Инновационные технологии изготовления и эксплуатации промышленных машин и агрегатов

УДК 669.02/09:658.58

ИССЛЕДОВАНИЕ РАБОТОСПОСОБНОГО СОСТОЯНИЯ ГИДРАВЛИЧЕСКИХ НОЖНИЦ ПО ВИБРАЦИОННЫМ ПАРАМЕТРАМ

А.В. Ерошенко

ГВУЗ "Донецкий национальный технический университет"

Проведены исследования временных реализаций операций сигнала движущегося суппорта гидравлических ножниц, что позволяет выполнить оценку работоспособного состояния. Установлены диагностические параметры возможных повреждений в соответствии с периодами рабочего реза.

Современное производство требует обеспечения непрерывного технологического процесса из-за тесной связи элементов процесса.

Работоспособность каждого элемента является определяющим фактором в непрерывной работе всего технологического цикла и напрямую влияет на возможность выполнения плановых заказов в соответствии с графиком.

Одним из элементов процесса порезки проката на мерные длины в горячем или холодном состоянии являются гидравлические ножницы. В процессе их работы изнашивается гидропривод, что приводит к отказам, внеплановым остановкам и к необходимым заменам ножей. Выполнение работ по техническому обслуживанию в плановом порядке позволяет поддерживать или восстанавливать работоспособность данного механизма [1].

Целью работы является исследование работоспособного состояния ножниц на основании вибрационных характеристик движения суппорта.

Так как функционирование гидропривода в значительной степени влияет на работоспособное состояние ножниц, то контроль технического состояния гидравлической части ножниц является необходимым для обеспечения их работоспособности. В ходе исследования в качестве параметра работоспособности гидропривода выбрано виброускорение.

Измерение виброускорения на ножницах проводилось на холостом ходу при помощи спектроанализатора, позволяющего выполнить регистрацию временной реализации вибрационного сигнала с периодом записи 100 мкс. Контрольные точки располагались на подвижном верхнем суппорте ножниц, связанном с приводным гидроцилиндром.

Инновационные технологии изготовления и эксплуатации промышленных машин и агрегатов

На записанных диаграммах были выделены участки, соответствующие пуску насоса и повышению давления в системе; моменту страгивания поршня гидроцилиндра при подаче рабочей жидкости в поршневую полость гидроцилиндра; движению суппорта ножниц вниз; моменту страгивания поршня после подачи рабочей жидкости в штоковую полость гидроцилиндра; движению суппорта вверх (рис. 1).

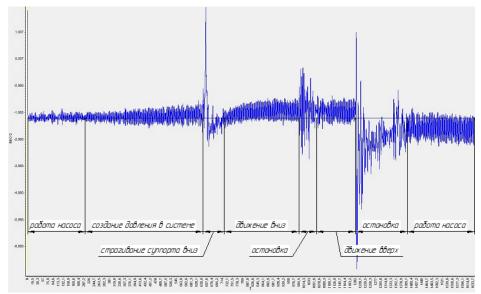


Рис. 1. Пример временного сигнала виброускорения при движении суппорта ножниц в режиме холостого хода

Анализ диаграмм позволил установить, что в моменты страгивания поршня значения виброускорения максимальны и составляют 2...6 м/с². Размах вибросигнала 4...9 м/с². Длительность периода затухания 50...100 мс. В период разгона системы сигнал виброускорения имеет устойчивый вид гармонических колебаний, которые при движении суппорта ножниц вверх и вниз изменяются, приобретая несколько нерегулярный характер. Такие особенности изменения вибрационного сигнала свидетельствуют о начальной стадии повреждений в уплотнениях гидроцилиндра ножниц, что оказывает влияние на его плавную работу, а в процессе резания проката приводит к возникновению "волнистости" в разрезаемом сечении.

Таким образом, контроль технического состояния гидропривода с использованием вибропараметров является эффективным для оценки работоспособности ножниц и своевременного влияния на качество продукции.

Библиографический список

1. Ульяницкий В.Н. Техническая диагностика металлургического оборудования. – Алчевск: ДГМИ, 2004. – 186 с.