физические величины измеряются непосредственно (прямые измерения)?
- 3. Запишите формулу, связывающую индукцию и напряжённость магнитного поля.
- 4. Какой график необходимо построить по результатам работы? Какую величину Вы будете определять по графику?

Выполнение работы

- 1. Собрать электрическую цепь по схеме, приведённой на рис. 1.
- 2. Определить цену деления микроамперметра и милливольтметра.
- 3. После проверки собранной цепи, перед включением в электрическую сеть, установить движок автотрансформатора на нуль. После включения автотрансформатора в сеть установить напряжение 170–180 В.
- 4. Ввести исследуемый образец в печь так, чтобы спай термопары вошёл в соприкосновение с торцом образца.

- 5. Через каждые 5 делений милливольтметра записывать в протокол измерений показания микроамперметра и соответствующее значение милливольтметра. Измерения продолжать до тех пор, пока ток в измерительной цепи не упадет до 10-15 мкА.
- 6. Используя градуировочный график, приведённый на лабораторной установке, по значениям термо-эдс определить соответствующие значения температуры (температура в °C) и занести их в таблицу. При этом необходимо иметь в виду, что измеренная температура представляет собой разность между температурой печи и комнатной температурой (т.е. $t-t_{\text{комн}}=t_{\text{измер.}}$). Таким образом, истинная температура (в °C) образца в печи равна $t=t_{\text{комн}}+t_{\text{измер.}}$

Оформление отчёта

1. Расчёты

- 1. Используя полученные данные, построить график зависимости тока во вторичной обмотке от температуры I = f(t).
- 2. Определить температуру Кюри.

2. Защита работы

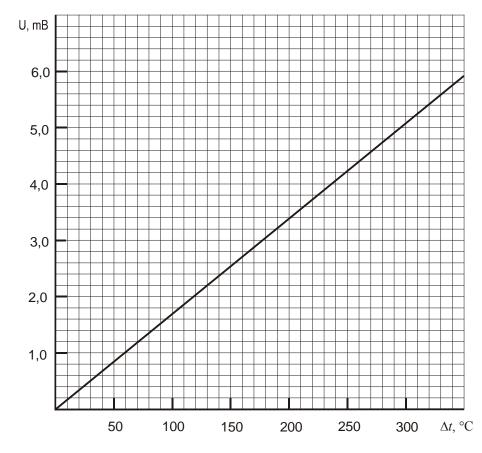
(ответы представить в письменном виде)

- 1. Какие вещества называют диамагнетиками?
- 2. Какие вещества называют парамагнетиками?
- 3. Какие вещества называют ферромагнетиками? Перечислите основные свойства ферромагнетиков.
- 4. Что происходит с ферромагнетиком при его нагревании до температуры Кюри?
- 5. Что происходит с ферромагнетиком при его охлаждении ниже температуры Кюри?
- 6. Сравните полученное значение температуры Кюри с табличными значениями и сделайте вывод, какому материалу оно примерно может соответствовать.

Температура Кюри $T_{\rm c}$ некоторых ферритов

Тип феррита	Химическая формула	$T_{\rm c}$, K	t, °C
Простой феррит	MnFe ₂ O ₄	573	300
со структурой			
шпинели			
Кобальт-цинковые	$Co_{0,4}Zn_{0,6}Fe_2O_4$	410	137
ферриты	$Co_{0,6}Zn_{0,4}Fe_2O_4$	548	275
Никелевые фер-	$NiFe_{1,75}Al_{0,25}O_4$	506	233
риты алюминаты	$NiFe_{1,55}Al_{0,45}O_4$	465	192
Редкоземельные	$Yb_3Fe_5O_{12}$	549	276
ферриты-гранаты	$Ho_3Fe_5O_{12}$	553	280

ПРОТОКОЛ измерений к лабораторной работе №60


Выполнил(а)	Γ	руп	па

Определение цены деления приборов

No		Предел	Число деле-	Цена деления	
п/п	Прибор	подключения	ний на шкале	с указанием	
		с указанием еди-	прибора	единицы	
		ницы измерения		измерения	
1	Милливольтметр				
2	Микроамперметр				

Комнатная температура $t_{\text{комн}} =$

I, mA						
U, mB						
$\Delta t_{\text{измер}}, ^{\circ}\text{C}$						
t,°C						

Дата____ Подпись преподавателя____