11. ELECTROSTATIC FIELD

11.1. FIELD COMPUTATION BY MEANS OF INTEGRAL RELATIONS
11-1 (11.1). Derive the formulae to determine the electric flux
in the coordinate function a) from the point charge through the
spherical surface of radius R; b) from the linear charge through
the cylindrical surface of radius 7.

Solution. Case a). Let’s construct a spherical surface S of
radius R around the point charge ¢ (fig. 11.1) and apply Gauss’
law for flux in an integral form: j3l3 .ds=Xq. From the Fig. 11.1

S
definition of the electric field intensity, it follows that the force lines are directed

radially so they are perpendicular to surface S. Thus, vectors D and ds have the same
direction and their scalar product may be replaced with the product of their length.
Furthermore, owing to symmetry the vector D has the same value in all the points of
surface S which are equally spaced from charge ¢; that’s why it can be put before the
sign of integration. Finally, we have:

§D-ds=§D-ds=D-§ds=D-S=D-4rnR’. (11.1)
S S
Consequence: induction and intensity of the point charge field are —
p=-1_, _D__ 4 -, (11.2)
4nR &, 4ne,R

so they depend only on coordinate R.
Do the same in case b): construct a cylindrical surface S of radius » and length /

around the axis with the linear charge 7 and apply Gauss’ law for flux in an integral

form: j§ D-ds= 2q. As illustration, we can again use fig. 11.1, however, we replace ¢
S

with 7 and R with r, axis z being directed perpendicular to the drawing plane. Suppose,

the length of object is much bigger than its radius is. Then, it is possible to neglect the

distortion of the in-plane field closely to the end faces of cylindrical surface S and

consider the force lines being directed radially everywhere. In this case there is no

electric flux through the end faces of a cylinder because the angle between D and ds is

90°. However, in all points of the side face the vectors D and ds have the same
direction, then their scalar product may be replaced with the product of their length.

Furthermore, owing to symmetry the value of vector D is the same in all the points of
the side face of surface S, which are equally spaced from axis z, that’s why it can be put
before the sign of integration. Finally, we have:

§D ds= ID ds=D-Sszo=D 21 rl. (11.3)

Swde
Consequence: induction and intensity of the charged axis field are:
D
q T g-P_ 7
€

(11.4)

2l 27’ 2re,r

which means they depend only on coordinate 7.
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11-2 (11.2). Determine the electric field induced by two
charges in the point where the third charge is located as well 0.3 mm—»é)i
Ga J»

as the force acting upon the third charge, the system of the
charges is presented in fig. 11.2, where
g.=4107"%C, ¢q,=1510"2C, ¢.=1510"*C. 0.4 mm
Solution. In accordance with formula (11.3) the formula of 0.5 mm
intensity of the electrostatic field created by a point charge in q
vacuum has the view: E=—1 5 - Fig. 11.2
4reR
Then the intensities created by charges ¢, and g, in point ¢ are as follows (fig. 11.3):
-12
E=—ta - 410 5= 143.9:10° V/m = 143.9 kV/m.
4mey lac|” 4m-8.85-107(0.5-107)
-12
Er-—1 19 5= 843.0-10° Vm = 843.0 kV/m.
4mey |be|” 4m-8.85-1077(0.4-107)
Let’s determine the angle at vertex ¢ of triangle abc: [

cos(Zacb) = bc/lac =0.4/0.5=0.8; ZLacb = arccos 0.8 =36.9°. “

Then the angle at vertex d of triangle cdfis:
Zedf=180°—36.9° = 143.1°.
In accordance with the superposition principle, the resultant

vector of the required intensity E is equal to the vector sum
E=E'+E" (fig. 11.3). Under the cosine rule, we find E"

E=\(E')* +(E" * =2-E"E"-cos( Zedf ) =

=\/143.92 +843.0° —2-143.9-843.0 - cos(143,1 ) =962 kV/m.
The force acting upon charge ¢, is equal to:

F=g.-E=1510"962-10’=14.4-10 ° N. N R, f R —q
11-3 (11.3). Two balls of radius R;=0.2 cm and 1 _li' E_’»
R,=0.5 cm are separated by distance d =20 cm 1 IT ) -~
from each other in dielectric with relative E d £
permeability £ =4 (fig. 11.4). The ball charges are ' » Fig. 11.4

g=10"""C of different signs. Find the field energy and the maximum intensity.
Solution. Distance d greatly exceeds the balls’ radius, so it may be supposed that the
geometrical and electric centers of the balls coincide with each other.

In arca between the balls, the intensities £’ and E' are added, while in the area
outside the balls they are subtracted (fig. 11.4). That’s why the resultant intensity is
bigger in the area between the balls. While moving away from the ball centre, the field
intensity decreases, correspondingly, the maximum intensity is expected in the point on
the ball’s surface. The radius of the first ball is smaller, so the biggest field intensity is
observed in point 1. In order to compute the field in this point, the superposition
principle is used. On the grounds of formula (11.2) we have

10710 1 1
E=E/'+E/"= 1 7t 9 2 12 ERCILC N
AmegeR; A4meqed” 4m-8.85-107°-4((2-107 )" 0.2
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=56141 Vim.
The potential of an isolated ball field (similar to problem 11.5, formula 11.8):

_q
= + A.
v 4re,R
Assume @=0 at R=oo, then 4 =0. Thus, the ball potentials are
AmegeR, 4meged  4m-8.85-10724\2-107° 0.2
-10 _
P A R B —— (L+—1 j=—43.8V.
dreged AmepeR, 4m-8.85-107°410.2 0.005
Voltage between the balls is Uo=¢0,—@,=111.1+43.8=1549 V.
Capacity of the installation is C=q/U,=10"/154.9=0.645-10 > F.
The field energy is We="%CU,,>=%-0.645-10 '*-154.9°=7.75-10 " J.

11-4 (11.4). Derive formulae to compute the field and capacity of the vh

plate capacitor possessing the plate square S, the distance between the

plates d (fig. 11.5). 0 X
Solution. The plate square S is much bigger then the squared distance 2 €a

d? between them. That’s why the field may be supposed to be regular

(uniform) one. Let the left plate of the capacitor have charge ¢g. Then U

on the grounds of the boundary condition the electrostatic induction >
vector is D= o=¢/S. The electric field intensity is £ = D/g, = q/(S"¢g,). Fig. 11.5

The supplied voltage is U= E-d=q-d/(S-¢,). The capacitor capacity is
C=q/U=¢,5/d. (11.5)
Suppose the coordinate axes to be situated as in fig. 11.5. Let the origin of the
coordinates coincides with the left plate. Derive the formula for potential ¢(x) on the

grounds of the relationship E=—grad ¢. (11.6)
In Cartesian coordinate system, grad ¢ is written as
grad @ 28_(pl+8_(p}+8_g0% (see the table in Appendix).
ox Oy oz
: ) . . : op O

It is obvious, potential ¢ depends only on one coordinate x, it means o 0;

4

vector E being directed along the axis x; that’s why we have: E =— Z—(p . From here

X

p=— jde=—E-x+const. (11.7)

If a capacitor has several layers, each layer capacity being — C;= g,-S/d,, then the
capacity of the whole capacitor because of the layer series connection is as follows
C=(2(Cy) )", the voltage across each layer is — U, = ¢/Cy; the R,
field intensity in each layer is — E; = U/di= q/(S" ).

11-5 (11.5). Derive the formulae to compute the field and capacity -.

of the spherical capacitor with the insulator layer, the inner and ‘l
outer radiuses of the layer are | and R,, respectively, the dielectric r ‘ 0
permeability is g, (fig. 11.6). L ' Fig. 11.6
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Solution. Let inner ball have charge ¢g. On the grounds of formula (11.2), the electric
flux density and the field intensity in dielectric areD = g/(47-R?); E = q/(4ne, R).
We derive a formula for potential ¢(R) on the grounds of expression (11.6). In a
spherical coordinate system grad ¢ is expressed as follows
grad @ :8_]2) +l8_g00_(’) + ! G_gooz) (see the table in Appendix).
OR R 00 Rsin6 oo

% _,.

It is obvious, potential ¢ depends on but one coordinate R, i.e. Z—(gz 0 and 5
o

vector E being directed along the axis R; that’s why we have: E = —Z—Z . From here
q
=—|EdR= + A. 11.8
¢ I 4re, R ( )
q

Let potential of the outer ball be equal to zero — ¢ =0 at R=R,. Then 4 =— .
4re Ry

The formula for potential is ¢ = ¢ [(1_1 .
4re, (R R

The voltage supplied to the capacitoris U = ¢@(R=r;) — ¢(R=R;) =4L [l —Lj
e

a 4| Rl
: . . o 4re,
Capacity of a single-layer spherical capacitor is C=qU=—""—. (119)
1/n-1/R,
In case of several layers, each layer has the capacity — Cﬁﬂ, capacity of
1/n —1/R,

the capacitor as a whole being C =(2(Cy) ') '; the voltage across each layer being
Uy= q/Cj; the field intensity in each layer being E;= g/(4 7y - RY).

11-6 (11.6). A spherical capacitor
(fig. 11.6) is supplied with direct
voltage U=6000 V. Its geometrical
sizes are 7 =5cm, R;=10cm. D] D A
Relative dielectric permeability of
insulation is £=4.

Determine the capacitor capacity,
plot E(R), ¢(R). Find the energy stored &R \
in dielectric. 2000 SN
Solution. Let’s use the formula (11.9). .
The capacitor capacity is .

C=L=""000100 = 4448 pF, % 002 004 006 008 3.1
U R -n R
The capacitor charge is g=CU=26.69-10"°C.
The energy of the charged capacitoris W= %CU*=0.8 mJ.
Intensity and potential in function of coordinate R [m/] (fig. 11.7) are:

8000 ‘
Fig. 11.7

ER)
40 4000
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g0, em)=—1

4rse, R R’ dreeyR

Assuming ¢ =0 at R=R;, we get o(R) =%— 6000 V.

ER) = +A.

11-7 (11.7). A spherical capacitor has two insulation layers (fig. 11.8,a): R;=15 cm,
Ry =8 cm, R; =10 cm, R,=10.5 cm, &, = 6, &, = 2. The capacitor is connected to a D-C
voltage source U = 36 kV. Determine the capacitor capacity, plot £(R). Find the voltage
across each layer.
Solution. Capacities of the 1 and the 2" layers are:

4re € 4rese

C,=————-=288.97 pF, C,=——=——-=88.97 pF.
"R R C R RS
The capacity of the capacitor formed by series connection of C; and C, is:
-GS 4448 ,F
C,+GC,

The inner ball charge is: q=CU=1.6 uC.
The field intensity in the 1% area R, <R <R,, where R [cm]

5
E\(R) = 9 2=2'4 210 Viem,
4ree0R R
5
and that in the 2™ one R, <R<R; E,(R)= 9 5= 72 210 Viem.
4dre,60R R

The graph of the dependence E(R) is presented in fig. 11.8,b.

8000

6000 \\\\'
4000

2000
0
0 2 4 6 8 10 12
R, cm
R,
The voltage across the 1 layer of insulation is: U; = [ E|(R )dR= 18 kV,
R
R;
and that across the 2" one: U, = [E,(R)dR= 18 kV.
Ry

Verification: U, + U, =18+ 18=36 kV'=U.
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11-8 (11.8). Derive the formulae to compute the field and capacity of the cylindrical
capacitor with the insulator layer, its inner and outer radiuses being r; and R;,
respectively, furthermore, / >> R, dielectric permeability is g, (fig. 11.9).

Solution. Let inner cylinder have charge g. On the grounds of formula (11.4) taking into
account that g =1/, we determine electric-flux density and the field intensity in
dielectric D=¢q/Qr-rl); E=q/Qne,r).

We derive a formula for potential ¢(r) on the grounds of
expression (11.6). In a cylindrical coordinate system grad ¢ 1is
expressed as follows i

grad @ :6_g0;0> +16_(p(;; +6_(pz_(’) (see the table in Appendix).

or r oo oz
It is obvious, potential ¢ depends on but one coordinate 7, i.e.

2—(/) =0and (2—@ =0; vector E being directed along axis r; that’s why we have:
o 4
z_ﬁ_go. From here ¢=—[Edr=- A

or 2ne,l

Let potential of the outer shell be equal to zero — ¢ =0 at » = R,. Then

Inr+ A (11.10)

a4=—1 [nR,. The formula for potential is ¢ = el ln&. (11.10,a)

2ne,l 2re,l 7
The voltage supplied to the capacitoris U= @ =r) — @o(r=R;) Z%ln& .
et N
: : o o 2ne,l
The capacity of a single-layer cylindrical capacitoris C=¢q/U=—"—. (11.11)
In(R, /1)
In case of several layers, each layer has the capacity — Ckzzﬂ—%l , capacity of
ln(Rk /Vk)

the capacitor as a whole being C=(Z(C,)')'; voltage across each layer being
U= q/Cy; the field intensity in each layer being E;=q/(2me, 7).
11-9 (11.9). A coaxial cable is supplied with D-C voltage U=6kV. The cable length is
[=20 m (fig. 11.10). A cable conductor radius is ;= 0.5 c¢m, radiuses of the shell are
r,=2 cm and r; = 2.4 cm. The insulation relative permeability is & =4.

Neglecting the edge effect, determine the cable capacity, plot E(r), ¢(r), find the
energy stored in the cable insulation.
Answers: the cable capacity in accordance with (11.11) and linear charge density are,

respectively, as follows: szLgolz 321nF, 1= CU _ ZregU :
In(r,/n) [ In(r,/n)
intensity and potential (formulae (11.4) and (11.10,a)):

E(r) _4328 Vim, go(r)=43281nr—2 V, where r[m];
r r

the graphs E(r) and ¢(7) are in fig. 11.10.
580E2 7

Energy volume density in dielectric is wg= =—.
2 8mtegyr
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The field energy stored in the cable is
WE=r2 Tl 2m dr= ol 2=
2 dreey K

2
cu =57.73-10° J.

2
n 87 g r

1-10*

8000

E(r) 6000p = === 3
5 \
10 b
\\
22. 4000 K \\
L
®
Q|
)

2000 )

0 0.005 0.01 0.015 0.02

T

11-10 (11.10). Compute the field of a cylindrical beam of electrons — p=—10""" Clen’,
&=2,d=2 mm. Solve the problem with the aid of Gauss’ theorem in an integral form.

- >
Solution. Gauss’ theorem in an integral form is — {>D- dS=2g.
S
In cylindrical coordinates
- - D o
§D-dS=D-2mrl (see (11.3)); E=——=——", ¢(r) =—[Edr (see problem 11.8).
3 g€y or
In the area r<d/2
— ] 1 __P . ___ P 2
Zq p - la Dl /2/373 El(r) v, (Pl(r) r +A1-
2¢eg 4ee

Let it be ¢, =0 at »=0. Then 4, = 0. Substituting with the numerical data, we have:
Ei(r)=—2.82510%r Vim;  @(r)=1.412-10°/ V.
Inthearea r>dR2 Xq=p -ndl2)l;
2 2 2
Dy =P lA2 gy = PUAL2) gy = PLA2)
2r gor £
At r="%d @(d/2)=@\(d/2)=1.412-10°(107°) =141V, from here

‘In(r)+ A,.

2
Ay = @o(d/2) +p(c;¢ln(d/2) =1.41 — 5.65-In(0.001) = 40.44.
€0

Thus, Es(r) =365 Vim; @) =5.65-In(r) +40.44 V.
r
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11-11 (11.11). The inner and outer radiuses of an earthed hollow metallic ball are
R;=32cm and R,=3.6 cm, respectively (fig. 11.11);
inside this ball there is another metallic ball of radius
R,= 0.8 cm with the charge ¢ =2.5-10 " C. In the device
under question, there are both the area charged uniformly
with volume density p=-10"" C/cm’ and the relative
permeability g, =2, and the area without free charges with
the relative permeability & = 1.5. Size R,= 1.6 cm.
Compute and plot the dependences of the electrostatic ;
field intensity and potentials on the distance to the ball U
centre. Fig. 1111 97 =©
Solution. Areas 0 <R <R;, R3;< R <R, are filled in with
conducting material, that’s why there is no electrostatic field here — E=0, D=0,
@ = const. There is no field beyond the ball bounds either for the ball shell is earthed.
Let’s calculate the field in the areas R; <R <R, and R, <R <R3 with the aid of Gauss’

theorem in an integral form: §Z_j -ds= 2g. On the grounds of (11.1)
S

§D-ds=D-4nR’.
s
Forthearea Ri<R<R, Xg=q+p ¥ (R’ — R,’). Then

4 3_p3 _ 4/ p3
DZ‘I"‘PA”(R Rl); E—Dl _4 PA”RlJr PR

1 2 1= 2 )
4R &€y 47T8180R 33180

_ 4 3 2

q—pJn R

On the grounds of (11.8), (p1=—jEldR= A L PR + A;.
dreiggR - 6g1€

Forthe area Ry;<R<R; Xg=q+p-¥ n(R,’ —R,’). Then

D_q+p%ﬂ(R§’—R13). D, a+p¥n(R-R)
27 s - s

2

47R* €280 4,60 R*
4 3_p3
q+pnm(R; —R)
02 =—[ EydR= oSl + 4y,
drese0R

We determine integration constants 4; and 4, under the condition ¢,(R3;) =0, and
that the potential is a continuous function.

g+p (R —R)

P2(R3) = +4,=0, from here
47T8280R3
4 3 3
g+p7Lm(Ry —R)
Ay =- BARR) s
4dre,e0Ry
Thus, after substituting with the numerical data, we have:

©>(R) =$—4402 V, ExR) =M§¢ Vim, where R [m].
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At R=R, (pl(Rz)Z@2(R2)=%—4402=4402V.

_ 54 3 2
q—p 7R
ILe. A L PR +A4,=4402 and A,=-2804.
477:8180R2 68180
Thus, after substituting with the numerical data, we have:

(pl(R)=111'43 +9.42-105-R*=2804 ¥, L Ao, kv
R kViem
111.43 -12 o 1115
E\(R) =— 18.83-10° R Vim. 20 _\\ ig. 11.

AL

R 16 —SH( P(R)
The graphs ¢(R) and E(R) presented 12

in fig. 11.12. o l4 \\\Q

41 ER) e —— R, cm

|
0 1 2 3 4

11-12 (11.13). What maximum voltage may be supplied to a two-
layer plane capacitor fig. 11.13, if: =2, &,=4, d,=2.5 mm,
d> =5 mm. Disruptive strength of insulation is £, = 30 kV/cm. Take
Fig. 11.13 the stress safety factor equal to n =2.5.
For the voltage found, compute the energy volume density in the 2™ dielectric.
Solution. Taking into account the given stress safety factor, determine the allowable
electric intensity in dielectrics:

. E.
Eaiy _ 30 _ 12 kViem, Ejpg <—25

=12 kV/em.

Elmax <

n

As the edge effect can be ignored, the field intensity of the plane capacitor is constant
in each area — E| and E,, respectively. On the dielectric interface, the condition
D\, = D,, results in expression &, E| = F, or E| = 2F,.

As E,>FE, weassume E;=FE..=12kV/ecm. Then E,="'%E,=6kV/cm.

The maximum permissible voltage across the capacitor is

U=Edi+ Exd,=12-025+6-0.5=06 kV.
The energy volume density in the 2™ dielectric is
wy = VagagoEy” = 0.5-4-8.85-10'*-6000% = 6.37-10 ° Jlem’.

b)
AE
-\Elmax EZmax
Ei(r)
Ey(r)
r
0 n r r3 ~
Fig. 11.14



11-13 (11.14). What maximum voltage may be supplied to a two-layer coaxial cable
(fig. 11.14,a), if: r=25mm, r,=75mm, r3;=12mm, ry, =14mm, & =35, & =2.
Disruptive strength of insulation is: £y, = Eus= 30 kV/em. Take the stress safety factor
equal to 3.

Compute the cable capacity.
Solution. When supplying the cable from a D-C voltage source U, a cable conductor
has the charge 7 per unit length. The field intensity is determined under expression

(11.4). For the 1* insulation layer:  E; = LA
2reg0r

For the 2™ one: E,= LA
2re,g0r

A sketch of the intensity distribution is presented in fig. 11.14.b.
The maximum field intensity in the insulation layers is
T T
Elmaxz—a EZmaxz—-
2re€07 27E,E1 »

In order to prevent the insulation breakdown it is necessary to have:

Bldis 10k, e <225 = 10 4.
n n

Products e\r = 5:2.5= 125, &y = 2:-7.5= 15, ery < &rs.
That’s why  Ejuu > Eomar.  Assume  Ey,, = 10 kV. Then

Elmax S

E
= Elmax'27f81807”1; E = 1max" : E,= Elmaxrlgl
r &yr
The voltage across the 1* insulation layer is:
)
U = [Edr= Elmaxrllnr—zz 10*0.25In3 = 2747 V;
&
n 1
and that across the 2™ layer is:
£ E 10*.0.25-5 12
Up= [ Eydr="tmaci®p, 13 2 122070, 22 9937 cc
, £, 7 2 7.5 10 20

The maximum working voltage for cable is: ﬁ—l |—.—| |—¢

U=U, +U,=2747+2937=5684 V.

Capacity of the two-layer cable (capacitor) may be calculated
representing it as a series connection of two capacitances Fig. 11.15
(fig. 11.15). In accordance with (11.11) the capacities of the layers separately and of the
cable as a whole are:

—c—

277:8180 27'[8280 ClO . C20 277:818280
Cio= 0 = P Co= Co+C = . P
In-% In=> 07520 o n24gn-
n r n )
. . T 27E €

Or under definition of capacity  Cy=—= 120 =0.367 pF/m.
U 7”2 (91 r3
n—=+-—"In=>
n & n

256



11-14 (11.15). Maximum electric field intensity in
the insulation of a two-layer cylindrical capacitor
(fig. 11.16) is E,.=30kV/cm. It is required to
determine the voltage supplied to the capacitor as
well as its capacity, if [=5m, ¢&=2, &=1I1,
r=1cm,rn=3cm, s=4cm and ry,=5 cm.
Solution. Let inner conductor possess the charge — 7.
Then the intensity and potential of different areas in
accordance with (11.4) and (11.8) are:

T T

E, = 5 ;== Inr) + Ay;
27‘[81801” anlgo

Bt = i)+ 4

27 9 2 2. .
2merE0r 27e,8, layer Fig. 11.16
. . o . T T
The maximum intensities in the areas are: E},, = ; s = )
2reigon 2me, €7,

AS e'r= 2< &r3= 4: then EZmax < Elmax: Emaxa T= 27r8180r1Emax7

(pl = rlEmax'ln(r) +A1; (Pz = _i rlEmax'ln(r) +A2-
€

Let @i(r) = @o(ry) = 0, then A, =rEpac-lnrs)y As="L 1 Epac-ln(ry),
&

O1(#) = 1\ In(rs)7),  @o(t) ==L 1 Ep In (/7).
&
The supplied voltage and the capacitor capacity are:

€1
U= @i(r)— ¢ara) = nEpain ’%(’%j %2 =46.37 kV,
i 3

Tl 2mg €
&€
W ()
4l 73

11.2. METHOD OF ELECTRICAL IMAGES
11-15 (11.25). A conductor with charge
t=10"°C/m creates the electrostatic field close
to a metallic plane. Determine the conductor
potential as well as the intensity and potential in
points 4 and B (fig. 11.17,a), if ry=2cm;
h=4m; ¢=1.

Solution. There is no electrostatic field in point B _ i !
(inside the metal), that’s why Ez =0, @z=0. In v
order to calculate the field in the upper half Fig. 11.17 _v_@T
plane, we apply the method of electrical images. '

=71.99 pF.
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The coefficient of incomplete reflection from ideal conducting medium is equal to —1.
The sketch for calculation is in fig. 11.17,b, where two conductors with charges 7 and
—1 are placed in homogeneous medium with permeability ¢. Further, we apply the
superposition principle.
The intensity and potential of a single charged axis in homogeneous medium are set
T T h

by formulae (11.4) and (11.10,a): E = , = In—.
2meyr 2rgy v

As it is seen from fig. 11.17,b, resultant intensity in point 4 is equal to difference of
intensities from two conductors. Finally, the required intensity in point 4 is:

-8
E—E _E, '~ T T _ 10 ( 11
2mey0.5h 2mgy2.5h 27-8.85-10712 \0.5-4 2.5-4
The potentials of point 4 and the point on the conductor surface (conductor potential)
obey the expressions:

)= 71.93 Vim.

-8
P1= 0 + @ = (ln ! —In i j= 10 In5 =290 V;
2meg \ 0.5k 2.5h) 27-8.85-10712
-8
o=—"|mtopp |- 10 m2 2= 1078 .
2meg \ 1y 2h) 27-8.85-10712 0.02

11-16 (11.26). The voltage between the conductor of radius ry=1cm placed in air
parallel to earth at height 2= 1 m and the earth surface is U= 1000 V (fig. 11.18,a).
Determine the capacity Cy, the field energy W, and a)
force F\, acting on the unit length of the conductor.
Solution. In accordance with the method of electrical
images, we perform a sketch for calculation fig. 11.18,b.
Then the conductor potential (see problem 11.15) is

2]"0 b) ! (p:U

- Y- =0
2ney 1 :
From here, the wire charge is Fig. 11.18 .
U-2me, 100027 -8.85-107" S o
T= = =10.5-10" C/m. '
2h 2
In— In—
T 0.01

The capacity of the line unit length is C0=5= 10.5:10 "2 F/m = 10.5 pF/m.

The field intensity created by the charge —7 in the charge 7 location area in
accordance with (11.4) is

1079 21"0
o — R Yy Y D
2reg-2h 27-8.85-1077 -2 .
The wire is attracted to earth with the following force hl U 3m.
Fo=TE'=10.5-10 "-94.4=0.991-10 ° N/m. ; :
Energy of the line unit length is A) /'.B
Wo=1%CoU*=110.5-10"*-10°=5.25-10 ° J/m. Fig. 11.19
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11-17 (11.27). Voltage U =500 kV acts between the metallic ball of radius o= 10 cm
and the conducting plane (fig. 11.19). Determine the surface density of the induced
charge in points 4 and B, if h=4 m.
47T80U : EA _ q . :
11 2mgyh

T

Answers. g = 6,=D,=&E=5.6"10"C/m?;

=2.87-10 3 C/m?.

D Rl q h

o5 =Dy el 2(h* +3%) Jp? 432
11-18 (11.28). There is a ball of radius Ry=1 cm with charge ¢ =10 """ C in the right
angle formed by two planes of conducting medium (fig. 11.20,a). Determine the ball
potential with respect to the conducting plane as well as the force and its direction
acting on the ball.

Solution. In accordance with method of mirror images, we get what is given in
fig. 11.20,b after the regular reflection with respect to the right interface. After the
second regular reflection with respect to the lower interface, we get the field of four
balls in homogeneous medium (fig. 11.20,c). We apply the superposition principle (see
problems 11.2 and 11.3) and finally obtain

o=y —(Ry'—(2h)" 2k 2+ (20 2 ) - 2hy) ) = 87.55 7,
0

47
c=4" =1.14pF.
Gy~ 147

The force acting on the ball may be determined through the intensity induced by the
other three charges in the point of the ball location. However, the superposition
principle is to be applied in the vector form (fig. 11.21). For convenience, let’s resolve
the intensity vectors onto horizontal (x) and vertical () components.

a) 1, =40 em b) )
\ 4 : 4 g . =y
@T @ ....... PSS — ‘O _ @ ..... LR q@
' . e hz _>: ¢ h2 ' Field coincides ! .y
h,=20 cm Field coincides | ' with real one | ! 1
with real one o e LT -
v Ly i hy Ih
/ ﬂ—>54—>: 1
Fig. 11.20 T
E2y: 0, sz:#z,
4rey(2h, )
—q-cosa _ q-sino
E3x: 2 2 b E3y_ 2 2 b
4meo [(2h )" +(2hy )" ] 4meg[(2m )" +(2hy )" ]
where cosa = 2hy =0.8944; sino=0.4473.
J(2h P+ (21,
Ey=0, Ep=—T 2
4rey(2h ) Fig. 11.21

Ex :sz +E3x +E4x: 0.40 V/m, Ey :E2y+E3y +E4y:— 5.12 V/m,
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E=\E;+E;=513VIm; F=q¢E=10""513=5.13-10""N.

Note. If, instead of the ball, there would be a charged conductor (cylinder) parallel to
the angle, it would be enough to apply only the first regular reflection and then to use
the groups of Maxwell’s formulae for two-wire line.

11-19 (11.29). The wires of a two-wire line U =500 J" are
placed in different dielectrics as it is shown in fig. 11.22.
Compute the charge on the line wire and the line capacity.
Geometrical sizes and properties of mediums are as Fig. 11.22
follows: ro=0.2cm, r;=20cm, r,=40cm, =1, &,=2.

Solution. Let the charge of the left wire be 7, then the charge of the right one 1s —7. As it
is necessary to calculate the field in two mediums, we use two figures for computation —
fig. 11.23,a and b. Coefﬁcients of incomplete reflection are:

—& _ 2¢,

k)= -0,333; k, = =0,667;
81 +é, £ +&,
&y, —¢€ 2¢e
kl”=—1—0333 k" =—"2 =1,333.
&1 + &y &1 + &y
& & |
a) - ! kl, T -kz"T 'k|1” T k2” T & E & . b)
@ __________ i ......... @ ..... @ _@ _____ e E __________________ @
1 rl 1 l"1 ! . }/'2 ]
— > ! ! > = ,
Field coincides r ; '~ p) 1 Field coincides !
with real one Fig. 11.23 ' with real one

Point O potential (fig. 11.23) is assumed to be equal to zero. The potential of the 1
(left) wire is computed by fig. 11.23,a in accordance with the superposition principle

(lni+ kl’-lni—kz'-ln );
TEEy I 2K n+n
similarly, the potential of the 2Ild (right) wire by fig. 11.23,b is:
2 ki 2+ by In
277:8280 Ty 2r n+r
The voltage between the wires is

LIy o B A Ry Y P W X
&g "o 2r ”1+’”2

taking into account equation (11.10,a): ¢;=

¢r= ).

U: R = —
Q1= 2= )

)] =1-15.06-10".

— e 2k I Iy I
% 2r2 n+n
From here t= U/15.06-10'°=0.332-10 " C/m.
The line capacity is Cy= /U = 6.64 pF/m.

12.3. GROUPS OF MAXWELL’S FORMULAE. DIRECT CAPACITANCES.
11-20 (11.30). A transmission line (fig. 11.24) consists of three wires of radius
ro=0.6 cm. The wires are installed at a height of hy=h3;=6m, h,=52m. The
horizontal distances between the wires are dy, =2 m, d,3= 1.6 m. The voltages between
the wires are U, = 60 kV, U,3; =40 kV. Determine the potential and charge of each wire.
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Solution. Determine the distances between wires as well
as the distances between the wires and their mirror
images (fig. 11.24):

A =~(h =y > +d} =\(6-5.2)* +22 =2.13 m,
a13=\/(hl —hy )’ +ds =\/(6—6)2 +3.62=3.6m,
Wy =r(hy —hy > +d% =/(5.2-6)* +1.6> =179 m,
blz=J(h1 thy P +dd =(6+52)% +27 = 11.4m,
b13=J(h1 Tty )t HdE = (6+6)> +3.6% =125 m,
byy=+l(hy +hy > +d3 =1(5.2+6)* +1.6> =113 m.

Calculate the potential coefficients (per a unit length): Fig. 11.24
= oty = 1 2 1 = In 20 _ 13,6610 miF,
trp=——In 22 = ! S 222 2 13.41-10° mF,

277:80 I 21 -8.85-10 0.006
tip= oty = 1 212 = 1 — it =3.02.100 miF,
277580 a;, 2m-8.85-10" 2.13
13 = a1 =—— I 23 = ! = 12>~ 22410 mF,
277580 az 27 -8.85-10" 3.6
o3 = Gty =—— I 223 = 1 13 2330100 mir,

2rey  ay; 27w -8.85-10712 179
To determine the wire charges, we use the 1¥ group of Maxwell’s formulae:
Q1= 11001 T Lo T 1303,
Q2= T1001 T 20 T T3Q03,
Q3= T1061 T T3+ T3033.
The missing equations to determine six required quantities are generated based on the
additional problem conditions: 01— @r2=Up, @1—@3="Upy,
furthermore, as the wires form the isolated system, not connected with earth, then
T+t nt 3= 0.
Solving the system of six above-generated equations, we find the necessary:
71=0.46610 °C/m, 7,=—10.058-10 °C/m, 73=—0.408-10 °C/m,
@1252.8 kV, @2:—7.2 kV, @3:—47.2 kV.

11-21 (11.31). Solve the problem 11.16, using the groups of Maxwell’s formulae.

L2t = 9.500-10 m/F; @,=U=1000 V;

2neg 1
= @/a;; = 1.05-10 ° C/m; Cy= Cy1=10.5 pF/m.

Answers. o =

11-22 (11.32). Determine the direct and mutual (Cy) capacitances of 1 m of a two-wire
overhead transmission line (fig. 11.25),if h=d=2m, ry=1 cm.
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Answers. app=d=2m,

bi=+d? +(2h)* =2/5 m;

oy = oy = 10.77-10" m/F,
oy = ap = 14510 m/F;
Bui = B =9.46:10"" F/m,
Bi2=Po1=—1.27-10"" F/m;
Cll = C22 = 819pF/m,
Cin=Cy =127 pF/m;  Cy=5.37 pF/m. Fig. 11.25

11-23 (11.33). Determine the direct capacitances
of a three-wire overhead transmission line ®
(fig. 11.26),if ro=1cm, h=6m, d=2 m. d d

Answers. A= ad;3= dyz= d=2 m,

bio=by=v(0.5d)* +(2h+0.5d3)* = 1377 m, (N _.’;._
biz=+ld*+(2h)*=12.17 m, ro/"

10 10 d Ch
oy = as = 12.76:10" m/F, oy =13.21-10" m/F, i .
Q= 0y = 3.47-10" m/F, apiz =3.25-10" m/F, Fig. 11.26
B =B =8.783-10 > Fim,  Pr=8.54-10 " F/m, d

Bir=Prs=—1.852-10 > F/m, Pi3=—1.732-10"2 F/m, Cy = Cs3=>5.2 pF/m,
C22 = 4836pF/m, C12 = C23 = 1852pF/m, C13 = 1732pF/m

11-24 (11.34). Self and mutual direct capacitances of a three-conductor cable are equal
to, respectively: Cjy = Cy = C33=0.064 uF/km, Cp= Cy;=C3=0.076 puF/km. When
testing the cable, one of the cable conductors was earthed, while the 2™ one possesses
the potential ¢,=2kV, the 3™ one — ¢3=— 3 kV. The cable shell was not earthed.

Find the shell potential as well as the
conductor charges.
Solution. In accordance with the problem
task we construct a sketch fig. 11.27, for
which on the grounds of the 3" group of
Maxwell’s formulae we have:

{Tl =@ C+U,pCn+U;sCs,

= UGy + o' Cyn + Ups G,

3= U3 Gy + UG+ 03" Css,
here the conductor potentials are determined  Fig. 11.27
with respect to the shell.

If the shell is considered as the 4™ conductor, then it is possible to generate an
equation for it taking into account that it is not connected with earth and therefore it
does not have any charge: 7= (04— @ )Ci1+(Qs— @2)Cn+ (Qs— @3)C53=0.

Here potentials are determined with respect to earth.

Since C1; =Cyp=C3; and @ ,=0, 0,=2kV, p;=—3 kV, then
Q; + ¢y + @5 =2000—3OOO:_333 y

3

3kV

Q4=
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We return to the equation system and knowing that
Q'=Q1—@4=333V, Uy=-U;,=2000V, U;3=-Us;=30007,
U23:— U32: 5000 V, (Pz, =Qr— Q4= 2333 V, (p3, =Q3— QPg=— 2667 V,
we obtain 7, =(333-0.064 — 2000-0.076 + 3000-0.076)-10 °=97-10 ° C/km,
7= (2000-0.076 + 2333-0.064 + 5000-0.076)-10 ° = 681-10 ° C/km,
7= (- 3000-0.076 — 5000-0.076 — 2667-0.064)-10 ° =—779-10 ° Clkm.

11-25 (11.35). Compute the direct and mutual
capacitances of a two-wire shielded line (fig. 11.28), if
ro=2mm, a=4cm, ri=10cm, £=4.

The shell (shield) is supposed to be earthed.
Solution. Assume there is the charge separation
between the 1 (left) and the 2™ (right) wires owing to
the action of the voltage source U connected to the
wires. Then the 1% wire has the charge 7, =7 per a unit
length, while the 2" one — 7,=—1.

For further calculations, the method of electrical
images for axis located inside the cylinder is used. A
sketch for the field calculation inside the cylinder has

a view fig. 11.29, furthermore ab= o i

—T T ! —T T
’/,12 102 _¢_ AAAAAAA ‘I_A_A_: _____ " _______ _*,_
Inourcase b=—=—=25cm. : L4 oq :
a i A '.
The 1* group of Maxwell’s formulae for a system of e b >ie b >
the charged bodies located close to the cylindrical Fig. 1'1.29

conducting surface is as follows: { Q1=T001 T Ty,
Q2= T101 T T 0y,
1 b-a 10'2 254

where ;= o= In = n
2reeg,, p 2m-4-885 02

I, b+a_ 107 25+4

=2.091-10" m/F,

=0.579-10" m/F.

Aip= 01— In n
2meg 2a 2m-4-885 2.4
The 2™ group of Maxwell’s formulae is: { 1= B+ B,
7= Bu@i+ B,
-10
where fii=fn=r— 2= 2'0921 19 -=0.518-10"" F/m,
A Al 2.0917 -0.579
Oy Op
_ _ 1010
Pro=Pr=r— 2= 0’5279 1o +=—10.143-10"" F/m.
app Al 2.0917 -0.579
Oy Oy

The 3™ group of Maxwell’s formulae is: {’L’l = U,oCy + U Chy,
7= Uy Gy + Uy Coa,
where Cj1=Cp= B+ 2=0.375-10 """ F/m, Ci=Coy=—B1,=0.143-10 " F/m.
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Direct capacitancies of a line are shown in fig. 11.30.
Mutual capacitance of a two-wire shielded line per a
unit length is:

Cy=Cpp+-1-C22 =(0.143 +—0'375j-10‘10 =
11+ Cy 2

=0.331-10""° F/m.

11-26 (11.36). In a two wire system (fig. 11.31) located
in air close to the conducting surface, there is an emf
source £ =127 V, the second wire is connected with
earth. Geometrical sizes are: ro=6 mm, di,=1m,

hi=3m, hy="4m. — Fig. 11.30
Determined the wire charges.
Answers. a12=x/§ m, b12=5\/§ m, 9 4
01 =12.410"m/F,  an=12.9-10""m/F, «—
an=2.9-10"" m/F, 01=127V, ¢,=0, ol (N E hy
=0.852-10"" C/m, 17,=-0.191-10"" C/m. ‘ C)
11-27 (11.37). Determine the potentials and charges of a wire ‘
system (fig. 11.32), where switches 1 and 2 are closed, while 3 Fig. 11.31
is opened, U =10 kV, the wire radius is ro=5 mm.
How will the solution change if at first wire 2 is

disconnected from earth, then wire 1 is disconnected from ! 2 TT

the source and finally wire 3 is connected to earth? T \
Answers. Before commutations ¢,=104kV, ¢,=0,

03=0.605kV, 7,=80uClkm, t,=-12uC/km, =0,
o = a3 = 11.5-10" m/F, o =12.3-10" m/F,
o= 03 =0.2-10" m/F,  a;3=0.106-10" m/F.

After commutations 7,'= 11, ©,'= 1, @ ;'=0. Then we
determine the rest of the potentials and charge using the Fig. 11.32
1* group of Maxwell’s formulae with the same potential coefficients:

@' =9950V, @,)=—88V, 1'=—4.76uClkm.

—>

«—2my

l——3m
<
#— 4.5m
S
3
l—3
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12. ELECTRIC FIELD IN THE CONDUCTING MEDIUMS
12.1. THE FIELD COMPUTATION WITH THE AID OF THE INTEGRAL
CORRELATIONS. APPLICATION OF THE ANALOGY BETWEEN THE
ELECTROSTATIC FIELD AND THAT IN CONDUCTING MEDIUM.
12-1 (12.1). Derive the formulae to compute the field of a spherical electrode in
homogeneous medium (fig. 12.1). Electrode radius is R, the :
medium conductivity is ¥, current drainage is 1.
Solution. Let’s draw a spherical surface S of radius R around
the electrode and determine the current through it: 7=§6 - dS. L y

3 \

In all the points of surface S directions of vectors 6 and dS
coincide, and the meaning of ¢ is the same. That’s why

§6-dS=35-S=5-4nR*=1, fromhere &=1I/(47R>).
S

Taking into account Ohm’s law in a differential form 6=y -E, we get the formula for

. : 1
electric intensity — E= 5
4ryR
Field point potential is Q= —j' EdR _ L + A.
4ryR
Assume the potential of infinite point equal to zero @gr-.) =0, then
A=0 and ¢@= ! :

4myR

So, for the field of the ball electrode we have
5=L2; E= ! > ¢=-|EdR = ! + A. (12.1)
4R 4rmyR 4myR

12-2 (12.2). Derive the formulae to compute the field of a cylindrical electrode in a

homogeneous medium (fig. 12.1). Radius and length of electrode are r, and /, the

medium conductivity is ¥, current drainage per unit length is /.

Solution. Fig. 12.1 can be regarded as a cross-section of a long cylindrical electrode.

Let’s draw a cylindrical surface S of radius 7, length / and determine the current through

its side surface: [,/ = J'EZS’ In all the points of the side cylindrical surface S the
S side

—

vectors 8 and dS have the same directions, and the meaning of 6 is the same. That’s
why [8 -dS=6"Sqs=382mrl=1Iyl, from here 6=1I,/ ).

Sside
Taking into account Ohm’s law in a differential form 6=y -E, we get the formula for
. . I
electric intensity — £ =——.
2ryr

: o -1 :
The field point potential is ¢ = —j Edr 22—0 In(r) + A. Assume the potential of the
Ty

collecting electrode situated at distance /7 equal to zero (¢;-m=0), then
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Y ZI_OZnH and @ :]_Olnﬁ.
2y 2y r
So, for the field of the cylindrical electrode we have
1y 1y -1 I, H
=—0 E=——; @=-[Edr=—""In(r)+A=—"-In—. (12.2)
2mr 2myr 2my 2y r

12-3 (12.3). Two metallic balls of radiuses »; =2 c¢m and r, =4 cm are deeply drown into
sea-water. The distance between the balls greatly exceeds their radiuses: d =2 m.
Determine the water resistance between balls, if sea-water resistivity is
p =100 Ohm-m.
Solution. Let’s obtain the formula of conductance g in a general view. Although the
balls are of different size, the current drainage is the same: +/, and sea-water
conductivityis y=1/p=0.01 S/m.
In accordance with (12.1) and the superposition principle, we write down the voltage
between the balls as potential difference

U:q)l_(pzz I .l.}. _I.l — __I.i_i_i.l = I |-]/1_1+]/2_1_2.d_1J'
Ay 1, 4ny d Ay 1, 4my d| 4ny

From here, the conductance and resistance of water between the balls are

g=t- 4y ~0.001698 S, R = 1/g = 589 Ohm.

U nl+r'-2.a"

12-4 (12.4). A D-C voltage source is connected to a con-
ducting hollow disk with the aid of the copper plates fitted
into the disk perpendicularly (fig. 12.2). The disk material
resistivity is p=0.5-10"° Ohm-m, the disk sizes are: thickness
a =1 mm, inner radius ;= 5 c¢m, outer radius r, = 8 cm.
Determine the maximum and minimum values of the
current density in the disk as well as the current through the voltage source U =1.57 V.
Solution. Two halves of the disk are two halves of a cylinder a = 1 mm long. The lines
of the current density 6 and the field intensity £ coincide with disk semi-circles, their
values depending on but one coordinate — radius ». That’s why:
E(r)=Ul(rr); o(r)=yE=yUl(rr);, y=1/p=210°S/m.
Then the minimum and maximum values of the current density are
Omin = v-Ul(12) =2:10%1.57/(:0.08) = 12.5:10 ® A/m?,
Omax = v-Ul(mr1) =2:10%1.57/(:0.05) = 20-10 ° A/m”.
The total source current is found as an integral quantity:

r2 . r2 N i Y2
1=2]5-dS=2 [yE-(adr)=2-7 %[ Lar= MR
! 2
rl T e Eq i
2vU -a o> o
= (Inr,—Inr)= — *—
d, d
= (2:2:101.57-0,001/7)- (In0.08 — [n0.05) = 940 A. e
U
12-5 (12.5). Compute the leakage current of the plane two-layer —O ———» O—
capacitor as well as the heat loss in the unit volume of the second Fig. 12.3
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dielectric (fig. 12.3).  di=1em, 1n=510"Sm, U=18kV,
db=2cm, 1=210"8m, S=0.01m"
Solution. On the grounds of Kirchhoff’s voltage law we have:
U= U1 + U2 :El'd1+E2'd2.
The force lines are perpendicular to the interface of dielectrics, that’s why the
boundary condition is as follows 6;,=06, or 7 E\= y,E,.
Then E\=(y/y) E;=0.4E,; U= E, (0.4-d,+d,); from here
E,=U/04-d\+d,)=75kVIim;  E,=30kV/m;
5=8=8=nE=1510"4/m*; I=85-S=15 ud;
pr=08%y=(1.510)/(2-10 %) =112.5 Wim’.

12-6 (12.6). Determine the heat loss P in a plane capacitor
(fig. 12.4) with imperfect dielectric (mica).

U=1000V, S=100cm®, d=1cm, y=110"*S/m.
Answers: E=Uld =100 kV/im, P=yE*-V=1 puw.

12-7 (12.7). Coaxial cable is under the voltage U, =10kV. The
insulation between a current-carrying conductor and shell is
imperfect and its conductivity is y=1-10"S/m. Compute the
leakage current and the heat loss in the cable insulation of length
[=1km (fig. 12.5). ry=12mm, r,=3.26 mm. >
Solution. We make use of formal analogy between the Fig. 12.5

expressions for capacity and conductance of single-layer coaxial cable per unit length:

_2m-ge  _ 2m-y _2m-1-107°
Inry/n’ & Inr,/rn, In3.26/1.2
Then the leakage current through the cable insulation at length 1 km is
1= golU=0.0628-10°-1000-10-10> = 0.628 A.
The heat loss in insulation 1s P=U-I=10000-0.628 =6280 W.

Co =0.0628-10°S/m. (12.3)

12-8 (12.8). Single-layer coaxial cable is under the voltage 600 V' and its sizes are:

ri=4 mm, ry=8 mm, [ = 10 km, the insulation conductivity is y= 110 ° S/m. Determine

the leakage current and its density in insulation on the conductor surface and on the

inner side of the cable shell as well as the cable heat loss.

Answers: =544 mA, 6,=216 yA/mz,
& =108 pd/m*, P=32.6 W.

12-9 (12.9). Compute the leakage current between
two conductors of the coaxial cable (fig. 12.6).
Insulation is made of imperfect dielectric and has
two layers (conductivities 7,=5-10"S/m and
% =2-10"" S/m, relative dielectric permeability & = 2
and &=35). Supplying voltage 1s U=1KkV.
Geometrical sizes are — ri=1mm, rn=2 mm,
r3=3 mm.
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Find specific heat loss in the surroundings of the point M, conductance and
capacitance between conductors, construct the equivalent scheme of the system. The
cable is considered to be rather long; calculations are to be performed per unit length.

Determine additionally the maximum permissible length of a cable used as a
transmission line.

Solution. 1. Let the leakage current be /. Then in accordance with formulae (12.2), the
current density, intensity and potential in layers of dielectric obey to formulae
6=L, E1= ! , Ln ! s 01 = -1 ZI’ZI"“‘Al, 0= -1
2nlr 2wy, lr 2wy ,lr 2my,l 2my,l
2. The voltage supplied to an installation is

U=@i(r) — @i(r) + ©a(rz) — @a(r3) =

%
__! lnr—2+;lnr—3= ! In (r_zj yl-(r—3}.

2rydl o 2wy, vy 2my,l

Inr + A4,.

3. From here, the leakage current per unit length is
I U -2y, _1000-27-2-10"°

(o) o6

4. The cable conductance is found under Ohm’s law:
2o=1/U=1.841-10""10° = 0.1841-10 ° S/m = 0.1841 uS/m.
5. The same answer may be obtained with the aid of the analogy between an electric
field in the conducting medium and electrostatic one. Formula (12.3) for capacity of
2re,

o)

n

The capacity of layers and that of the whole cable is:
_ 27mg8, _2m-2-8.85-107"

Iy =1.841-10 " A/m = 0.1841 mA/m.

single-layer coaxial cable is: Cy =

C10 = 1604pF/m,

ln(’%j ln(%) go1 g0
1
Iy

2 .5.8.85.10712
C20: TEHE Y :27'[ 5-8 25 10 _ 8735pF/m, C()] C()2

ln(’yj ln(é) - -

2 U U
since capacitors are connected in series then S U
> 0
. CioCy _ 160.4-873.5 _ 135.5 pFim. Fig. 12.7

CCyy+Cy  160.4+873.5
The conductance of layers and that of the whole cable per unit length is:
2ny, _2m-5-107°

o :zn(% j l”(% )
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=272 2m-2-107°
20 = =
ln(%j ln(%)
210820 _ 0.454-0.310
g0 +8&2 0.454+0.310
6. The electric equivalent scheme of an installation is shown in fig. 12.7.
7. The current density in the surroundings of point M is as follows:
S§=1/2nry) =1.841-10"/2x-2:107) = 0.0147 A/m*;
heat loss in the surroundings of point M is found by Joule’s effect:
p1=38y=0.0147*/(5-10 %) = 0.432-10" Wim® = 4.32 kWim’;
p2=3817,=0.0147%/(2-10 %) = 1.08- 10" W/m’ = 10.8 kW/m’.

8. The cross-section of the inner conductor of cable is less than that of the outer one
and is equal to S = qu =3.14 mm®. If to assume the conductors are made of aluminum
and permissible current density is 1 A4/mm’, then permissible current through the cable is
3.14 4. Then permissible cable length is  /,=3.14/I, = 3.14-1000/0.1841 = 17050 m.

However, in order to have more or less reasonable efficiency, this length is to be even
less.

=0.310-10 ° S/m;

g0 = =0.1842 uS/m.

12-10 (12.10). A cylindrical capacitor with two-layer insulation (fig. 12.6) operates at
voltage U= 1 kV. Known: the capacitor sizes (r; =0.08 cm, r, =0.2 cm, r;=0.6 cm,
=15 cm) and the insulation features (v, = 1-10"° S/em, & =2, 1, =410"° S/em, & = 6).
Compute the leakage current through the capacitor insulation, find expressions of
conductance g, and capacity C, per unit length.

Answers: [1=0.2634 mA,

g 527310 Sim, Cy=

r r r Py
2 s In=2+"Lin
n Y2 n n & n

2ME0EL 4334 pFim,

7
In 3

12-11 (12.11). A plane capacitor of capacity 10 puf operates at voltage 1 kV. Dielectric
permeability of insulation is & = 4, its conductivity being y= 1-10 '* S/m. Determine the
leakage current between the capacitor plates.

Methodical instructions: formula for capacity C=q/U=¢g¢& S/d gives the ratio
S/d = C/(g¢), then it may be used in identical formula for the capacitor conductance:
g=v Cl(g¢).

Answer: [=0.283 mA.

12-12 (12.12). Two plane capacitors C;= 0.2 uF, C,= 0.5 puF with imperfect dielectrics
are connected in series, they being supplied with voltage U= 1200 V. Dielectric
permeability of dielectrics is: & =2.4, &=4; conductivity is: y = 0.2:10 ™ S/m,
% =1510" S/m. Determine the voltage across each capacitor at the moment of
commutation as well as in the steady-state condition.

Solution. Let’s use the equivalent scheme of the system presented in fig. 12.7. At the
commutation moment, the total current flows through the discharged capacitors in
accordance with the 2™ commutation law. It means one and the same charge passes
through the capacitors g = C,U;= C,U,. However, in accordance with Kirchhoff’s
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voltage law for circuits U, + U, = U. From here, the voltages across the capacitors at the
initial moment after commutation are

U,(0)= v__ 1200 =857V, Uy0)= v__ 1200 =343 V.
1+Q 1+% 1+& 1+E
C, 0.5 G 0.2

In steady-state condition, the total current flows through the conductance g, and g,
which can be found from the formula for capacity of the plane capacitor C = gy&S/d:

-6
g1=71'i=)/1-C1/8081=O.2-10_9- 0.2 1?2 =1.883-10° &;
d, 8.85-107'%.2.4
-6
g2 = 1 Colans = 5102 1012 =70.62:10"°§;
8.85-107'% -4
= 818 _ 0. LIS T00D _y g3pq90s
g1+ 8> 1.883 +70.62

The leakage current and voltages across the capacitor are found under Ohm’s law:
I=gU=1.834-10 %1200 =2.201-10 > 4 =2.201 mA,
Uy =1I/gy=2.201-10>/1.883:10 °=1169 V;

U, =1/g, =2.201-10°/70.62:10 *=31 V.

12-13 (12.13). Two cylindrical wires pass through a
marble board (fig. 12.8) of thickness a =3 c¢m. The dis-
tance between the wire axes 1s d = 20 c¢m, the wire radius
is 7o =4 mm. Supposing the board area is unrestrictedly Fig. 12.8
large, determine the leakage current between the wires, if: y=1-10 """ S/m, U= 240 V.
Methodical instructions. It is possible to use the traditional way of calculation with
the help of formula (12.2). In this case it is necessary to write down the wire potentials
¢ 1, @, taking any value of leakage current / as it is still unknown and then the leakage
current is found from the expression U= ¢@— @,.
However, much simpler way is to make use of analogy between the formulae of
capacity and conductance of a two-wire line in unlimited medium (formulae 12.3):
_ . TT-&eE _ Ty
= 5 gO - .
In(d—-ry)/r, In(d—-ry)/r,
Answers: go=0.6837 S/m, I=gya-U=4.92:10"" 4.

Co

12.2. THE FIELD COMPUTATION BY METHOD OF ELECTRICAL IMAGES
12-14 (12.19). A tram contact-wire line is suspended at height # =5 m, the wire radius
is ro=6 mm, its potential with respect to earth is U = 600 V (fig. 12.9). Compute the wire
capacity with respect to earth; find the leakage current at the length / = 500 m in usual and
foggy weather. 7,=0.2:10"°S/m, y=1-10"*S/m.

Additionally: using analogy with an electrostatic field, find the electric field intensity
under the wire at the height of aman 4, = 1.7 m.
Solution. The principal field characteristics in infinite homogeneous medium are set by
expressions (12.2):

o(r) :I—O, E(r) = ) , )= —jEdr = —1o ‘Inr+A.
2rr 2ryr 2rry
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A contact wire create a field around the plane conducting surface, and in such cases
the field is computed using the method of electrical images. E &
Introduce a dummy wire with current /,=-I,. Work out the ¢

I
voltage at the contact wire received from the action of both current ~§ +TD
-1 Js !
elements (7 >> ro): U=—=""(nry—In2h) =—2 2t Bl
2ry, 2y,  ry ” lEF“
From here, we can compute the wire conductance for two Y < 3
above-mentioned cases y
-6
gu= 20— 2Ma 200210 45056 g, h v 1
U In(2h/ry) In(2-5/0.006) v 0
-T
27V - 104 al
gof= r 27 -10 =0.0847-10 > S/m. Fio. 12.9
" In(2h/ry) In(2-5/0.006) g 1e

By analogy, the capacity of the contact wire close to a conducting surface can be
determined by the expression:

t 2mg, 2m-8.85-107%

0 ==

U In(2h/ry) In(2-5/0.006)
The leakage current of the contact wire at the length /=500 m for two cases is,
respectively: I, = g0, U-1=0.17-10*600-500 = 0.051 4, I;=254 4.
Concerning the additional task of problem.
Using the found value of the wire capacity, it is possible to write down the formula
for the linear charge 7 on the contact wire: 7= Cy-U=7.5-10"%-600 = 4.49-10° C/m.
The field intensity in point A under the wire is computed as a sum of components
induced by both charged axis (fig. 12.9) 7 and —7:
v, T 449-107
2reg(h—hy ) 2meg(h+hy) 27 -8.85-10712

7.5:10 "> F/m = 7.5 pF/m.

E~E+E'=

(0.303+0.149)= 36.6 Vim.

12-15 (12.20). The contact wires of a trolleybus are suspended at height & =6 m, the
wire radius 1s o= 6 mm, the distance between wires is
d = 0.5 m. The line is isolated from earth and operates
at voltage U= 600 V.

Determine the line conductance and the leakage ——
current at length /=500 m for foggy weather y =
=1-10"* S/m.

Find additionally: the mutual capacity C,, of the | I
section of line /=500 m as well as the electric field he| EWIY W
intensity under the wires at a man height 4, = 1.7 m. ¥ :

Answers: the sketch for calculation is given in fig. i 4 *
12.10, E =126 Vim,

= 7y B i | / |
= _
In(2h/ry )+In(d/\(2h)* +d*)
=0.0711-10 " S/m, s
[=2134, v Ry

Fig. 12.10
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e

Cy= =629 10" F/m, C,=3.14 nF.

2k ) in(d N(2h ) +d? )

12-16 (12.21). A two-wire line with bare wires is used to heat the soil in a greenhouse
(fig. 12.11,a). The numerical data are: h=50cm, d=80cm, ro=3 mm, [=20m,
U=36V, y=0.2 S/m. Determine the line current and power.

¥a=0 air +h ¢=0
: o,
XSRS e
Y soil h y
TR T Field
L i coincides
: —I, ' withreal

+,

O alD ™
Fig. 12.11 &>+ —>
Solution. To solve the problem the method of electrical images is used. The scheme for

calculation of the field in the lower half plane is in fig. 12.11,b. Here it is taken into

account that the incomplete reflection coefficient is 4 =V Va_y,
Y +7a
Further we apply the superposition principle. The field pattern is symmetrical with
respect to the vertical plane between the wires, so, its potential may be assumed to be
equal to zero. The distance from any wire to this plane (to reference point) is equal to

d/2. A single wire potential (12.2) is ¢ ~to In /2 .
2rry r

The potential of the left real wire is:
U2 = ® ,+§D r!+(p ”,"_(P rer

Iy, d/2 . d/2 , d/2 d/?2 Iy, d-\Jd*+(2h)?
= [In —In + In —In /= In ,
2my % d 2h \/d2 +(2h)*  2my ¥y 2h
from here the line current and power per unit length of line is:
U-ny 36-7-0.2
Iy= = =3.878 A/m,
" d-d*+(2h) 1,80 80% +100?
Yo+ 2h 0.3-100
Py=U"1,=36-3.878=139.6 W/m. |
12-17 (12.22). There is a voltage U =220 V' between 4 h
a ball of radius Ry=10cm placed in sea-water with  ; Ry
conductivity y=0.2 5m at depth h=2m and a h >
metallic plate (fig. 12.12). Determine the current M
@

flowing between the ball and unrestrictedly large ;
metallic plate. Fig. 12.12
Find the specific heat loss in point M.

272



Answers: the calculation sketch is in fig. 12.13.

1 1 -1 U47T7/ I
U=s—— @Ry —(2h) "), [=—————=56.7T14. o<t 4-«)------ -
477:7/ ( 0 ( ) ) Ro_l —(2h)_1 .4 A
The results of the auxiliary calculations when P
resolving the current density vectors into the A
projections are: ¥ Lo
cosa=2h/ \|h* +(2h)* =2/ /5= 0.8944; S0 A S
Y E Field coincid
sinec = 1/ 3= 0.4472 | Feld coineides
1 1 —
= =——;  8%,=0; g8
4rh? 4rh? g s Hv
' 1 1 ' —
R 7 02 . , h M5
An(h” +(2h)") 20mh Fig 1213
w _ I-sina w _L-cosa
20w To20mn?
! n ! n I ;
5=(5"+8", ) + (5", 45", f - J(1=0.2sina )2 +(0.2cosa )* = 1.047 Alnd’.

Specific heat loss in point Mis:  py = 8*/y=5.48 Wim’.
Note. If there is a wire close to the conducting surface, a two-wire line arises after the
el ryl

while the required currentis — /=g U.

12-18 (12.23). Wires of a two-wire line of voltage U=500 V1 are placed in different
dielectrics as it is shown in fig. 12.14. Compute the leakage current of the line.
Geometrical sizes and the medium properties are as follows:

mirror image, its capacity being — C = . Then its conductance is g =

b

ro=02cm, ri=20cm, r,=40cm, y y
n=210"S/m, 7»=10"S/m. 1 e )
Methodical instructions and answers. The (... ... | ___..__._.__ ™.
problem is solved in the same way as problem 11.19 ' 3 7
after the replacement of 7 by I, and ¢ by y. The ™ > . >
calculation sketches are identical to fig. 11.23,a and Fig. 12.14
b.

ki'=0.333; k'=1.333; k'"'=-0.333; k' =0.667.
Interface point potential is assumed to be equal to zero. The wire potentials are:

I
01 == (In 4 byl D~ ' In—2— ),
2t 21 ntn
021=- 0 I a2y ),
21y, Ty 2r o+

The voltage between the wires is
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)

1 _ r r
U=¢1—¢r==2 [y “(Int+ k" In--~ k' In )=
2r 2

"o i n+n

)7 =1,1.388-10%

- r ¥
—p Ik 2+ k" In
Ty 2r, n+n

From here I, = U/(1.388-10%)=13.603-10 ° A/m = 3.603 pd/m.

12.3. COMPUTAION OF THE GROUNDING CONDUCTORS

12-19 (12.24). A transmission tower is installed on a

hemispherical reinforced concrete foundation not far from

a steep (fig.12.15); Ry=2m, h=25 m. Reinforced 1

concrete conductivity is much higher than the earth

conductivity y=10*S/cm. The short-circuit current

1=1200 4 1s supposed to drain through the foundation.
Compute the resistance of the grounding conductor,

plot the potential variations on the earth surface around

the grounding conductor, find the maximum step voltage.

A pace is assumed to be equ'al to [,=0.8m. Fig. 12.15
Solution. The problem is solved by the , . ,
electrical image method. A sketch to calculate b Y21y +21/-;\ X
the field in the lower half plane is in fig. 12.16. ' ! N\
The incomplete reflection coefficient is taken v
into account —  k=1"Ta—1. Field coincides |
Y +7, with real one ! : i
Further we apply the superposition principle. h h
For a single ball with current / in a  Fig. 12.16 ' i
homogleneous medium, potential is ‘ o,V A
=—— (12.1). In our case, current 2/
*= o 12D 1600
is drained through the ball, that’s why J \
1 1200
vt [
2myR
Grounding conductor potential is - Fie 12,17 / 800\
=0 "y ® " _ i 1g. . / \
— L v+ h )= 1656 . /a0
2my
Grounding conductor resistance 1s 5
—
" =¢Tg= 8.28 Ohm. -30 20 -10 0 10 20 x,m

Let’s take a coordinate axis Ox on the earth surface from left to right (fig. 12.17). The
coordinate origin coincides with the centre of the left ball. Potential of any point on the
earth surface (with the exception of points (—Ry) <x<(+R,), the potential of which is

equal to 1656 V) for x<his ¢(x) =2L (x| '+ 2h-x)7").
Ty
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As it 1s seen from graph fig. 12.17, the potential decreases sharply in the area of

negative “x”. That’s why the maximum step voltage is observed between points a and
b shown in fig. 12.16.

Upmax = @a— Qb ZZL (Ro '+ (2h+Ry)™" —(Ry+ 1) — 2h+ Ry+ 1)) = 1458 V.
Ty

12-20 (12.25). A grounding conductor consists of two at
cylinders (fig. 12.18), the following data is known y
h=1m, d=15m, ry=0.1 m, y=0.1 S/m. The step h ll <_I
voltage between points a and b (I, = 0.8 m) must not
exceed 50 V. Compute the maximum permissible -%-
current drained by the grounding conductor.
Methodical instructions. Suppose [ is the current
drained per unit length. In accordance with the electri-
cal image method, the field of two cylinders (each with current /y/2) in a heterogeneous
medium (soil-air) is presented by the field of four identical cylinders in a homogeneous

Fig. 12.18

medium. The potential of a single cylindrical electrode (12.2) is: ¢ =

where H — distance to the collecting electrode. The given step voltage is:
2-1 H? H?

Uab:q)a_(pb:4 (O I 2, .2 2 2)=

mNdE AR b (d 1, R L

2 2 2 2
1, ln\/(d+zp) PR LY 4 |

2my d*>+h*-h G I|.a >
From here, the required current is ! :
Iy= Yap 277 “seadm. L
In \/(a’+lp)2Jrizz\/lpz+h2 —4@
d*+ b Fig. 12.19

12-21 (12.26). A ball-shaped grounding conductor of radius ry=28 c¢m is buried into
homogeneous soil at depth A=2m. Current drainage i1s /=1504 (fig. 12.19). A
collecting electrode is situated sufficiently far. y=1.2-10"2S/m. Determine the
resistance R,, pointing out what factors it depends on; find the maximum step voltage
U, on the earth surface. /,= 0.8 m.

Answers: the grounding conductor potential is ¢, =4L (l + ij= 3820 V,
Yy \ 7o

. : : I (1 1
its resistance is R, =—— | —+— [= 25.5 Ohm,
dry \ 1y
the grounding conductor resistance depends on its size, burial depth and the soil
conductivity; if /& >> r, then resistance depends mainly on the conductor radius and the

soil conductivity.
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Step voltage is Up=(pa—(pb=i L =6347.

2ny \ b W+

12-22 (12.27). For the grounding conductor described in problem 12-21, determine its
resistance and the step voltage for the following cases:

- current / draining from the conductor is increased by 1.5 times;

- depth /4 is 1.5 times deeper;

- radius r( of a conductor is increased by 1.5 times;

- the soil conductivity y is increased by 1.5 times because of wetting.
Answers are presented in table 12.1.

Table 12.1
Initial data | ¢@,=3820 ¥V | R,=25.50hm | ¢,=3553V | ¢,=3490V | U,=63 V
I'=15I 5730 25.5 5329 5234 95
'=1.5h 3727 24.8 663 643 20
ro'= 1.5r, 2646 17.6 995 931 64
y'=15y 2547 17.0 663 621 42

12-23 (12.28). Current of the grounding conductor described in problem 12.21 is
increased by 1.5 times. Determine:

- radius 7y’ of a conductor to obtain the same step voltage U,;

- burial depth /' of a conductor to obtain the same step voltage U,
Answers:

- U, does not depend on the conductor radius, that’s why it is not possible to
maintain the same step voltage by changing the radius 7;

- in order to determine the depth 4’ necessary to maintain the same step voltage
U,= 63.4 V when the current increases by 1.5 times, let’s rewrite the formula for U,
(see problem 12.21) in the following view

15150 | 1 I 1 I
U= | —— =2984-| —— =634V
" 210012 [h I 2 +0.82J {h N5 +O.82J
LI S—Y )

h Jen')? +0.8°

Finally, we obtain the equation of the 4™ order:
(h')* —94.34(h')° + 0.64(h'")* — 60.38h' + 1424 =0, h'=2.41 m.

blla A
x ] | I
\ _ a) b) {:} i \,_;_,.z" -
, . vy iy ! h
- b a c i 1
®I.Sh i "J\‘ ) !
i o o |
. 1 I
Fig. 12.20 “15h T 57
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12-24 (12.29). A ball-shaped grounding conductor (fig. 12.20,a) of radius ro=28 cm is
buried at the depth £ =2 m in soil with conductivity y=1.2:10" S/m at distance 1.5k
from the steep. /=150 4.

Determine the conductor resistance R,, find the step voltage on the soil surface U,
Answers: the calculation sketch is in fig. 12.20,b; conductor potential is

@, = ! + d + ! + ! =4140 V;
4nyry 4my-2h 4wy -2-1.5h 47”,\/(2;1)2 +(3h)2
resistance is R,=27.6 Ohm,
step voltage is Up=954V, U,.=2427V. Ila b

= e T ‘_ﬁ777
}

12-25 (12.30). A grounding conductor in the form of a Y [ L] Iy
lengthy pipe is buried into soil vertically (fig. 12.21). The % i—"
collecting electrode is situated at the distance H = 100 m.

Iy=104/m, d=10cm, y=0.1 S/m. A (1]
Determine the conductor resistance R, as well as the step
voltage U, Fig. 12.21

Answers: a conductor in form of a lengthy pipe creates an in-plane field. It is not
distorted when interfacing with air. Then, current flows away from a conductor along
the radial lines.

The conductor potential and its resistance per unit length are:

ly . H'=121K R,=12.1 Ohm'm.

The maximum step voltage i1s U, = ¢, — ¢, = n —In
pvotas p b l,+d/2

)=45.1V.

12-26 (12.31). A grounding conductor in the form of a lengthy
pipe (fig. 12.22) is buried into soil vertically, not far from the |, b aﬂ,.]\\ %
steep. The collecting electrode is situated at the distance I, t—i l ' y 7
H=100m. Iy=10 A/m, d=10cm, y=0.1Sm. +;f3
Determine the conductor resistance R, as well as the step h gb :
voltage on the soil surface U,,. i
Answers: the conductor potential and its resistance per unit 4, ’
2
length are: ¢, = o -lnH—= 172V, R, =172 Ohm-m. Fig. 12.22
2y hd
The maximum step voltage is
2 2
Uy = pu— oy =0 an 2 _ 1 A )=484 V.
2y hd (1,+d/2)(2h+1,+d/2)

12-27 (12.32). A grounding conductor is made in
the form of a cemicylinder and it is half buried into
soil (fig. 12.23). The current draining from the
conductor is Ip= 50 A/m. The collecting electrode is
situated at distance H = 100 m.
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ro=02m, y=0.1S/m.
Determine the conductor resistance R,, find the step voltage on the soil surface U,,.
Answers: the conductor potential and its resistance per unit length are:

0,20 1n " 989y, R,=19.8 Ohm-m.
Ty )

ry +1
The step voltage is U, =I—0-lnu= 256 V.
Ty 7
12-28 (12.33). A grounding conductor in the form of a pipe is buried into soil
horizontally at depth 4 (fig. 12.24,a). The

collecting electrode is situated at distance a) b) I/J\ I
H=100m. b all -
Iy=10A4/m, ro=5cm, h=1m, y=0.1S/m. TTAZZXT7A77 & ¥ . h

Answers: the calculation sketch is in |
fig. 12.24,b, the conductor potential and

Determine the conductor resistance Rg h Ly 7 Field coincides ¥
as well as the step voltage on the soil with real one | /
surface U,

P g ) e . 2
I

: : : 1
its resistance per unit length are: @, =2—0 -[Zn£+ In %] =184V, R,=18.4 Ohm m;
Ty To

NUEES b
=788 .

12-29 (12.34). A grounding conductor in the form of a pipe is buried into soil

horizontally, not far from the steep (fig. 12.25,a). The collecting electrode is situated at

distance H = 100 m. Iy=104/m, ro=5cm, hy=1m, hy=2m, y=0.1Sm.
Determine the conductor resistance R, as well as the step voltage on the soil surface

U,.

Answers: the sketch for calculation is in fig. 12.25,b,

the conductor potential and its resistance per unit length are:

0o = iy oy H gy il ] =284V, R,=28.4 Ohm-m;

2y n 2 2y Jom)? +(2h)>
the step voltageis U, =134V, U,,.=13 V.

the step voltage is U, = Lo ‘In
Ty

|1 a) b) [ ! !

R o ; o - J//. s /T\' — {:} F———
h| & '

—‘M : bac ' ’ “hl
P ] A AV N

.___] —_ 'l\.--“[}'

Fig. 12.25 ",
2 2
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13. MAGNETIC FIELD
13.1. THE FIELD COMPUTATION WITH THE AID OF R
THE INTEGRAL CORRELATIONS. APPLICATION OF “’QZ\E
THE SCALAR MAGNETIC POTENTIAL. L N
13-1 (13.5). Calculate the magnetic field intensity created by a / =
single cylindrical current-carrying conductor / in a homogeneous -i--:---- - -------
medium in point 4 at distance r from the conductor axis I
(fig. 13.1). ! )
Solution. Let’s draw a circle of radius » through point 4 and el
apply Ampere’s law in an integral form §H -di=1. Fig. 13.1
L

As 1t 1s seen from fig. 13.1, because of symmetry, vectors H and dl have the same

direction in all the points of the circle, the intensity A having one and the same value.

So we replace the scalar product of the vectors H and dl with the product of their
absolute values, at the same time we take / out of the integral sign as a constant. We

a have: §H-di=§H-dl=H§dl=HL=H2mr=1I,
2 b
_® ® L L L
A 3 I
from here H=——-. (13.1)
2nr

13-2 (13.6). Calculate the intensity of a magnetic field created by a
Al LT a4 flat bus-bar carrying the current / and having the sizes axh, h >> a in
E{ a homogeneous medium in point 4 not far from the bus-bar
— (fig. 13.2).
Solution. Let’s draw a rectangular loop 1-2-3-4-1 through point 4
around the bus-bar and apply Ampere’s law in an integral form:

v 4 —
Fig. 13.2 fH”WZL
The regular magnetic field is created in points of segments 1-2 and 3-4 situated

closely to the bus-bar surface. As the bus-bar height is much bigger than its thickness,
the result of the integration along sides 1-4 and 2-3 can be neglected. In the points of

sides 1-2 and 3-4 the directions of vectors H and dI coincide, the intensity A having

one and the same value. Then we replace the scalar product of vectors H and dl with
the product of their absolute values, at the same time we take H out of the integral sign

as a constant. We have: §ﬁ~;7=H-112+H-Z34=H-2h=I; szl—h. (13.2)
L

13-3 (13.7). Calculate the magnetic flux induced by a
single conductor in a homogeneous medium through the
rectangular frame 4B of length /, long sides of which are
parallel to the conductor (fig. 13.3).
Solution. Magnetic flux @ through the frame AB is [
determined by the flux through the field tube restricted -..

B
by circles of radiuses ry and rg: @ = [B(r)-1-dr.

r'4
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However, in accordance with (13.1) H :L; Br)=p, H= u, L Thus,
2mr 2nr

,u]ll i’y
2r ry

D= (13.3)

Note. If start turning the frame around its axis, the maximum
I flux flows through the frame when it is situated perpendicular to
Fig. 13.4 the force line (along the radial lines).

13-4 (13.8). Calculate the external inductance of a two-wire line (fig. 13.4). The wire
radius and the distance between the wires are ro=1cm, d=1m.
Solution. The external inductance is caused by the magnetic flux between the wires.
Since one and the same current flows through wires, the magnetic fluxes induced by
wires are identical. The flux of one conductor is in accordance with (13.3)
®=‘u01'llnd_r0 .
2n Yo

The required external inductance per 1 m of the line length is:

20 _pl | d-ry _4n-107-1, 1001

L= In =1.84-10 ° H=1.84 uH.
I = T U 1

13-5 (13.9). Calculate the field and
inductance of a coaxial cable (fig. 13.5).
Current / flows through the cable.

Solution. There is no magnetic field
outside of cable as X/=0. Thus, it is
possible to set three different areas
(denoted with Roman numerals in
fig. 13.5,a ) with magnetic permeability p,1, tapo, Uas-

In order to calculate the field we use Ampere’s law §ﬁ -dl=3I.

1. Areal— 0 <r<r (fig. 13.5,b). §H-dl=H2mr
L

.
=17, H- ]2-r; B=yal-H=uL112-r; dd = B-das =al .1.qp.
o 27 2 2
Magnetic flux d@ inside the inner conductor links only with the part of current /,
2 2
which is proportional to ratio —- r ; that’s why the magnetic flux linkage is d = do- "
Vl rl
The internal inductance of the 1* area is calculated by the formula
i
[aw(r) :
Yo el s Bal P pgl
L, > fr dr 7
1 I 2m" Koo 2mt 4o 8

and it does not depend on the conductor radius.
2. Areall — rn<r<r,.
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si=r H=—1_. p=Hal. sp—4p=pas=Fal |4
2mr 2mr 2mr
)
Jd'f’(r)
. . _n _ Mgl o1
The external inductance 1s  L,= = In—=

1 2T n
3. Area III— r<r<r;.

22 2 2 2 2
==t 27 ( 5 r2) H:L%; B:“a_ﬂ%; dCD=‘u"—3I%-Z-d1/,
(rs—13) 2mr r§ —r; 2mr ry =1 2mr ry =3
This flux links with current / and with part of the reverse current which is equal to
2 2
]r2 rzz.
5 =1
22 s2_ 2
That’s why the elementary flux linkage is d¥ =d®-| 1-— 22 =do- 32 5
3=n 3 =n
The internal inductance of the 3" area is:
k]
[d¥(r) l .,
L3=r2 — Hg3 (7"3 —r ) dr= ) :
! 2r(ry rz) r
= Has! [I d 2r2 _[rdr+fr -dr] = H f -
2 3 (r) 1 '
27T(r3 - 2) r r :
S Y ML S e SRR T Y P
2r(rf -1t )? 7 4 Fig. 13.6 .
4 2 .2
:/Ja3l 3 B 35 -1

2n (’”32 —’”22)2 n’”z 4(’”32 —7’22) '
The external cable inductance is — L,= L,; its internal inductance is — L;= L;+ Ls;
the total inductance is— L=L;,+ L, + L.
The dependence diagram H(r) is presented in fig. 13.6.

The second way of coaxial cable inductance calculation.
1

2m
The energy of the elementary layer dr (fig. 13.5,b) at the distance » from axis is:

2 2 2
aw =2y P omtdr =y L o mdr = py L
2 2 47r2r14-2 4o

W 4 4
L1=%=£ IdW 22ﬂa1 jr3dr= /Jali 1 —0 :“Lll'
1 27 4 87

l1.Areal— O0<r<r. H=

2'7".

2. Areall — r<r<r,.
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2 I
2I=1, H=L; dw = uazl—l27rr dr = U, Il dr
2mr 4?2 At r
n
L 2 ,Llazl l J'dr :uaZZl )
I ag AT 2T n
2 .2
3 Aralll— p<r<p H=—"537"1
2mrry =y

2 i —r 2 w2 —r
szua3£—i(3—)2m” dr = g gl — (3—)dr.
a2 2 (5 —13 ) 4n(rs —ry ) r

2
L3=£2ua3 Il Jr3 dr-2r3 _[r dr+_[r dr]=
1 4n(rs _’”22) n ! " rz |

_ :ua3l
= [r —r (r —r )+ (r —r )]
o (r32 B 2 )2 3 , 3(r3=13 377

dS =t
13-6 (13.10). Compute the internal inductance of a %
rectangular bus-bar (fig. 13.7). = =z [
Solution. The current density in a bus-bar is — 6 = I/(a"h). L X
In accordance with Ampere’s law H-2h =62xh, from dx
here H=dx, it means the intensity H inside the bus-bar ¢ [
depends on x by a linear law. On the bus-bar surface a
H=6%a=L2-1
ah 2 2h

The induction inside the bus-bar i1s B = pu,H = youdx. The magnetic flux through the
cross-section dS=1[-dx is d® = B-dS = pyudxl-dx. This magnetic flux links only with

A

Fig. 13.7

the part of current /, which is proportional to hh);2 :2_x’ that’s why the elementary
a a

flux linkage is d%¥=d® 2_x The internal inductance is

a

a J/' 2 2 a J/' 2 )
d¥ —pyudl | x“dx
L-=£= o _4a 0 =2H0H1x3a/zzﬂoﬂla_
VA | Sah 3ha* |0 12
The internal inductance does not depend on the bus-bar size if the proportion A/a is

kept.
If there are two bus-bars with oppositely directed currents (fig. 13.8,a), the bus-bars
happen to be connected in series and their internal inductance is

L,~2=2-L,.=“06‘Z“. ) Lyl b) Lol
But if currents directions coincide (fig. 13.8,b), the
bus-bars are connected in parallel and then

Hopla :
Lis=YLi="—"—. Fig. 13.
5 4l ig. 13.8
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13-7 (13.11). Current / flows through a metallic hollow pipe placed in air; the magnetic
permeability of the pipe material is u, (see fig. 13.9). Calculate the magnetic field
inside, outside the pipe and in the pipe body.

Solution. Ampere’s law in an integral form is used for calculation.
A circle of radius 7 is assumed as an integration loop, the circle
centre coincides with the pipe axis. For the area inside the pipe
(0 <r <), total current is zero, that’s why here both the intensity H _
and the induction B are equal to zero.

In the pipes body (1 <r<r,) §]7-d7=§H-dl=H§dl=H27rr,
L L L

while the total current is equal to S, where 6 — current density in
the pipe body, S — the ring area with radiuses »; and r.

Since 6=%; S= 71'(7’2—7'12), then
n(ry =n)
2 2 2 2
H=5 S__Ur 3 ”12) and B=‘u0/,t,H=u0ur](; ;1 ).
2 2mr(ry —1) 2mr(ry —1)
Outside the pipe (1, < r < ©) §H -dl=H -2nr, while the total current is equal to 7,
L
1
accordingly, H - and B=HoHL
2mr 2nr

13-8 (13.12). A plane triangular frame (fig. 13.10) the

number of turns in which is w =400 is placed in a medium
with permeability ¢ = 10 in the same plane with a lengthy
circular conductor of radius 7, Sizes: a=10cm,
b =20 cm, ¢ =15 cm. Determine the mutual inductance of
the conductor and the frame.

" v v .
Solution. By definition M,=—12=M,,=—2L= M. In this 1 a -
I, I, ) 1H ,B
.. : Fig. 13.10

case it is more convenient to set a current / through the
conductor and calculate the magnetic flux through frame.

Let’s choose an elementary area in the triangle dS=y-dr (hatched strip in the
diagram) at distance » from the conductor and obtain the formula for magnetic flux

through it: y=kr+d, k:—%; dz%(a-i-b);

1 1
-1, B yp-pas-Bydr=""" il byar
2nr 2nr m b b
r=a+b a+
.U.UOI
D= |do = r+a+b dr _
ria 2nb I (- )
uuo lc w0 ugle a+b
[-r+ (a+D)In(r)] Py [-b+ (a+b)ln——o];
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¥ =@ Mz%—m[ b+ (a +b)lna+b

]=77.75 uH.

13-9 (13.13). The energy of the magnetic 2) | d |
field between wires of a two-wire ! ! I&}
overhead line per wunit length is l :

1

\"J

T

- ——
3
ran W

W=6-10"J/m (fig. 13.11,a); furthermore,

: ETI < 7 >

| cl|l | ' '

ro=3mm; d=40 cm. ! \{_/
It is required to: a) determine the 7o | F— [ :

current through the line wires, plot the la b |
variation of the magnetic induction Fi

. ig. 13.11
between wires; b) compute the mutual
inductance of the line and a rectangular frame with the number of turns w = 200, which
is in the same plane with a line, furthermore, a = 10 cm; b =20 cm; ¢ =30 cm.

Lyl?
2

Solution. The energy of the magnetic field between the line wires is W=

9

where L, — external inductance of the unit length.

Suppose, the current / flows through the line wires as it is shown in fig. 13.11,b.
Under Ampere’s law with application of the superposition principle, we determine the
components of the magnetic field intensity A" and H'"', their direction being determined
under Ampere’s rule (right-hand screw rule), they being perpendicular to the plane of
two-wire line. Then we determine the magnetic induction and magnetic flux between
the wires which is external with respect to wires. For that, we mark the distance from
the axis of the left wire to the point under consideration as 7|, and that from the axis of
the right wire — as ;. Then in accordance with (13.1) and (13.3), we have

— ! - H' = I . Br::uOI; B"=“01= :UOI

- ’ ’

21 27y 27 27r, 2n(d—-1n)
Hol'llnd_’”o; D= + P'= 'uo[lli’l
2r Ty T 0

P =" = d_r().

The graph of the magnetic induction variation between wires B = B'+ B'’ is presented
in its approximate view in fig. 13.11,b.

tol 1, d

T Yy

In this case d >> r,, that’s why it may be adequately assumed that @ = a

while the external inductance of the unit length line is

-7
L= % _Hoy,d _4m 107, 04 60107 tim.
0.003

I-l1 ©n r T

Then the line currentis /= /2L—W =78.31 A.
0

®12

. . ) w .
The mutual inductance between the line and frame is M= , where @, is a

magnetic flux linked with the frame turns. We determine it under the formula (13.3):
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cDlz,:/,tol-clna+b; @12,,:,1101-0111 d—a :
2 a 2 d—a-b
I _ I _
D= Dy + Dy’ = Ho C(lna+b+ln d—a ):llo cln(a+b)(d a)'
2r a d—a-b 2r a-(d—a->b)

Then mutual inductance 1s
pm=Howe, (arb)(d=a) _, 37005y
2r a-(d—a-b)

13-10 (13.16). Direct current / = 80 4 flows through a con-
ductor of a two-layer coaxial cable (fig. 13.12). =3,
w=_8, r=3mm, r,=8 mm, r;=15mm, ry= 18 mm. Both
the conductor and sheath are made of non-magnetic :
material. Fig. 13.12

Plot the magnetic induction variation inside the cable. Compute the external
inductance of the cable / =25 m long, find the energy stored in the magnetic field.

T
BT 1778 rTif 0<r <,
2711
I 48107
Hito! _4.8-10 Tif n<r<r,
2nr r
-4
Answer: B(r) = ,uz,uolzl.28 10 Tifr,<r<m, r[m];
2nr r
tol(rf —7r*) 0.162-(3.24-107* =)
0 42 = Tif n<r<r,
2mr(ry — 135 ) r
0if r>ry. 0.02 |
i Fig. 13.13
graph B(r) 1s presented in fig. 13.13; 015 A
L=410"H;, W=0.128 J. \

S 270 \

! B(r) 0.01 ) \
30° ; 30° \
Q ; Q
30° ! 30° 0.005
a L a
b 5 b 0 S —
Fig. 13.14 0 0.005 0.01 0.015

13-11 (13.15). A straight conductor and two frames with the number of turns w=300
are in air in one plane (fig. 13.14). Sizes: ry=3 mm, a=5cm, b=15cm, ¢ =30 cm.
1) Compute the mutual inductance between the conductor and the right frame.
2) Compute the mutual inductance between the conductor and the left frame.
Answers: 1) h(r)=2-(0.577r +0.1211) m,
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dS=drh(r), B=pllQm). db=B5ds=1"0577+01211) %
r

T
r=b < w-®
@ = jch 17.63:10° Wb, M=""==22.89 uH.
2) h(r)=2-(— 0.577r +0.2366) m, dd=B-dS =12 0.577r+02366) .
T r
r=b 5 w-@®
D= jdcb [-8089-107 Wb, M=——=2427 uH.

13-12 (13.17). Compute the magnetic voltages U, s,
Uncp, Unec of the field induced by a single current-
carrying conductor / in a homogeneous medium with
magnetic permeability p, (fig. 13.15).

Solution. The magnetic voltage between points 4 and B
B> —

which are on the radial line is UMABZJH -dl .
A

In all the pomts of segment 4B, the angle between the
vectors H and dl is equal to 90°. That’s why their Fig. 13. 15
scalar product is equal to zero, the voltage U, 5=

= @, — @ = 0 is zero too. Accordingly, scalar magnetic potentials ¢, and ¢ are equal to
each other, hence, radial line is an equipotential line.

D> -
The magnetic voltage between points C and D which are on the arc is U,,cp= j H-dl.

C

In all the points of the arc CD the angle between vectors H and dl is 0°, their scalar
product may be replaced with the product of their absolute values. The value of

intensity H is the same — =2— , S0, it may be taken out of the integral sign, while
nr

the integral of dl gives the arc length CD:

D
1
Uncp=H- Idl:H'ZCD:— ra - L ‘a, o frad].
c 2nr 2r
G> —
The magnetic voltage between the arbitrary points £ and G is U, zc= jH -dl. In the

E
areas free from conductors, the magnetic field is a potential one, so, the magnetic
voltage does not depend on the integration paths if they do not form the loops coupled
with currents. That’s why it is reasonable to choose such an integration path EG so that
the integral evaluation is simple — along the radial lines and a circumference. Thus,

I 1
Unec= Upgr+ Uppg=—— "B+ 0=——"L.
2r 21

Conclusions. 1. The points lying on the line radial to a conductor have one and the
same potential, 1.e. a radial line is equipotential one.
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2. Magnetic voltage depends on the angle between points and does not depend on the
distance from the points to a conductor. The voltage for the arbitrary curve LN is

calculated under formula Unun== 2L v, (13.4)
T

here y — the angle in radians, at which the arc LN can be seen from the conductor
centre.

3. If the integration is along the forced lines, magnetic voltage is positive, otherwise

it is negative.

13-13 (13.18). The current 7/=3604 flows through a
conductor of a coaxial cable (fig. 13.16). Determine the
magnetic voltage between points 4 and B, if a=30°.

Solution. The magnetic voltage between points 4 and B is

B_._,
determined under the formula UmAgsz dl. Let a path of
A

integration be A-C-D-B (fig. 13.16), taking into account that
the intensities in the different magnetic layers are different. Fig. 13.16
Then

B_,  C_,_. D_,_. B_, .
UmAB:J.Hdl:J‘HdZ‘{‘ J.Hdl‘F J.Hd = —Hl'lAC—Hz‘lCD,
A A C D

B_._. - —
where jH dl= 0 because of the perpendicular vectors H, and d/;
D

f—l{ and Fz — intensities in the areas with 1y and 9y, respectively;
voltages H-/ are taken with minus, because the directions of vectors H and dI

are opposite.
We determine the quantities A, and H, applying Ampere’s law

fH-di=H, - =4 +H2-3”2'rA =”'2VA (H,+3H,)=1
L

As the normal component of vector B is continuous on the interface of two
mediums, we have uyH; = 9uoH,.

. . : 31 1
Solving two latter equations simultaneously, we get Hi=——; H,= .
2mr 67y

As l,c=r4 a, where o is expressed in radians and [cp =ry 5 , we get

UmABZ—H]'lAC—HQ'lC =—3—['I” -Z_ ! 'VA'EZ_—IZ—IZOA.
2nr 6 O6mry 2 3

13-14 (13.19). A single current-carrying conductor /= 10 A4 is placed on the interface of
two mediums (fig. 13.17): wy=2, w=4, p;=6. The point coordinates are
x4=y4=10cm, xp=—5 cm, yg=—15 cm. Itis required:

1. Compute the magnetic field intensity in points 4 and B as well as the magnetic
voltage between them.
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2. Supposing A4 and B are the intersection points of
sides of the rectangular frame / = 1 m long and the number of
turns w = 100, find the magnetic flux through the frame and
the mutual inductance between the conductor and the frame.
Solution. Let’s calculate the distances from the conductor
centre to the points 4 and B:

ry= 104/2=14.14 cm, rg =v5% +152 =15.81 cm.

In order to compute the magnetic field intensity in point 4,
we draw a circle through it, the centre of which coincides
with the conductor axis. On the grounds of Ampere’s law, B B Fig. 13.17

i 4 2
one may write down: Hl-g rqyt+ Hy: ?rA +Hymory=1,

where H,, H,, H;— the field intensity in the medium with relative permeability p;, 1o,
L3, respectively.

The interface is radially situated, that’s why on the interface the vectors B and H
have but a normal component. Boundary condition is B;,=B,,=B;, from here
wiHy = o Hy = 3 Hs.

Thus, H;: (_,,A+ﬂ 2_7r A+ﬂ -nry) = I, from here
3 My 3 M3
T U 2r
H,=H,=1/(—rj+— — A+— mry) =10-3/((1+0.5-2+%-3)-7-0.1414)=22.51 A/m.
3 Hy 3 H3
Similarly, the intensity in point B is:
HB:H3:'u1 Hy= al 1/(— B+ﬂ n BJrﬂ ") =
M3 M3 Hy 3 M3

=10/((1 +0.5:2+%-3)-7-0.1581) = 6.71 A/m.
The magnetic voltage between points 4 and B in clockwise direction (opposite to the
force lines) may be calculated under the formula (see problem 13.13):
2r
Unap=—Hi'ryoo— Hy'ry ?—H3 ra B

H]'VA = 30/(371') Hz'l"A = 15/(377:) H3’I"A = 10/(377:)

a="_ arctg—AZ— r_r rad, = arctg—— arctgi— 0.3218 rad.
3 vy 3 4 12 Vs 15
Thus, Upgz=—-0 % 1327 10 43518 5244

312 37 3 3n
The flux tubes have the form of a ring around the conductor, that’s why the magnetic
flux through cross-section AB is equal to the magnetic flux through the cross-section
A'B, where A’ is the point at a distance r, from the conductor centre but within the

medium with ;. The magnetic flux value in accordance with (13.3) is

I -1
,ua—3h’lri, where [3:H3‘I"A'27T, Mo = H3° Ho.
2r ry

CD:
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510 1581

Thus, @ = uy-pyHsy'ry lln——6-47r-10 ‘1-In m—0893 10 wb.

ry 3
-6
The mutual inductance is M = Wl(pz 100 0‘?33 10 $093-10 =893 uH.

13-15 (13.20). Direct current /=80 A flows along a 2r0| Y o

two-wire line (fig. 14.22): ry=2 mm, d =30 cm. % B X

Compute the line field, find the energy stored in Q%L\ ‘

the line /=1.5 m long. Find the magnetic voltage 1 1 : )

between the points ! ] 4
A[40 cm; —10 cm] and B[10 cm; 10 cm]. Fig. 13.18

Solution. The line field is calculated by the superposmon method. Then, the magnetic

field intensity in any point is determined as H=H'+H", where H'is a component
induced by the left conductor, while H" is induced by the r1ght conductor.

a) Ty
' O~
T &
ﬁ’ HH 1
Fig. 13.19

In the points lying on axis x, the field intensity is determined easily as the

components H'and H" have the same direction (fig. 13.19,a), and every component
can be calculated with the aid of Ampere’s law. Thus, in the space between the wires

I [ A— I .
27(0,5d +x)’ 27(0,5d —x)
H=g+pg=L 1 1 . I 2

2 05d+x 05d—x 7 d?—4x>
The energy of the magnetic field between the wires is W= l/zLI *, where L is the
external inductance of the line of the required length /. The latter one is (see problem

13.4): =ty d=r.
T Ty

2 . —_— . _7 . 2 . —_
W= tol llnd o _4m-107"-80 1'51n30 O'2=9.608'1073 7
2r %o 2r 0.2

To determine the magnetic voltage between points 4 and B we again apply the
superposition method U, 3= U, 45" + U,us'', where U, 45" 1s a component induced by

the left conductor, while U,,5"" is induced by the right conductor. In accordance with
(13.4) and fig. 13.19,b

-1
Unag' =— (a1 + By),
2r

oy = arctgAz 0.180 rad;, B, = arctgﬁz 0.381 rad,
0.5d + x 0.5d + x5
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Unas' =_—80(0.18 +0.381)=-7.14 A.
2r
Similarly, the component U, 45" induced by the current of the right conductor (fig.

13.19.¢) is Upnas” Z;—[(Olz +Van+ B),
T

[0.5d —x 4| _ 1.190 rad;, p,= arctgy—B= 1.107 rad,
|yA| O.Sd_.xB

Unnas" 2_2—80(1.190 + 1.571 + 1.107) =—-49.25 A.
T

o, = arctg

Then Ui = Upus' + Uy’ =—7.14 —49.25 =—-56.39 4.

13.2. COMPUTATION OF THE MAGNETIC VECTOR POTENTIAL AND ITS

APPLICATION a) I b) I
13-16 (13.21). Direct  current 7= 100 4 4 4
flows through a bimetallic bus-bar

(fig. 13.20,a). It is made of the material with ) Z
relative permeability p =6 and is located in Bk
air. The conductivity of the bus-bar layers is >0a e
3y and y. Size is a =2 mm. Plot the vector Ijof x
potential and the magnetic field intensity 3;/\’ |y y
versus coordinates. Applying the magnetic N

vector potential, calculate the magnetic flux

through the left part of the bus-bar per unit a\a Fig. 1320 VY

length.
Solution. 1. Determine the bus-bar current density (6, — in the left part, 6, — in the right
one). On the one hand, the bus-bar current is equal to 7= &;-50a” + &-50a’.

On the other hand, as the current density vector has only a tangent component at the
medium interface, on the ground of the boundary condition E;,=FE,; and Ohm’s law in
a differential form 6=y -E, we obtain additional equation 6,/(3y) = &/y or 6,=30,.
Thus, 48,-50a’ =1,

8 = 1/(200a%) = 100/(200-4-10 ®) = 125000 A/m*; & = 375000 A/m’.

2. The field is calculated applying Poisson’s equation:

V24 =- Uy’ 5.

Cartesian coordinate system axes are directed as shown in fig. 13.20,b. The current
density vector is directed along axis z, that’s why the magnetic vector potential
possesses but a single component also directed along axis z. Furthermore, as the bus-bar
height is a lot bigger than its width, all the values depend on but a single coordinate x.

2 2 2 2
Thus, 4,=A4,=0, a—A=a—A= 0. With account of this: V %4 =8 124+8 124+8 12426 f )
oy 0z ol ox
Perform the double integration of the latter equation for four field areas:
0°4
1) x<-a, =0, A =Cyx+C,
ox
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2) —a<x<0,

=—Ua 6, A =—/J—2a51'>€2 + Cyx + Gy,

o
2
A
ox 2
2
4) x>a, 0 A4=0, Ay =Crx+ Cs.
o

3. The equations obtained are not sufficient to determine the integration constants
C,+Cg, that’s why we use formulae for the magnetlc field 1ntens1ty Vector potential is

connected with intensity in the followmg way: rotdA =B = Uy H.

- - - -
i j PARE ik y
4 =|0 0 o/ |=|0 R
However, rotA éx Ay éz éx 0 O Jj P
N 0 0 4
Then HZ—}LG—A and H——La—A.
U, Ox . Ox
Thus, H1=—ﬁ; H, = 6x— C3 ;. H3=68x— Cs : H4=_ﬁ,
Ho M- Ho M- Ho Ho

4. Let’s write down and solve the equations to determine the integration constants.
At x =—a in accordance with Ampere’s law (H_,-2-50a =—I — a minus sign appears
because on the left side of the bus-bar the intensity is directed oppositely to axis y):

Hy(x=—a) = 1/(100a) =—C% ,
0

pol 471077100
100a  100-0.002
At x=-—a inaccordance with the boundary condition H,,= H,,
Hl(x =—a)=Hy(x=—a) or —C/uy=0"(—a)— C3/(/,tuo) from here
Cy =61 (— a) upo+ Ci-p=—375000-0.002:6-47-10 " + 6.283-10 *-6 =—1.885-10 .
At x=0 Hz(x O) H3(X O) or C3 C5
At x=a Hiy(x=a)=Hix=a) or & -a— Cs/(uuy) =— Ci/uy;, from here
Cy;=—8a yy+ Cs/u =—125000-0.002-47-10 " + (— 1.885-10 °)/6 =— 6.283-10 *.
Assume thatat x=0 A,(x=0)=A43(x=0)=0, then C,=Cs=0.
At x=—a Ai(x=—a)=Ay(x=—a) or
Ci(—a)+Cy=—"%1,8"(—a)*+ Cy(~a)+ Cs, fromhere
Co=—Yub (—a)* + Cy(—a) + C4— Cy*(—a) =
=—1%-6-47-107-375000-0.002*+ 1.885-107-0.002 + 0 + 6.283-10*-0.002=-6.283-10".
At x=a As(x=a)=A4(x=a) or -— ‘/z,uac‘iz'a2 + Csa+ Co=Cra+ Cyg,
from here Cs=—Y%u,0,a° + Cs:a+ Co— Crra=—Y-6-41-10"-125000-0.002* —
—1.885-107°-0.002 + 0 + 6.283-10*-0.002 = — 4.398-10°°,

=6.283-10 "

from here C, =

5. Finally, we have:
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(6.283-107* - x—6.283-1077 Wh/mif x<-a
—1.414-x* —1.885-10 - x Wb/ mif —a<x<0

A(x) = > 3 . ;
0.471-x" —-1.885-10" -x Wb/mif 0<x<a
| —6.283-107" - x —4.398-10 ° Wb/ mif x>a
[—5004/m if x<-a
375000-x+250 A/m if —a<x<0

H(x) = .

125000-x+250 A/m if 0<x<a

1500 A/m if x>a
The graphs A(x) and H(x) plotted according to these formulae are given in fig. 13.21.

Ay, woim d i am
| | !

2 X, mm 500
P 0 1 -

-3 2 -1 3
3 2 -] X, mm
\ L

-5- 1076 \\ / 0 1 2

Fig. 1321 —500

6. In order to determine the magnetic flux flowing through the left part of the bus-bar

- >
per unit length, we apply formula @ =§A- dl . A rectangular 0-1-2-3-0 1 m long is taken

as the integration path (fig. 13.20,b). Furthermore the integration along sides 0-1 and
2-3 results in zero as the angle between A and di is 90° in all the points of the sides

(vector A is directed along axis z, while vector dl is parallel to axis x). The value of 4
25—

along the side 3-0 is equal to zero. Thus, @ =j Adl=A(x=-a)1=—1.885-10 ° Wb.
1

The minus sign in answer for the magnetic flux means that it is directed oppositely to
the positive normal to the integration loop", that is upwards.

13-17 (13.22). Direct current /=350 4 flows through a metallic
cylindrical bus-bar of radius a = 20 cm placed in air (fig. 13.22).
The bus-bar i1s made of the material with relative permeability
u=4. Plot the magnetic vector potential and the magnetic field
intensity versus coordinates.

Fig. 13.22

Y Positive normal direction is connected with the loop direction through the right-hand screw rule: if
you watch from the normal vector end, then loop is traversed in the counter-clockwise direction.
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Solution. The procedure is very the same as in problem 13.16.

1. The bus-bar current density is 8= I/(na”) = 2785 A/m".

2. The magnetic vector potential has a single component directed parallel to axis z
and depends only on a single coordinate ». Under these circumstances, Poisson’s
equation in cylindrical coordinate system takes a view:

2, 1o od\_|—uued if r<a,
V4= r—
ror\’ or 0 if r>a.
Its solution is A, =—Yaupdr* + Ciln(r) + Cs, Ar = Gln(r) + Cy.

In order that 4, is not infinite at » = 0, there should not be any item C,/n(r), so C;=0
Furthermore, assume A4,=0 at »=0, then C,=0 and A4,=- %u,uOSrZ.

3. The magnetic field intensity is H =rotAl U= —Lc;—A
r
Thus, H,=%ér— G _ Lhor; H, = —&.
Hior Hor

4. At r=a H,=H, fromhere C;=- ‘/2,uo5a2=—7-1075,
Ay =A4,, fromhere C,=- %/,t,uo&zz— Giln(a) = —25.26- 10°°.

AA 107 WBim g3 04 rom A H, Alm

0 0.1 02 300
0.5
200
~1.0
-1 100
2.0
Fig. 13.23 0 0.1 02 03 04 rm
-2.5 .

5. Finally, we have
~3.498-10°r*Whb/m if r<a,

A(r) = -5 s :
-7-10 7 In(r)—-2526-10 " Wb/m if r>a,
1393rA/m if r<a,

H(r)=|55.70

A/m if r>a.
r

The gaphs A(r) and H(r) plotted according to these formulae are given in fig. 13.23.

13-18 (13.23). Direct current /=354 flows
through a two-wire line. The wire radius is
a =2 mm, the distance between wires 1s d = 50 cm

2

(fig. 13.24). The wires are made of the material >
with relative magnetic permeability p =4 and are 4 : Fz 0. 13.24
placed in air. Plot the dependences of the magnetic «

vector potential and the magnetic field intensity versus coordinate x.
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Solution. Let’s apply the superposition principle. First, we calculate the magnetic
vector potential and the magnetic field intensity produced by each wire separately, then,
we add them algebraically.

When calculating the field produced by one, say a left wire, we use the results
obtained in problem 13.17. The current density in wires is 8= I/(na’) = 2785000 A/m".
Assume the coordinate origin is on the axis of the left wire. Then

Ay == Vaup o8> = — 3.498-x> Wh/m, H, ="%x =1.393-10%x A/m;
Cy=— Y%puoda*=—7-10"°,  Cy=— Yapuda’>— Csln(a) =—57.50-10 °.

_ 2 ] <
Thus, A'(x) = 3.4986x Wb/m if x_6a,
| —=7-10 "In(x)-57.50-10°Wb/m if x>a,
1.393-10°% A/m if x<a,
H (x) =
@ ﬂA/m if x>a.
L x

Furthermore, one should remember that as the current-carrying wire is a structure
symmetrical with respect to the plane y0z, then function 4'(x) is an even one, while
H'(x) is odd one".

Assume that the coordinate origin is in the centre between the wires. In this case, the
formulae 4'(x) and H'(x) transform in the following way (the coordinate origin shift by
d/2 is taken into account):

~7-10"%In(—x-d /2)-57.5-10° Wb/ mif x<-a—d /2,
A'(x) = —3.498-(x+d/2)2Wb/m if —a—-d/2<x<a-d/2,
~710" % In(x+d/2)-57.5-10 Wb/ mif x>a—d /2.

>.57 A/m if x<-a-d/2,
x+d/2
H'(x)=[1393-10° - (x+d/2)A/mif —a—d/2<x<a-d/2,
>.57 A/m if x>a—-d/2.
| x+d/2

The current in the right wire is oppositely directed, that’s why the functions change
their sign; and in this case the coordinate origin shift is —d/2. That’s why

7-10°%In(—x+d /2)+57.5- 10 Wb/ mif x<—a+d/2,
A”(x)=3.498-(x—d/2)2Wb/m if —a+d/2<x<a+d/2,
710 %In(x=d/2)+57.5- 10 Wb/ mif x>a+d/2.

Y When plotting A(x) and H(x), one should pay attention if the installation in question is symmetrical
or not. If it is symmetrical with respect to the axis plane (e.g. a flat bus-bar) or has point symmetry
(e.g. two-wire line) the graph A(x) is also symmetrical with respect to either the ordinate axis or the
coordinate origin, respectively. The functions H(x) and 4(x) are differentially constrained, that’s why
they possess different symmetries: if the graph A(x) is symmetrical with respect to the ordinate axis,
then graph H(x) is symmetrical with respect to the coordinate origin and vice versa.
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| —5.57

x—d/2
H'(x)=|-1.393-10°
~5.57
_x—d/2

To determine the resultant field we superimpose the fields of different wires. As a
the potential functions providing they have a zero value at some
common point. Let the zero value of the magnetic vector potential be in the coordinate

rule, we can add up

A/m if x<-a+d/?2,

(x—=d/2)A/mif —a+d/2<x<a+d/2,

A/m if x>a+d/?2.

origin. Then A’ (x) 1s to be changed everywhere to the constant quantity
N=-A4'(0)=7-10"° In(d/2) + 57.5:10 ° = const,

and the function A"(x) — to the quantity A"(0)=-N,
A(x) =A'(x) + A" (x) remains the same as the constants N and —N give zero at addition.

Finally, we have:

Afx) =

Hx)=H'(x)+H'"(x)=

The graphs A(x) and H(x) plotted according to these formulae are presented in fig.

13.25 and 13.26.

13-19 (13.24). Direct

700 =2 s i x<—a—d/2,
-x-d/2
7-10°%In(—x+d/2)+57.5-10°° =3.498 - (x+d /2)* Wb/ m

if —a-d/2<x<a-d/?2,

700 = 2 it avd/2<x<—-a+d /2,
x+d/2

~7-10CIn(x+d/2)-57.5-10° +3.98-(x=d /2)*> Wb/ m
if —a+d/2<x<a+d/?2,

Xd2 e m i xsa+d)2.

7.107% . In

L x+d/2
[ —5.57 -5.57

+
x+d/2 x-d/2
1.393-10%(x+d/2)-

5.57 N -5.57
x+d/2 x-d/2

5.7 ~1.393-10%(x=d/2) A/ m if—a+1<x3a+i
x+d/2 2 2

5.57 N —-5.57
L x+d/2 x—-d/2

A/m if x<-a-d/2,

5.57
X+

A/ mif —a—%ﬁxﬁa—i,

A/m if a—-d/2<x<-a+d/2,

A/mm if x>a+d/2.

current /=15004 flows through a bimetallic rectangular bus-bar
(fig. 13.27). The relative magnetic permeability of the bus-bar materials is ;= 6y,

b= Mo, conductivities are y; =2- 107 S/m, =4 10’S/m.a=1cm, h=50 cm.
Compute and plot the magnetic vector potential versus the coordinate.

Answers: current density ;= 10° A/m?, 8,=2-10° A/mz,

the graph A(y) isin fig. 13.28:
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(1.885-1073y = 5.655-1075 Wh/m if y<-a,
—~0.377-y* +3.77-10y Wb/mif —a< y<0,
—0.1257-y* +6.283-107"y Wb/mif 0< y<a,
—1.885-10° y +1.257- 10" * Wb/ mif y>a.

Ap) =

A4, 107 Wb/m
----------------- 6 s
I 4 ‘\‘ ."" A”(x)
\ 2
H !
-1 -0.6 :—0.2 0.2 = X, m
- 5 o
# A(x) Fig. 13.25
A'(x) 4 |
. PRSI SO
AH, Alm
?ooo |
2000
1000
03 | 03 0.5
; e |
-05 —0.‘1 0 0.1 X, m
~1000
~2000
‘ Fig. 13.26
Ay »
.7.853x10
1/ . —

-2.10 °
< sk /

A(y)=4-10 °

Y
X 0 - /
» " VX/ -6-10 °

arya -8-10 °
Fig. 13.27 SO, —
' -0.01 0 0.01
Flg 13.28 -2-a y
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13-20 (13.25). The same current /=2004 flows through two parallel bus-bars
(fig. 13.29). The relative magnetic permeability of bus-bars is u = 5, ambient medium is
air.

Compute and plot the magnetic vector potential for positive meanings of the
coordinate x. Compute the magnetic flux through a rectangular frame of length / =2 m,
if A[3 c¢m;0]; B[S cm; 0] and a=1cm, b=2 cm, h =40 cm.

Answers: the current density in a bus-bar is 8= 5-10* 4/m?;
0 if0<x<0.5b,

A)=|-0.157x> +3.142-10 3 x = 1.571-10 > Wb/ mif 0.5b <x<0.5b + a,

—6.283x—3.142-10 ° Wb/ mif x>0.5b+a;
the graph A(x) is in fig. 13.30; A(xg) =—3.456-107, A(x,) =—2.199-10 >,
the magnetic flux through the frame is @ =—1[-(A(xp) — A(x4)) = 25.13 uWb.

Ay

A N

-110 ° \
[ A(x)
0 ZP ; — _
) / 4 1, Bt 210 ° \\
/|
A H Y’ -3.10 °
i/< 310 0 0.01 0.02 0.03
a a | Fig. 13.29 Fig. 13.30 x
Y2b 2b ¢
0.008
0.006 /\

0.004 /

B(1) 0.002
Flg 13.31 -0.002 N\
~0.004
Fig. 13.32
~0.006
0 0.005 0.01 0.015

T

13-21 (13.26). Compute and plot the magnetic vector potential and magnetic induction
for the coaxial cable, the insulation, conductor and sheath of which are made of non-
magnetic material (fig. 13.31). r,=6 mm, r,=14 mm, ry;=15 mm, =200 4.
Answers: current density &= 1.768-10° 4/m*, & =2.195-10° A/m?,
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—0.556r°Wb/mif 0<r<n,
41072 Inr —2.246- 10 Wb/ mif n<r<r,

A(r) =
0.6897r% —3.103-10 * Inr —0.01514 Wb/ mif ry <r<r,
|—5.530-107 Wb/ mif r>ry;
[1.111r Tif 0<r<mn,

B(r) - 4107 /r Tif n<r<nr,

~1.379r=3.103-107* /r Tif r,<r<n,
0 ifr>n.
The graphs A(r) and B(r) are presented in fig. 13.36.

13.3. MAGNETIC IMAGE METHOD APPLICATION

13-22 (13.27). Direct current /=130 A flows through a single wire located close to the
medium interface (fig. 13.33,a). The distance is d = 70 cm, the wire radius is negligible
in comparison with d.

a) b)
\\\\ /,”ﬁ
D X _@/\% di
Aﬁ}» I \)\(\1\2./\ _
o C -
Fig. 13.33

It is required to: 1) compute the magnetic field intensity in points A(x,=—15 cm;
v4=30cm) and B(xzp =20 cm; yp=-35 cm) as well as the magnetic voltage between
them; 2) supposing 4 and B are the intersection points of the long sides of a rectangular
frame /=5m long with number of turns w=200, find the magnetic flux through the
frame and the mutual inductance between the wire and the frame.

Solution. Since the wire is located close to the medium interface, we apply the method
of magnetic images in accordance with which the field in the right half-space may be
computed by fig. 13.33,b, while the field in the left half-space — by fig. 13.33,c.
Determine the fictitious currents coefficients:
klzuo—3ﬂ0:_0'5; fey = 2-3u
Ho + 3 g Ho + 31

Then I, = kiI=—-65 A4; I, = koI = 195 A. Further, the current value /; 1s considered to
be positive but its direction is reversed in comparison with the real current /, which is
taken into account in fig. 13.33,b.

1. Computation of the intensities.

=1.5.
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In point A, the intensity is produced by current /, (fig. 13.33,c) and in accordance

with Ampere’s law it is equal to
195 =344 é

)
HA = =
2uy:+(d-x,)% 213032 +(0.7+0.15)? m
In point B, the intensity is produced by currents / and /; (fig. 13.33,b). Let’s calculate

the projections of the components H'z and H''z upon axes x and y:

HTBx:HTB'CO.S‘al =
_ U . — VB — _I'yB =194 é
2 2 2 2 2 2 ) >
2”\/J’B+(d—x3) \/yB+(d—xB) 2r-(ygp+(d—x3)") m
H'p,=H'psinoy = I.Z(d_xB) 3 =27.77 é;
2r-(yp+(d—xp)") m
H'p.=H'gcoso, =
_ 1 ) — VB _ -1 -yp — 388 ﬁ
2 2 : ’
2ey3+(d+xp)? yh+(d+xp)? 2m-(vi+(d+x)’) m
Li(dtxp) _gg99 A
m

H'g,=H'gsina, = 3 5
2n-(yp+(d+xg)")
HByZHBy+H’By: 37.76 A/m,

Then HBXZH,BX—H”BXZ 15.52 A/m,
Hy=\Hj, + Hj, =40.84 A/m.

2. Computation of the magnetic voltage.
Let’s apply the superposition method. The voltage component created by currents [

and 1, (see fig. 13.33) in accordance with (13.4) is as follows
I+1
Um = ) = (al +B1)9

AB T
T
where «; and 3 — angles in radians shown in fig. 13.33,c.

sl g6, pi=areig 24—~ 0.34;

x,
130195 61 +034)=49.14 4.

oy = arctg

r_
UmAB -

The component U, 45" created by current /7, (fig. 13.33,b) is

=0.371;, n= arctgy—A= 0.5;

on= arctgM

-1
Upag =— (o + 71),
A5 277(2 W d+xp d+xy
, —65
Unag'' =——(0.371 +0.5)=-9 A.
2r

Then UmAB: UmAB’+ UmAB”:40-14 A.
3. Computation of the magnetic flux.
Since the frame parts are located in the different mediums, we use the auxiliary point

D with the coordinate (fig. 14.33,c) Vo= ya—x424" VB =0.021 m.
Xq—Xp
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Then the magnetic flux component through the frame part located in the left half-
space 1s determined in accordance with (13.3)

2 2
. . d—
o Hola Ly ra gl ly ViAo, o

2r D 2r ld? +y%)

The magnetic flux component through the frame part located in the right half-space is

. d2 2 d2 2
@ =30ty NET YD NE FVD |\ 116-10 Wb

T 2 2 2
2m Jya+(d—-xz) Jya+(d+xy)
The magnetic flux through the frame 1s O=@'+ " =1.6510" Wb.
) ) ) -
The mutual inductance between the wire and frame is M =WT =2.5510*H.

13-23 (13.28). A current-carrying / =500 A4 flat bus-bar is placed close to the medium
interface (fig. 13.34,a) at distance a =35 mm from the interface. It is required to
determine the magnetic induction in point 4 as well as the mutual inductance between
the bus-bar and a rectangular frame possessing w =200 turns.

5a 5a

a) A b) C) A

,UO 261" k11+ a 261‘
A\ at Mg dl, Mo ab

a 4 d
411 o — ») Mo I+] d Ho —¥
1 kol
e/ 2
o4 100a, Fig. 1334

Solution. In this problem, the method of magnetic images is applicable. Let’s determine
the fictitious currents coefficients:
PO ke N N e L )
Ho + 41 Ho + 41

Then the magnetic field in the lower half-space is computed in accordance with fig.
13.34,b. Since the bus-bar width is much bigger than its thickness, it is possible to
neglect the edge effect and to determine the magnetic intensity and magnetic induction
in point A with the aid of Ampere’s law and the superposition method:

I-(1+k ) 500-(1-06)

H 200 A/m; B,=4 =1.0-10°T.
4721006 200-0.005 4= Aol

The mutual inductance between the bus-bar and frame is M =W}—(D, where @ — the
magnetic flux linked with the frame turns. We calculate it by fig. 13.34,c:
@D =S uoH = 2a-5a py'ky 1/(2:100a).
Then M = 10auy'kyw/200 =0.10-10 ° H.

13-24 (13.29). A single current-carrying /=104 wire is located close to the medium
interface (fig. 13.35,a); furthermore, y;=2, =6, r;=10 cm. The points coordinates
are x,=y,=—10cm, xp=>5 cm, yp=15 cm. It is required to:
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1. Compute the magnetic field intensity in points 4 and B as well as the magnetic
voltage between them.

2. Supposing that 4 and B are the intersection points of long sides of the
rectangular frame / = 1 m long with the number of turns w = 100, find the magnetic flux
through the frame and the mutual inductance between the wire and the frame.

Solution. 1. Calculate the field in the left half-space according to fig. 13.35,b, which is
drawn in accordance with the method of magnetic images. To pass from one medium

into another, we take any point at the interface, for example, the coordinate origin 0 as a
reference point.

a)
i
./
@- ___________ P -
! A
[ E—
o
The incomplete reflection coefficientis k= Hp = 672 0.5.
Mo+ iy 642
The magnetic field intensity in point 4 is:
H/ = ! = 10 =0.159 A/cm;
21(~y,) 21(-10)
Hy,'=H, =0.159 A/cm; Hy' =0;
H/' = = =0.036 A/cm;
27N(2r )% + ¥ 274207 +102
— V4

tgo = =10/20=0.5, oa=0.4636 rad,

n
H,'" =H,) sinoc=0.036-0.4472 = 0.016 A/cm;
Hy''=—H,"-cosa=-10.036-0.8944 = — 0.032 A/cm;

H, =\/(HAx “H )P+ (H y+H " ) = J(0.159+0.016)% +(0-0.032) =
=0.178 A/cm.

The magnetic voltage in accordance with (13.4) is:
Upnto = Upe! + Upao == T KL 105 6 4636 = 2,131 4
mAQ mAQ mAO0 7 2 ' 4 o . . .

The magnetic flux through the section 40 in accordance with (13.3) is:
N _ lar )2 4,2
D= + D" _ Mkl lln Y4 +/~‘1H0k11 lln (2n)"+ya _
2r r 2 n

-7 /
i 2-4n ;O > lln f(())o =1.609-10 ° Wb (direction downwards).
T

=0
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2. Calculate the field in the right half-space according to fig. 13.35,c.
2‘U1 4

ky= = =0.5;
Hy+H 6+2
kol 5
Hy= 2 = =0.038 A/cm;
2rA(n +x5 )2+ s 27157 415
tef=—2B _—15/15=1, a= /4 rad;
I"l +XB
k-1 5 &
Unos =——B=———=10.625 4;
0 2n P 2w 4
Hotoky I -1 \/(r1+x3)2+y§ 6-47-1077 -5-1 . /450
2r r 2r 10

=4.512-10 ° Wb (direction upwards).
3. Finally, we have:
- the field intensities — H,;=0.178 A/cm; Hz= 0.038 A/cm;
- the magnetic voltage U3 = U0 + Upop = 2.131 +0.625 =2.756 A;
- the magnetic flux Dup=— D+ Pop = (— 1.609 +4.512)-10 *=2.903-10 ° wp;
:w-?AB _100-2.903 _ 29.03 uH.

- the mutual inductance M

13-25 (13.30). Direct current /=130 A flows through a two-wire line, its wires being
situated in different magnetic mediums (fig. 13.36,a). The wire radius is ro=1 cm,
d =150 cm. Compute the magnetic voltage between points A(—15cm;30cm) and
B0 cm; 10 cm).
Answers: the incomplete reflection coefficients are:
0716 0455, k=20 —0.545, k= k' =0455, k=210

6+16 6+16 6+16
angles in radians shown in fig. 13.36,b and c:

o1 =1.249, o,=0.644, B,=0.219, B,=1.107;

calculation sketches for voltages U, 0 and U, op are presented in fig. 13.36,b and c,
respectively;

Upnio =2i (a1 + 02)=392 A, U,op =;—] B+ B)=—274A4, Uyp=118A.
T

’
1

= 1.455;

T

) Mé b) A%AJ/ ke o) Ty 5
[, OHo | Ot p A oy R RV . Y
e e\ o)y X T B
\:Jd/z i \:Jd/z 0 k" 15'/1 Flo
PN | PN L W=RIES |

| d__ i | d__ Ss——1 d
16‘Lt() 6/.1() 16‘Lt() 16/.10 6‘110 6/.1()

Fig. 13.36
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13-26 (13.31). A cylindrical wire of radius ry=6 mm 1is located in air at distance
h=40cm (fig.13.37) from the reinforced concrete wall with relative magnetic

permeability u, = 4.

It 1s required to: 1. Determine necessary value and direction of current through the
wire to obtain at point N(b=30cm) the magnetic field with a tangent component of the

magnetic intensity H,= 50 A/m.

2. Determine the force acting upon each 1 m of wire under these circumstances.
3. Determine the direction and value of the magnetic induction in point K.

4. Find the volume energy density of the magnetic field
in points K and K, latter one being the mirror image of
point K.

Answers: [=490.6 A, the current is directed away from us;
F=0.0361 N/m, the wire is attracted to the wall;
Bx=3.572-10"T;
wi=50.8-10 J/m’, wg = 3.36:10 > J/m’.
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