6. LINEAR CIRCUITS AT PERIODICAL NON-SINUSOIDAL
VOLTAGES AND CURRENTS
6.1. EXPANSION OF A PERIODIC FUNCTION INTO THE FOURIER SERIES
6-1 (6.1). The dependence u(?) is shown in fig. 6.1,a and simultancously set by table 6.1
(but for the first quarter of period), it is symmetrical as regard to both the coordinate
origin (the dependence being odd) and the abscissa axis (u(?) =— u(—t) = —u(t+7/2)).
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Fig. 6.1
—150 &
Expand the dependence u(?) into the Fourier series and construct its linear frequency
spectrum.
Table 6.1. The values of the function u(?) for the first quarter of a period at At = 0.5 ms
n 1 2 3 4 5 6 7 8 9 10

t,ms | 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
u,, V| 12.35| 17.53 | 15.89 | 16.09 | 28.15 | 54.93 | 89.78 | 121.7 | 142.7 | 149.8

Solution. The function u(?) possesses simultaneously two kinds of symmetry. It is an
odd one and at the same time it is symmetrical as regard to the abscissa axis. That’s
why its series expansion includes only sinusoids with odd serial number, while the
integral to determine the harmonic amplitude of the number (24—1) is calculated for the
quarter of a period with subsequent multiplication of the result by 4. Then the value of

the amplitude U, 5 1s determined under the expression:
T/4

U, oy = %?u(z‘ )sin((2k =)o -t )dt =; [u(t)sin((2k =V -t)dt. (6.1
0 0

As the function is set by the table, it is expanded into the Fourier series by the
grapho-analytical method. While using an approximate integration, the function period
is divided into the equal intervals (in the given example, their number is N = 40) and
then the substitution dt = 7/N = T/40 is performed. However, as the function has two
different values at the ends of two symmetrical intervals equal to a quarter of the period,
then in order to obtain the better result owing to compensation of the positive inaccuracy
of one period by the negative inaccuracy of another symmetrical interval the
approximate integration is to be performed for the half period. That’s why let’s extend
the table 6.1 to the half of period.

Continuation of table 6.1. The function values u(?) for the 2™ quarter of a period

n 11 12 13 14 15 16 17 18 19 20

t,ms | 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
u, V| 142.7 1 121.7 | 89.78 | 54.93 | 28.15 | 16.09 | 15.89 | 17.53 | 12.35 0
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Then the latter expression (6.1) is reduced to the following view (summation for the
half period):

4 20 T 1 20
U,k ®=2u,sin((2k-1)w-t, )—=—>u,sin((2k-1)o-t,), (6.2)
T .5 40 10,5

where 7=0.02 s —a period of function u(?);
n=1...20 —the number of an interval of the approximate integration at A¢ = 7/40.
Using the data from table 6.1 we calculate the amplitudes of the first decade of the
harmonic components (taking into account only the odd harmonics) in accordance with
the expression (6.2), and receive the result:
Un=100V; U,;s=—-40V;, U,;s=15V; Uy=5V; Uw=—-0,19V.
The ninth harmonic is negligible and can be excluded from the further calculations.
So, the instantaneous value of the the expansion of the function u(#) into the Fourier
series(odd harmonics 1...9) is as follows:

9
u(t)= U, sin(kot ) = 100sin(wt) — 40sin(3wt) + 15sin(Swt) + Ssin(Twt) V.
k=1

The plots of function u(?) and amplitude frequency spectrum are in fig. 6.1.

6-2 (6.2). Expand a periodic saw-tooth voltage described in the interval 0 < wt <27 by

. ot . . .
the expression u(wt) = py into the Fourier series.
T

Solution. Direct-current component (zero harmonic) is as follows:
1
= j u(cot)d(a)t)— > ja)td(a)t)——

By the way, it may also be found from the formula of the area of a triangle.
The coefficients of sin-components of k”-harmonic are set by the following
expression:

sin(k2rx ) - k2mcos(k2n) _ 1
2kn )? k'

2
U, :% [otsin(kaot )d(wt) =
2 0

Similarly, for the coefficients of cos-components:
k2 sin(k2r )+ cos(k2r ) —cos(0)

2
U,'C’:sza)tcos(ka)t)d(a)t): =0.
2 0

2(kn )?

ugtd

Fig. 6.2. Plots of 1
function u(wt).
n=1-the 1"
harmonic of
expansion (6.3); 0.5
n=5—sumof5
harmonics;

n =50 —sum of 50
harmonics. 0




So, there are but sin-components in the Fourier series expansion of the function u(w?),

u(a)t):l—l- nM (6.3)
2 k=1 k

In fig. 6.2 there are plots of the function u(wt) obtained in accordance with (6.3) for
different number of harmonics. Obviously, the increase of the number of harmonics
improves the performance accuracy for the original function. However, there are

specific spikes in the ordinary jumps of function (Gibbs phenomenon).

the expansion having a view:

6-3 (6.5). This problem illustrates the

application of the complex transfer function,
which was first considered in problem 5.13.
Calculate and plot the output voltage u,(?)

VI /| )/

/S

of the scheme with the complex transfer —o.02

function Z(jw) __ 83333
jo +66.67

/v

Ohm under the

condition that the source of the non- 0
sinusoidal current acts at the circuit input, its

plot is presented in fig. 6.3.

Solution. Let’s perform the expansion of the

plot fig. 6.3 into the Fourier series. The period and angular velocity of the fundamental
harmonic are:

0 0.005 0.01 0.015

Fig. 6.3 . 5

T=001s, w=2a/T=628 radls.
The source current in the range 0 <¢ < T can be analytically described as:
j@) :=0.01 +4-¢ A.
Let the quantity of harmonics under consideration equal to m := 10, it means the
harmonic numbers change in the range k:=1 .. m.

) A
The steady component is:  jO(2) = [j(t)dt  j0(0.01)=0.03,
0

1.e. Bmg:=0.03, Cm,:=0.
The amplitudes of the sin- and cos-components are:

2 L. : 2 L.
Bmk:=—'I](t)-SIn(k-w-t)dl ka:=—'j](t)-cos(k-w-t)dt.
T 5 T
T 0 1 2 3 4 5
Bm =
0 0.03 -0.013 | -6.366'10-3 |-4.244-10 -3 | -3.183-10-3 | -2.546-10-3
el o123 ]4]s 7 |8 |9
0 0 0 0 0]o -4 0 0 0]o -4 0

Apparently, there are no cos-components in the expansion.
The total amplitudes and the initial phases of the harmonics are:

Jmg = J0(0.01) Jmy = J (Bmk)2 i (ka)2 Wk = if[Bmk > 0, atan [

W =m/2
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v 0 1 2 3 4 5 6 7 8 9
deg |0 90| 180 | 180 | 180 [ 180 | 180 | 180 | 180 | 180 | 180

1l - 0 1 2 3 4 5
0 0.03 0013 | 636610 3| 424410 3| 318310 3| 254610 3
The individual harmonics and the source total current are:
jl(t) :=Jmy-sin(ow t + v ) J2(t) == Jmysin(2-o -t + y,)

Jj3(t) :=Jms-sin(3-o ‘'t + y3) Jjat) :=Jmysin(d-o -t + yy)
j5(t) :=Jms-sin(5-® ‘'t + ys) j6(t) :=Jmg sin(6-o -t + yg)

jt) =jo@) + kzl(Jmk sin(k-o-t+y,)).
The answers with numerical data are:  jo(z) = 0.03 4,
ji1(t) = 0.013sin(w -t + 180°) A4, J2(t) = 0.00637sin(2-w -t + 180°) A4,
J3(t) = 0.00424sin(3-w -t + 180°) A, j4(t) =0.00138sin(4 w -t + 180°) A4,
Js(t) = 0.00255sin(5-w -t +180°) A, je(t) = 0.00212sin(6- 0 -t + 180°) A.
The plots of the direct-current component, the first five harmonics and the total
current with account of the first 11 harmonics are presented in fig. 6.4.
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With the aid of the complex transfer impedance or more exactly of the amplitude
frequency and phase-frequency characteristics obtained when solved problem 5.13

83333 | 833332 a)
Z(jw)=— Ohm, Z(w)=,————— Ohm, )= —arctg———,
(e jo+66.67 (e > +66.67* #le) £66.67

we determine the harmonics of the output voltage:
u20(t) :=272(0):j0t) U2my:=Z(kw)JIm, wu,:=vy,+ ok o)
0 1 2 3 4 5 6 7 8 9
0 375| 1679 | 0422 | 0188 | 0.106 | 0.068 | 0.047 | 0.034 | 0026 | 0.021
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T
yu2o 0 1 2 3 4 5 6 7

deg 0 0] 96.057 | 93.037 | 92026 | 91519 | 91.216 | 91.013 | 90.868
I/lzo(t) =37.5 I/,
uy(t) = 1.679sin(w t +96.06°) V, uxn(t) =0.422sin(2- o -t +93.03°) V,
urs(t) = 0.188sin(3- -t +92.03°) V,  up(t) =0.106sin(4 o -t +91.52°) V,
urs(t) = 0.068sin(5- -t +91.22°) V,  uye(t) = 0.047sin(6 o -t + 91.01°) V.
The individual harmonics and the total output voltage are:
u21(t) := U2m;-sin(o -t + yu2,) u22(t) .= U2my-sin(2-o -t + wu2,)
u23(t) .= U2ms-sin(3-o ‘t + yu2;) u24(t) .= U2my-sin(4-o 't + yuy)
u25(t) .= U2ms-sin(5-o ‘'t + yus) u26(t) .= U2mgsin(6-w t + wyu2¢)

W2(1) = u20(1) + S (U2m, -sin(k - o -t +yu2, ).
k=1

The plots of the direct-current component, the first four harmonics and the full output
voltage with account of the 11 harmonics are presented in fig. 6.5.

It is seen from the graph, that amplitude of the first harmonic of the voltage does not
exceed 2 V, while the amplitudes of the subsequent harmonics are less than 0.5 V. Thus,
the variations of the output voltage are not significant, it is smoothed owing to the
application of an electric low-pass filter.

6.2. SINGLE-PHASE CIRCUITS OF THE NONSINUSOIDAL CURENT
6-4 (6.6). The series circuit » =40 Ohm and C =40 uF is supplied with the voltage
which changes according to the law (see problem 6-1):

u(t)=UmV sin(wt )+ Um ™ sin(30t )+ Um">’ sin(50t) + ..., (6.4)
where Un'"=100 ¥, Un®=-40V, Un® =15V, Un'"=5B, Un®=-0.19 V.

In a common coordinate system, plot the voltages across the resistance, the
capacitance, as well as the source voltage. Determine their effective values, coefficients
of distortion, harmonics; verify the power balance.

Solution. We solve the problem with the aid of MathCAD. Information input: arrays
of amplitudes and initial phases of the source voltage, its period 7, angular velocity o,
the circuit parameters 7, C and a ranked variable £:

T=002 r=40 C:=4010"% k:=1.5

100 0
40 m
) 2.
Um:=| 15 yi=10 © ==
5 0
0.19 T

In order to determine the arrays of the complex amplitudes of the source voltage,
input impedances, the complex amplitudes of the currents and voltages across the
capacitance we create the user functions taking into account that expansion (6.4)
contains but the odd harmonics and the harmonic numbers 2:k—1=1,3,5,...
correspond to the variable k=1, 2, 3... , respectively:
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Ve Ze=rt 1 Iy =2

Um, .= Umy e

j (2-k-1)-w-C A
1
Ucemy := Imy, - —
j(2-k-1)-w-C
The data output is:
|( 100\| |(44,911\| 89.348
|40 133336 22.107
Um = I 15 I [tm|-r = i 13.937 | Ucm| = | 5.545
B | 4.810 | 1.367
\-0.19) \ 0.186 / 0.041

Now, determine the effective values of the source voltage U, current /, voltage across
resistor /-7, voltage across the capacitance Uc:

5 2 5 2
_ ([1m ) _ ([Uemy )
= Z - Uc = Z —

U = 76.974 I=1.023 [t = 40.901 Uc = 65.209

Determine powers of individual harmonics, powers of source and consumer, power
factor y :

, . (1 U 1_j , iP g 25.12
Ek -= R€| —-Umy - 1my ES & Ek c=1rT
5 = 13.891
Pp=| 2.428
Prs = 41.821 P.=41.821 x:=Pﬁ x=0.531 0.289
U-1 4302-107%

Determine the distortion coefficient k; and coefficient of harmonics &, for three
voltages (source, across resistor, across capacitance):

oo
1 \V2) Um
u
U~+/2
2 \/— 0.395 0.919
K : 12_(|Iml|J Kk [fmy| k 0.631 k 0.776
¢! \/5 i = N \/E g =|0. i=10.
I 0.248 0.969
|Ucm1|
2 |Ucm1| 2
Uc™ - T UC‘\/E
L Ue _
Instantaneous values of the circuit voltage and current are:
5 5
u(t) = Z Umk-sin[(2~k - 1)-co-t:| i(t) = Z |Imk| -sin[(2-k -ot+ arg(Imk)]
k=1 k=
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u (1) = i(t)r U (1) = u(t) —ur(t)

The circuit voltages curves are e, v >\\
presented in fig. 6.6. 100

Comments to the curves in fig. 6.6: ugt ! \ “‘:Et)

1. Higher harmonics being in the . - u, (f) r s
expansion of the source voltage 0 v .
intensively show themselves in the o SRR e
resistance voltage (hence, in the current -+ /
curve) and are negligible in the ~100
capacitance voltage.

2. Comparing the distortion 0 5 mFig. 6.615 t, ms

coefficients, we see the capacitance
voltage curve (k; = 0.969) is hardly distorted in comparison with the current curve
(k;=0.776).

3. Harmonic coefficient k, gives evidence of the higher harmonics character. The
coefficient is the lowest for the capacitance voltage curve (k, = 0.248) while it is high
for the current curve k, = 0.631.

Conclusion. It is typical for the circuit » — C that the current (or the resistor voltage)
absorbs the high-frequency oscillations making the capacitance voltage free of them.

Ay — d’Arsonval system,
A, — electromagnetic system,
Az — digital volt-ohm-milliampere

meter
@
b o— o— .
) ¢ Linp Measuring
inp instrumentment Fig. 6.7
o——

6-5 (6.11). Non-sinusoidal current i(ewt) =5 — 10sinwt + 7cos2wt + 4sin3wt A flows in a
circuit »-L (fig. 6.7,a).

Determine the instrument readings (for A3, find the reading for two positions of the
current kind selector).
Solution. 1) Both 4; and A5 with the selector in the position “direct current” (=) react
upon the direct-current component. In this case they give identical readings: 4, and A4;
— IO =5 A.

2) A, measures the effective value of both sinusoidal and non-sinusoidal currents; its

n I} 10° 7> 47

readingis 4, — I=\/102 +k§l%=\/52 210344

3) When the selector is in position “alternating current ~”, 43 eliminates the direct-
current component owing to the input capacitor (fig. 6.7,b); the current through the
measuring element consists of but alternating components

linp = — 10-sinet + 7-cos2wt + 4-sin3wt A.
This current curve is presented in fig. 6.8. The moments wt, = 36.2°, wt, = 143.8°
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when the current changes its sign are determined by the numerical method.

1
Average of the absolute current value is Ly o = ﬂ I (@) dot =7.532 4.

The ammeter reading when the selector is in the posmon (~):
As — Lypark;=7.532-1.11 =8.36 4,
where kr=1.11 — sinusoid shape coefficient.

A Aiinp
10 VRN

s I\ e

\ 0.57 A \ / a)irad
// ) \1.57[/ o

\
o
AR
\

/ iinp
J

-20
Fig. 6.8

6-6 (6.13). In fig. 6.9,a there is a b)
circuit with a source of
nonsinusoidal Voltage 73
v, u, & szn(ka)t) Un
u(t) =— Z r | o
its  plot bemg presented in e >
fig. 6.9,b.
Numerical data: U,, =20 V,
= 1000 rad/s, L,=0.004 H, L;=0.002 H, R;=10 Ohm, C,=50 uF.
Using only five components of the expansion into the Fourier series, do the

following:

1. Write down the formula of the emf instantaneous value substituting amplitude
and angular velocity of the fundamental harmonic into the given formula; determine its

effective value.
2. Calculate the effective currents, write down the instantaneous values
first current and construct its plot.

of the

3. Calculate the circuit power factor. Work out the balance of the active and

reactive powers.
Solution. 1. The nstantaneous voltage is:
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20 20 (sin(lOOOt) s sin(2000¢) . sin(3000¢) . jN
1 2 3
~ 10 + 6.366-s5in(1000z + 180°) + 3.183-5in(2000z + 180°) +
+2.122-5in(3000¢ + 180°) + 1.592-sin(4000¢ + 180°) V.
2. The effective voltage is:

(k)
\/(U(O)) + Z(U . ; =102 +0.5-(6.366> +3.183% +2.122% +1.592% ) =

=11.357V.
3. Calculate the direct-current components:
"=0; "=5"=U"Ry=1010=14; PV =0U2=10-1=10W.

4. Calculate the harmonic components by the following formulae:
reactances: x;V=k-wL,, u" =1k o Cy), xV =k wLs;
impedances: 2, =j-x, 2 2" =—jx,®;
Z3(k) =R, _|_] x3(k) ZZ3(k) Z ). Z (k)/(Z ® 4 Z (k)) Z(k) =7 ® 4 7 (k)
complex amplitudes of the source voltage: Um(l) =6.366-¢’ "%,
U,”=3183¢" U, =212 U,V =1592:¢1,
complex amplitudes of the currents of k-th harmonic:

® — @70 oo, w25 w_y w_ 25
lml = _Um / L, ZmZ = Zml — lm3 = lml — .
Z0 5 Z(k) 20 4 z(0

complex power of the source for the k-th harmonic: EW =V l_fm(k) I ml(k) .

5. The effective currents are calculated by the formula:
= (1)
]‘]_\/(Iq(()))z z
=1 2

powers in separated branches of the circuit are: P, = Rq-(lq)z; 0," =+x,-1,7).
Check up the power balance:
- active, reactive powers and volt-amperes of the source are:

P=Re(>8™)=12966 w; 0=Im(3S*)=0.789 va4r;
k k

S=U1,=11.35-1.17=13.28 VA.
The calculation results are tabulated in tables 6.2, 6.3 and 6.4.

Attention: S°=176.4> P+ O’ =168.8 VA.

- active and reactive powers of the consumers:
Pc=P +P,+P;=0+0+13=13 W,
Oc=01+0,+0;=2.284-2.307+0.811 =0.788 VAr.

Power balance P=Pc and Q= Q¢ is true.

6. The instantaneous value of the first current and its plot (fig. 6.10):
ii(t) =1+0.671-sin(1000-¢ + 174.1°) + 0.411-5in(2000-¢ + 161.8°) +

+0.296-5in(3000-¢ + 128.2°) + 0,151 -sin(4000-¢ + 102.5°) A.
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Table 6.2

No of 1 2 3 4
harmonic
x™, Ohm 4 8 12 16
™, Ohm 20 10 6,67 5
x;™, Ohm 2 4 6 8
Z," Ohm j4 j-8 j12 j-16
2" Ohm —j-20 —-10 —j-6.67 —j5
Z:® Ohm 102 £ 11.3° 10.8 £ 21.8° 11.66 £ 31.0° | 12.81 £ 38.7°
Zs", 0hm | 991 /-17.7° | 924 / —37.2° | 7.76 £ -55.2° | 6.13 / 68.0°
7Y Ohm 9.49 /£ 5.9° 7.74 £ 18.2° 7.16 £ 51.8° | 10.56 £ 77.5°
u,® v —6.366 ~3.183 —2.122 ~1.592
La™, 4 0671 £174.1° | 0411 £ 161.8° | 0.296 £ 128.2° | 0.151 £ 102.5°
Lo, 4 10322 £ -114.7°]0.380 £ —145.4°| 0.345 £ 163.0° | 0.185 £ —124.5°
Ls", 4 | 0652 2145.0° | 0353 £102.8° | 0.197 £42.0° | 0.072 £4.2°
NAZ 2.125+0.22 | 0.62+;0.205 | 0.195+,;0.247 | 0.026+,0.117
Table 6.3
I, A b, A L, A P, W Py, W P, W
1.17 0.45 1.14 0 0 13.0
Table 6.4
Ne of harmonic 1 2 3 4 Os
0,, VAr 0.9 0.676 0.526 0.82 2.284
0,, VAr ~1.102 —0.722 —0.397 —0.086 —2.307
O,, VAr 0.425 0.249 0.116 0.021 0.811
AN
2.0 /‘\
1.5 \ /
i(ot) . \
1.0 \ ,/ 3
/\ V. N\ t, rad
- < X |




6-7 (6.14). Voltage
u =50+ 200sin(wt + 45°) + 100sin(3wt + 60°) V
is supplied to the circuit input fig. 6.11. Impedances of
the circuit elements to the currents of the fundamental
harmonic are as follows r;=r,=r;=8 Ohm;
L= 15 Ohm; wl,=3 Ohm; L= 15 Ohm.
oC,; w0C;

Determine the instantaneous and effective values of
all the currents as well as voltages u, and uy;. Calculate
the circuit power factor and plot the current i,(z), if the Y3 Fig. 6.11
mains frequency is /=50 ['y.

Solution. Calculation is performed under the superposition method for each harmonic
separately.

: : 1
1. Calculation of the direct-current component. As —C= oo, the currents of the
|

harmonic under consideration cannot flow, the source full voltage being impressed to
the capacitor C;: 11(0) =0, 150) =0, 13(0) =0, Ul(zo) =50V, U§30) =0.

2. Calculation of the first (fundamental) harmonic.

Determine the branch and input circuit impedances

ZV=r——L-=8-j150hm;  7("=r+ jwLl,=8+j3 Ohm;
a)Cl
Z2V=ry—L —8_j15 Ohm;
wC;
1 Lz .z
2V =z"+ 2223 _=1524- 1557 =21.79¢ "% Ohm.
200 4+ 7V

Complex amplitudes of the currents and voltages are:
Ia)__ng)__ 200¢*

= = =918¢/7%¢ 4,
Tz o 79e 456 ’
1
1(1) I{I)A:Igejés.é A
mZ(l) Zgl)
(1)
7 .
[(1) 1(1);:3.9261148 A

20

Uy, =10 -2V =156.1e/7 7,

1 1 1 186.1
Uy, =15, 25" =66.7¢/! V.

3. Calculation of the third harmonic.
Determine the branch and input circuit impedances

z3=r, -8 j50mm; Z0=r,+ j3wl,= 8 +j9 Ohm;
3wC,
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ASIE - J =8 —j5 Ohm;
£ 50, Y

o 2.z o
29 =zY + 22 = _=149-j472=15.61¢”""" Ohm.
z0 1z

Complex amplitudes of the currents and voltages are:
3 :
Uu'>y  100e’%°

(3) _ _ j71.6
[ ==m_— =641’ 4,
"z 15610170
3
151 2 360
(3)
[ =Y 22" 465010 4

Z1lm Z23) 4 Z23)
Ulgw =11, 217 =60.42¢7¢ 7,

3 3 3 79.9
UG =157 25 =44.12¢/° .
4. Calculate the effective values of currents and voltages

11\/(11(0))2+(Il(nl1) +(Il(}131) ~7.92 4,

2
. J(,go))z R ;(fg,zz Coid

I =\/(1§,?/ ¥ 5y ;(]3(3’) —4324,
o J(Uf;) +(Us;)2;(uf;,; Cbssy
U, _\/(Ug)))z N v ;(Ugé _s65)

Instantaneous currents and voltages are:
i) =i+ "+ 9 =9.18sin(314t + 90.6°) + 6.41sin(942t + 77.6°) A,

i) = i, "+ i,V + P =7 8sin(3 141 + 65.6°) + 3.66sin(942t + 31.6°) A,
ist) = i3 0+ i3V + 5% = 3.925in(314¢ + 148°) + 4.68sin(942¢ + 111.9°) 4,
un(t) = uly +ulY +ull) =50+ 156.1sin(314t + 28.7°) + 60.42sin(942t + 45.6°) ¥,

un(®) = uly +ull +ul) = 66.7sin(314¢ + 86.1°) + 44.12sin(942¢ + 79.9°) V.

5. In order to determine the circuit power factor, let’s previously calculate the powers
P=P(0)+P(l)+P(3)=
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=UO 1Y 4 RefUM IV ] + RefU [T ] =0+ 642.1 +305.3 =947.4 W,

S =UlL= \/<U(O))Z P} [,=1313 V4, cos 9=§= 0.722.

2
6. The current i;(?) is plotted in fig. 6.12.
e dind
i(ot
. 1(1)

16 Fig. 6.12

6.3. THREE-PHASE CIRCUITS OF NON-SINUSOIDAL CURRENT
6-8 (6.15). The phase voltage of the Y-connected generator under no-load condition
contains the first U, and the third U; harmonics.

1. Determine the effective voltages of the mentioned harmonics based on the known
readings of the voltmeters of the phase voltage U,, =125V and the line voltage
U=210V.

2. What is the calculation inaccuracy if there is an additional fifth harmonic in the
voltage which comprises not more than 10% of the fundamental harmonic?

Solution. 1. The voltmeters readings expressed through the effective values of two
harmonic components are described by the following equation system:

VU +Us* =U,,; \3-U =U,
its solutionis U;=121.2V, U;=304V.

2. The voltmeters readings expressed through the effective values of three harmonic
components are as follows:

JUZ+ULE+0.12 U2 =U ;. B-Ul+012-U] =U,,
the solutionis U, =120.6 V, Us;=304 V.
Comparing this result with the previous one, we conclude the measurement

inaccuracy does not exceed 0.5% (furthermore, there is no inaccuracy in the third
harmonic at all).

6-9 (6.16). Symmetrical generator with the phase voltage
uy(ot) =310-sin(owt — 30°) + 93-sin(3cot +45°) V
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supplies Y-connected nonbalanced load with the following phase impedances offered to
the currents of fundamental harmonic ZA“): 15 Ohm, ZB(1)= 715 Ohm, Zc(l):* j15 Ohm
(fig. 6.13); the neutral impedance is Zy"'=2 + j2 Ohm. Determine the readings of the

moving-iron instruments for the cases:
a) switches S; and S, are closed;
b) §; is opened, while S; is closed;
¢) both of them are opened.
Solution. a). Switches are closed.

1. Calculate the currents and voltages of the

first harmonic.

Effective values of the complex phase

voltages of a generator are
1) _jwl
u _ Ul-e’”

O

Q%l) _ Qg) e 120 Z 920150
vl =ul e =220 V.

As there is a neutral conductor, there is no

( v )
voltage of the neutral displacement Uy, ; that’s Fig. 6.13 \4/(]

why the phase voltages of the consumer are

=220 73 y,

equal to the corresponding phase voltages of the source; the line currents being

determined under Ohm’s law:
(1)

U .
[} ==4_=127- j7.33=14.67¢ 7% 4,

(1)
Z4

1% = Ys _ 7334 j12.7=14.67¢/" 4

The neutral conductor current of the fundamental harmonic is
V=1V 1V 1V =934 j537=10.74¢" 4.

2. Calculate the currents and voltages of the third harmonic. The third harmonic
forms a system of zero phase sequence, then the complexes of the generator phase

voltages are:

U,(ﬁn) e/V3 936/

= = 65.76e’® V.

Ul =y’ =Ug =

V2 V2

There is no voltage of the neutral displacement and the line currents are determined

under Ohm’s law:
Uy 56.76¢/%
==4-=

VAN 15

(3
1

=32 j3.1=4.38¢'% 4,
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100 Uy 56.76¢’%

— _ — —Jj45
l 2(3) RE =1.03 - j1.03=1.46¢ A4,

10 Uy’ 56.76¢/%
VA (3)  —j15/3
The neutral conductor current of the third harmonic is
19 =10 + 1% + 107 =—5.17 + j11.37=12.49¢/"144 4,
3. Determine the instrument readings.

The line voltage of the generator (reading of the voltmeter V) is equal to (the line
voltages do not contain harmonics divisible by 3):

U, =U' =30 =3-220=3807.
The phase voltage Uc of the generator (reading of the voltmeter V) contains all the
given harmonics U, = \/(Ug))z + (Ug))2 =229.6V.
The phase voltage U’, of the consumer (reading of the voltmeter V) is
Uy =120V )+ (102 ) =229.67

Voltage of the neutral displacement (reading of the voltmeter V) is Up;p =0.
The effective currents in the wires are

I, = \/(1(1))2 + (](3))2 =15.314 (reading of the ammeter A4,);

=-93+ j9.3=13.15¢/1% 4.

Iz = \/(](1))2 (1(3))2 =14.74 A (reading of the ammeter A4,);

\/ (1))2 (3))2 =19.7 4 (reading of the ammeter 43);

\/ ( U)Z I 3) )Z =16.47 A (reading of the ammeter A,).

b). The neutral conductor contains the impedance Zy .
1. Calculation of the currents and voltages of the first harmonic.
Determine the neutral displacement voltage

) 1 a 1 ) 1
Ua iy tUs gy tUe g
(1) Z, Zp ZC —171.71° .
Ubo= =26.15¢ 77" =_26.24-3.82 V.

1+1+1+1
zy zy zo) Zy

The line currents are determined by Ohm’s law
(D) (D) _i
1(1) Uy QOIO _240.6-¢ Jj26.08

=16.04-¢ 7% = 14.41 — j7.05 4,

zV 15
U(l) UV 14711 L
1y ==t oo 1948 = 12.09.¢ P = 7,05 +10.91 4,
Z) J
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UL ~UGl 2246 /%32

(1) _ 200 _ _ 29 _ e
I 7 T 14.97-¢ 14.87 + 175 4,
ul 1T .
[V =00 _2652-¢ =938 187" =750+ j5.60 A.

Zy  2.828.¢/%
Verification:

10+ 10 + 107 =14.41 —j7.05-7.05+,10.91 — 14,87 +j1.75 =—7.51 +j5.61 = I}/
2. Calculation of the currents and voltages of the third harmonic.
Determine the neutral displacement voltage

oL g Ly ]

oz A | Y 101.05°
— — — — = Py . = _ /
UG, = 1 1 1 1 104.1-¢ 19.96 + j102.2 V.

+ - -
(3) (3) (3) (3)
ZA ZB ZC ZN
The line currents are determined by Ohm’s law
(3) (3) _j
Ui =Uso 867 ¢ /3%

(3) _ =0,0 _ ., 739.96° _ o
I = Py = T =5.78-e 443 —j3.71 4,
Zy
(3) (3) ;
U _uy -J39.96 o
e e R 86.7 ?45 = 1.93.¢71P% = _ 1 24— j1.48 4,
Zg J
Uy - —39.96 o
1 == 00 86,7 ¢ = 17340 = 1114 413,29 4,
Zc -J
U3 __j101.05 .
[V =00 _1041-¢ = 16.46-¢™% = 1433 +8.10 4.
N
z 2+ j6
Verification:

1) +15) + 107 =443 -j3.71 - 124 —j1.48 + 11.14 + j13.29 = 14.33 + j8.10 = [/
3. Determine the instrument readings.
The line and the phase voltages of the generator (reading of the voltmeters V; and
V5, respectively) remain the same as in the first case.
The phase voltage U’, of the consumer (reading of the voltmeter V3) is:

U =0V + (U f =\240.67 +86.72 = 255.7 7.
The voltage of the neutral displacement (reading of the voltmeter V) is:
1 3) P _ 2 2 _
Uoo =\/(U(gl)0)z +ug)f =26.15> 410417 = 1074 7.
The effective currents in the wires are:

I,= \/([Q))Z + ([23))2 =17.054 (reading of the ammeter 4,);

Iz = \/(]gl))z + (123))2 =13.13 4 (reading of the ammeter 4,);
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Ic= \/(12“)2 + (123))2 =22914 (reading of the ammeter A5);

Iy = \/(I](\,l))z + (1](\,3))2 =18.94 A (reading of the ammeter A4,).

¢). Neutral conductor is disconnected.
1. Calculation of the currents and voltages of the first harmonic.
Determine the neutral displacement voltage

w. oo b gm 1
Car s iy tlet
vy, =—-4 = =C =161/ =~ 139.5+,80.5 V.
—0,0 1 1 1 ' T
+ +
zy zy z¢
The line currents are determined by Ohm’s law

(V) _ g0
vV -y .
== (JOIO =22 j12.7=25.4¢7 4,
Z,
U (v |
1y == 0% =127+ j34=13.15¢/" 4,
A
Uy |
1) == % 934 j93=13.1¢/" 4
Zc

Verification: 1/ +1% +1 =0.

2. Calculation of the currents and voltages of the third harmonic.

There are no line currents as in order to close the zero-phase-sequence current
(currents of the harmonics divisible by 3) there should be a neutral conductor:

17 =1y’ =1’ =0
The neutral displacement voltage is equal to the phase voltage of the generator

Ugy=U') =6576¢" V.

3. Determine the instrument readings.

The line and the phase voltages of the generator (reading of the voltmeters J; and
V>, respectively) remain the same as in the first case.

The phase voltage U/, of the consumer (reading of the voltmeter V3) is:

U,=1"z," =380 .
The voltage of the neutral displacement (reading of the voltmeter Vy) is:

Uoo =8 ] + 05, F <1747

The effective currents in the wires are
L,=1"=2544 (reading of the ammeter A4;),
I;=1"=13.154 (reading of the ammeter A4,),
Ic=1"=13.154 (reading of the ammeter A43),

There is no current in the neutral conductor /y=0 (reading of the ammeter A,).
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6-10 (6.17). Solve the problem 6.9 under condition the phase impedances are identical:
7" =15+ j10 Ohm. The generator voltages and the neutral impedance are of the same
value.

Solution. As the load is balanced, the calculation may be performed for but a single
phase. The voltages and currents of the first harmonic form the symmetric system with a
positive phase sequence, that’s why there is no neutral displacement voltage of the first
harmonic at any state of the neutral conductor; it means the voltages and currents of the
first harmonic do not depend on the position of switches, they remain the same
regardless the switches position. A single-line diagram for calculation is presented in
fig. 6.14,a. The voltages and currents of the third harmonic form the symmetric system
as well, however, that being of the zero phase sequence. This time, a single-line diagram
takes into account the triple impedance of the neutral conductor (see «Three-phase
circuits. Method of symmetric components»). The scheme is presented in fig. 6.14,b.

Calculate the first harmonic.

The complex of the source phase voltage is

A _220e7/%

The complex of the line current is l g) = =12.16-¢ 7% 4.

Z (W 15+ j10

There is no neutral current of the first harmonic.

Calculate the third harmonic for different cases. The complex of the source phase

UG-’V 93e/%
V2 V2

The single-phase impedance of the load to currents of the third harmonic is

Z% =15 +3-10 = 15 + j30 = 33.54-¢’%*" Ohm.
a). Neutral conductor is connected.

The neutral impedance is zero, there is no neutral displacement voltage, the voltages
across the load phases coincide with those of the source. This time, the current of phase

(3) j4s
A 1n accordance with Ohm’s law 1s: [ (/13) = Yi _ 65'88.
Z(3) 33.546J63'44
The neutral current is equal to the sum of three identical line currents:
10=310"=588¢7"% 4,
Let’s find the instruments readings.
The reading of the voltmeters V; and V, are the same as in problem 6.9:

ViU, =UY =30 =+/3-220=380 ;

=65.76¢’% V.

: (3) _
voltage is U,/ =

=1.96.¢ 713 4.

Vo Uc=U, =\/(UQ))Z U@ f =2206 1.
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The phase voltage U’, of the consumer (reading of the voltmeter V3) in the presence

of the neutral conductor coincides with the phase voltage of the source, that’s why
Uu/=U,=2296V.
The reading of the voltmeter V, (voltage of the neutral displacement) is equal to zero.
The effective currents in the line wires are identical (reading of the ammeters 4,+4;):

L= + (1 F V12167 11.967 = 12.32 4.

In the neutral conductor (reading of the ammeter A4,), there is only the current of the
third harmonic: Iy= Iy = 5.88 A.

b). Neutral conductor contains the impedance Zy. Perform the circuit calculation for
the third harmonic.

vy 65.8¢74
Z% 432, 3354094 64 18
10=310=377¢7"" =351 137 A.
Note, calculation of the third harmonic may be performed according to the

commonly used strategy as well:
- voltage of the neutral displacement:

=126 =1.17-0.46 A.

(3) _
]A

3) 3
=4 Z(3) )
UGS == 238267 = 1525 41830 V.

74_7
(3) " 5(3)
A Zy

- currents in the line conductor 4 and in the neutral under Ohm’s law:
(3) (3) ;
Uiy ~Upo 42.1.¢/%%

(3) _— —0,0 _ _2137° _ .
L= 2 == 154 730 =1.26-¢ 7'°7 = 1.17 - j0.46 A.
(3) .
U . 750.19 ' .
[ =00 B8 _5g9, 351137 4,
AN 2+ j6

The verification is: 10/ + 15 + 10 = 3.1 =3.51-j1.38 = 1§".
The instruments readings are: V; - U,;=380V; V,— Ucr=229.6V;
Vi U=V + (U f =v220* + 4212 = 2232 1
Vi— Uy=Uy® =23.827V.
Ay, A, As —>1A=\/(IQ))2 +(1;3))2 V12,167 +1.26% = 12.22 4:

Ay > Iy=1{'=3774.

¢). Neutral conductor is disconnected.
There are no neutral currents because the flow of zero-sequence currents (currents of

harmonics divisible by 3) requires a neutral conductor: 1 213) =1 %3) =1 g) =0.
The neutral displacement voltage is equal to the phase voltage of the generator
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3 3 45
Ugy=U') =656/ B.
The instruments readings are: V; — U;=380V; V,—> Ucs=229.6V;

V> U/=U V=220, Vi Upo=Ug,=6576V.
The effective currents in the line wires are Ay, Ay, A3 — 1Li=1, D'=12.16 4.
There is no current in the neutral conductor /y= 0 (reading of the ammeter A4,).

7. TRANSIENT PROCESSES IN LINEAR CIRCUITS WITH LUMPED

PARAMETERS
7.1. CLASSIC METHOD OF TRANSIENTS ANALYSIS " Iy
7.1.1. Transients in circuits with a single storage element
7-1 (7.1). In scheme fig. 7.1, calculate the voltage across the v c "
capacitor as well as the currents of the transient process. The ; ic Uc
circuit parameters are: U= 100 V, r; = 60 Ohm, r, =40 Ohm, o l
C =10 uF. Plot the capacitor voltage. Fig. 7.1

Solution. After the commutation, the circuit is described by the following equation
system under Kirchhoff’s laws concerning the instantaneous currents and voltage across
the capacitor: i1 —ih—ic=0,
I 1'’rt Uc= U. )
iz'l" »— Uc™= 0.
The additional equation is the coupling equation between the current and voltage of
the capacitor: ic=C CZl_f
The equation system is solved by the substitution method — all the currents are
expressed through the capacitor voltage and are incorporated into the first equation of
the system. As a result, the equation system is reduced to one linear non-homogeneous
differential equation of the first order with constant coefficients. It is advisable to add,
the equation order is determined by the quantity of the circuit storage elements. This
time, there is a single storage element — a capacitor; that’s why the differential equation
happens of the first order.
p=Ute,  gte, o cde,  Ustuc te pdic_
n 7y dt n ry dt

0.

dt  Cnry ¢ Cr

The equation solution concerning u¢(?) is found as a sum of particular solution of the
non-homogeneous differential equation and general solution of the corresponding
homogeneous differential equation. They are termed, respectively, steady-state and
transient components: uc(?) = ucy(t) + uc,(t). Such a method of the transient processes
analysis is called a classical method. The view of the steady-state component depends
on the view of the right side of the equation, i.e. on the source character. In the case in
question, there is a D-C source, the steady-state component of the capacitor voltage is

constant as well, correspondingly its derivative is
dqu 0 _ Crlrz . U _ ”'2 U 40

= . us‘ =
dt “ n+r, Cn n+n 60 +40

du rn+r U
c h*th,

-100=40 V.
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A transient component form depends on the number and view of the roots of the
characteristic equation. That’s why we draw and solve the characteristic equation. Here,
the derivative of uc is replaced by p, quantity uc itself — by 1, the right side is equated

with zero: p it 0.
Cnry
n+r 60+ 40
Crnr,  107°-60-40
If there is one negative root of the characteristic equation, the transient component
takes the form: wuc(t) = A-e”'. The integration constant 4 is found through the initial
conditions. The voltage across the capacitor before the commutation is: u(0)= U=
=100 V. In accordance with the second commutation law, we have uc(0.) =uc(0.) =
=100 V. Thus, the integration constant is
A=uc(0) =uc(0) — ucy(0) =100 —40 =60 V.
Finally, we have: uc(?) =40 + 60-¢ ' V.
U-ue_ 100-40-60-¢ 17
n 60

—4167¢
) =te =200 e T s ey

7 40
ict) =i(t) — ir(t) =—2.5-¢ " 4.
In order to plot uc(2), let’s calculate in addition:
- the circuit time constant 7= 1/|p| = 1/4167 s= 0.24 ms,
- practical duration of the transient process T,=(3+5)t=4-7=0.96 ms.
The graph uc(t) is drawn using the components: separately shown are steady-state and
transient components, they being added graphically. The graph is presented in fig. 7.2.

The equation solution: p = — =—4167 s

— 1 - 1‘6741672‘14’

The branch currents are: i) =

7-2 (7.2). Determine the coil current and voltage across the inductance (fig. 7.3), if
U=200V, r.=10 Ohm, L =25 mH.

Plot i(z) and uy(1). A,
80 \ Fig.7.2
uc(t)
60} \\
40 wel) |
20 :
) .."--.______I:tCt(t) "
Fig. 7.4 SRR T .
Comments and answers. 0 0.2 0.4 0.6 0.8 ms
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. The independent initial condition is: i(0.) =i(0.) = 0.
. The steady-state mode computation is based on the scheme fig. 7.4:

iy =20 4, ur, = 0.
. The characteristic equation and its root are: re+pL=0, p=—400s".
. The transient components are: i, = Aé”; u;, = Be”.
. The initial conditions are:  i,(0.) =i(0.) — i;=—20 4;

ur(0.) = ur(0,) = U—r.i(0.) =200 V.

. The integration constants are: 4 =1i,(0.) =—20; B=u;,(0.)=200.

WD B~ W N =

o)

7. The complete quantities are:  i(z) =20 —20e **" 4;  u,(t) = 200e *" V.
8. The circuit time constant and duration of the transients are:
=t L 55007 T,=41=001s.
lpl .
The plots i(t), u,(t) are in fig. 7.5.
VA u, a) Abi__. b)
20F === = =|—===
e
200 0 /,’ i(t)
\ 25-5 —75-10 —¢
AN ol
T~ L Lt Fig. 7.5
0 25 5 75 10 ms A
VA y A A
| "¢ — — — l S/
0 0511 i 2 ] »a) b)
ms 20
-200
) 3 / \,
Fig. 7.6 600 N
/ ~ r

: 0
Fig. 7.7 05 1 15 2 s

7-3 (7.3). Determine the current and voltage of the coil when switching it to the
additional resistance r,, (fig. 7.6), if U= 200 V, r.=10 Ohm, L= 25 mH, r,; = 40 Ohm.
Plot i(?), u.(?).
Comments and answers.
U

1. The independent initial condition is: i(0.) =i(0) =—=20 A.
rC
2. The steady-state components are: i,=0; us=0.
3. The characteristic equation and its root are:
pL+ (rag+r)=0, p=-2000s".
4. The transient components are: i, =A4¢"; u.,=Be".
5. The initial conditions are: i(0.) =1i(0,) —i;=20 4,

ur(0) =—i(04) (raa +r.) =—1000 V and  u.(0-) = u.(0-) = r.i(0-) + u(0.) =—800 V.
6. The integration constants are A=i,(0,)=20; B=u,0.)=-2800.
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7. The complete quantities are:  i(z) = 20e >*" 4;  u.(t)=— 800e " V.
&. The circuit time constant and duration of the transients are:

=ﬁ= 0.5-10° s =0.5ms; T, =2 ms.
P
The plots i(?), u.(t) are in fig. 7.7.
AN
b) 21 |
. ls
% 0.01 t
'
0 s

R it

2
Fig. 7.8 i(t)\'

7-4 (7.4). In fig. 7.8,a there is a scheme to compute the transients, the transient process
can be observed wneh a transformer is switched to a no-load condition. Furthermore,
u(t) =100-sin(314¢t +y,) V, r=20 Ohm, L=0.159 H. Compute w, to reach the
“hardest” and the “easiest” condition. Plot the current of the ‘“hardest” condition.
Determine the surge current.
Solution. 1. This time, there is a zero independent initial condition — i(0,) =i(0_) = 0.
2. Perform the current computation by the classical method. The steady-state
component has the following view:

U
is(t) =1L, sin(314t + v, 27’" -sin(314t + v, — @).

Here Z=1/r? +(@L)* =4/20% +(314-0.159 > =20 + 502 = 53.9 Ohm,
Q= arctgw—L= arctg5—0= 68.1°, [,=—"F=——=1.86A4.
r 20

Thus, iy(t) = 1.86-sin(314¢t+y,— 68.1°) 4.
The initial value of the current steady-state component is
is(0) = 1.86-sin(y,— 68.1°) A.
3. The characteristic equation and its root are:
pL+r=0, p=—r/L=20/0.159=-12585".
The circuit time constant and practical duration of the transients are:
7= 1/|p| =1/125.8 = 0.008 s, T}, = (3+5)7 = (24+40) ms.

S N 2
The steady-state component oscillation period is: T =% — 20 ms.
©

4. In case of a single root of the characteristic equation, the transient component takes
aview: i(t)=A-e".

The integration constant is 4 =i,(0) =i(0) — iy(0) = — 1.86-sin(y,— 68.1°).

5. The “hardest” transient process (the biggest value of the transient component) is
observed at v, — 68.1° =290°. It means y,=158.1° or y,=—21.9°

The “easiest” process (when there is no transient component) is at y,— 68.1° = 0° or
+180°. It means v, = 68.1° or y,=—111.9°.

153



If y,— 68.1°=90°, then w,=158.1°. The instantaneous current is as follows
it) =iy(t) + i(t) = 1.86-sin(314t + 90°) — 1.86-¢ "> 4.
6. The diagrams of the current and its components are presented in fig. 7.8,b.
The maximum instantaneous value of the current during a transient process is termed
“surge current”. As it 1s seen from the diagram, the highest current value is [, =2.4 4
and it occurs at the time moment ¢=9.7 ms.

7-5 (7.5). Compute the current of the transient process when switching the coil to
sinusoidal voltage u(?)= U, sin(owt + y,) (fig. 7.8,a), if
U,=200V, ©=1000 rad/s, wv,=—30° r=10 Ohm, L =25 mH.
Plot i(2).
Answer: i(?) = 7.43sin(1000¢ — 98.2°) + 7.35¢ " 4;
the curve i(?) 1s in fig. 7.9.

A
S o\, ~
N K ",. i(t
4 /": .“ () / \
— i f ¢
O ’ 0 '
) 3 45N\ 6 ’} 9 ms
4 i : /
_gk- | Fig. 7.9
7-6 (7.6). Compute the transient current and voltage across the |U r
capacitor (fig. 7.10), if U=200V, r=100 Ohm, C =100 uF. Ucs
Plot i(2), uc(t). o—o

Comments and answers. Fig. 7.11
1. The independent initial condition is: uc(0.) = uc(0.) = 0.
2. The steady-state mode is computed based on the scheme fig. 7.11:
is=0; uc,=U=200V.

3. The characteristic equation and its root are: » +L =0, p= o 1005 .
pC rC
4. The transient components are: i(t) = Aé”';  uc(t) = Be”.
5. The initial conditions are: uc/(0:) = uc(0:) — uc,=—200 V.
i(0,) = _M: 2 A.
r
6. The integration constants are 4 =1i,(0.) =2; B = uc(0.)=-200.
A A_ l a) V A_ Uc Ucs b)
200F - —?J—
2
100 ATuc(t),
T 2t 31t 41 t
Cr
N\ -100[—
0 P— > 2200 Flg. 7.
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7. The complete quantities are: (1) =2e '*" 4;  uc(t) =200 —200e ' V.
8. The circuit time constant and practical duration of the transients are:

T:L: 0.0ls; T,=0.045.

v
i(t), uc(t) curves are in fig. 7.12.

7-7 (7.7). Determine the current and voltage across the capacitor when switching the

circuit to the additional resistance r,, (fig. 7.13), if
2 O_O
U=200V, =100 Ohm, C=100 uF, ro =400 Ohm. ><4:,,|_
Plot i(t), uc(t). U g
Comments and answers. 1. The independent initial condition is: Fud ucl ——
uc(0.) =uc(0)=U=200V. o i,
. =0 — D\
2. The steady-state components are: i, =0; wuq =0. Fig. 7.13

3. The sharacteristic equation and its root are:

1 1 .
rag 1) =0, p=—— =205
A TS
4. The transient components are: i, = Aé”';  u¢,= B,
5. The 1nitial conditions are: ucd0s) =uc(05) —uc,=200 V;
0
i(0,) = a0 ) g4y
Vg 7

6. The integration constants are 4 =1i,(0.) =—0.4; B = uc(0,) = 200.
7. The complete quantities are:  i(2) =— 0.4e " 4, uc(t) =200e " V.
8. The circuit time constant and practical duration of the transients are:

’L’=L=0.05 s, T,=41=02s.
v
i(t), uc(t) curves are in fig. 7.14.
Abi_ a) A U b)

T 27 31’ 41

all
0,2 // 100 \

N\

\ /
04 Fig. 7.14 0 —
T 2t 3t 41

Y~

200

7-8 (7.8). Determine the current i(z) and the voltage across

the capacitor uc(?) (fig. 7.15), if r=100 Ohm, C=10 uF, rt 0.
Ey=300V, e(t) =100sin(1000¢ —90°) V.

Plot i(1). ucl c
Solution. Analyzing the scheme before the commutation, 2(1) T E,
let’s determine the capacitor voltage under Kirchhoff’s
voltage law: 7ip(0.) — u(0.) = E,. Fig. 7.15

i0(0.) = 0, accordingly, uc(0.)=—Ey=-300 V.
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In accordance with the second commutation law u(0.) = uc(0_,) =— 300 V.
After the commutation, scheme is described by the following linear differential

equation ri(t) + uc(t) = e(t), where uc(t) :é [idt,

and its solution is: i =i, +ti; Uc=Ucs T Ucy.
In order to compute the steady-state mode we apply the complex-notation method.

oo 1 10°
E,=100e”" V, xc= = =100 Ohm,
wC 1000-10
Z=r—jxc=100-7100 = 1002 e 7" Ohm,
-j90 e e
—En 100670 5505 = 070767 4,

- Z10042e7%
Ucms = —jxcLus = 100e 7°0.54/2 ¢ ™ = 50~/2 ¢ %5 = 70.7¢ 735" .

The instantaneous values of the steady-state components are:
is(1)=0.707sin(1000¢ —45°) A,  ucy(t) = 70.7sin(1000¢ - 135°) V.

The characteristic equation is written upon the ground of the differential equation

1 1 10°
rt——=0, p=-—_=-
pC rC  100-10

Hence, the transient components are of the following form:
it) = Ae ™™y 1) = Be 1",
The integration constants are determined from the initial conditions.
At t=0, wehave: i(0;)=4; ucl0:)=B=uc(0:)— uc(0.),
where uc(0,) =70.7sin(—135°)=—-50 V,
uc(0,) = B=—-300—(-50)=—-250 V.
The dDifferential equation for the transient components at = 0, has a view:
rif0+) +ucl0+) = 0.
, . —ug(0,.) 250
0D = A= 7" 100
it) =254, uc(t) =—250e " V.
The required quantities have a final view:
uc(t) = 70.7sin(1000¢ — 135°) — 250e '
i(t) = 0.707sin(1000¢ — 45°) + 2.5¢ % 4.
In order to construct the diagrams (fig. 7.16) we determine the circuit time constant

=—-1000s".

=254, 1e.

and duration of the transients: 7= ! = ! =0.001s, T,=47r=0.004s.
| p| [—1000]
The sinusoid period is T=2%=—"_= 000628 5 = 6.28 ms.
0]
The calculation results are tabulated in table 7.1.

Table 7.1
t,ms| O 0.75 1.5 | 2.25 3 375 | 45 | 5.25 6 6.75

i,4| 05 ]1-0.02] 046 | 0.7 | 057 | 0.12 | 038 | 0.7 | 0.62 | —0.22
i,A | 25 | 1.18 | 0.56 | 0.26 | 0.12 | 0.06 | 0.03 | 0.01 | 0.006 | 0.003
i,4 ] 20 | 1.16 | 1.02 | 096 | 0.69 | 0.18 | -0.35 | —0.68 | -0.614 | -0.217
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2.5k Fig. 7.16

-1

7-9 (7.9). Compute the transient currents and voltage across the inductance in scheme
fig. 7.17,if E=150V, ri=r,=10 Ohm, ry;=ry,=5 Ohm, L =20 mH.
Plot iy(?), ui(?).

3
!
~N

Fig. 7.17 Fig.7.19
Solution. 1. Analyzing the scheme before the commutation, let’s determine the
independent initial condition, this time it being the current through inductance — i,(0.).
Scheme before the commutation has a view fig. 7.18. The inductance current is

ir(0,) = E B 10.1550 2 —3754.
Wik T rtry 10-5 4 10+5
r+n 10+5

In accordance with the first commutation law, we have i,(0.) = i,(0.) = 3.75 A.
2. The scheme after the commutation lools like in fig. 7.19, it being described by the
system of the linear differential equations under Kirchhoff’s laws:

(1) = (1) + i3(1),

: : di
i + i +L—2:E,
dt

riy + (r3 T 1) i3 = E, 1
and its solution having view i,(?) = iy (t)+ig(t); ur(t) = urs(t)Tu(t). -
3. The steady-state mode is: T 213
E 150
iy = = =10 4;
rz(r3+r4)+rl 10 (5+5)+10 pL
P+t 10+5+5 r4
.. ry+r, 5+5
Iy = I1° =10- =5 4;
B R CI 10+5+5 Z(p) -‘V
i3S=i15—iQS=10—5:5A, MLSZO. /?
4. Calculation of the transient components. Fig. 7.20
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Let’s draw the characteristic equation through the presentation of the circuit input
r+1r)(ry+ pL
(r3+n)(n P)Jrr]:().

impedance in operational form (2™ way):
ry+r,+n+pl

However, a characteristic equation may also be drawn concerning the branch with the
storage element, the source being replaced by its inner impedance (fig. 7.20). This time,
the equation is simpler:

(r3+r4)r1+r2+pL=O; (5+5)-10
r3+r,+n 5+5+10

Then i], = Alept = AleJSOt; 1.2[ = A2€ 77502 i3z = A3€7750t; Uy = Be 7750[.

The integration constants are determined at ¢ = 0.

I*' way of solution

The scheme after the commutation for moment ¢ = 0.
has the view fig. 7.21. According to the method of two
nodes, we have
E/n—iy,(0,) 150/10-3.75

+10+20-102p=0; p=-750s".

u(04) = l ] i ) ] =56.25 V.
noortr 10 5+5 <
The currents at the moment of commutation are Fig.7.21 b
E — —56.
i(04) = Ugp(0,) _150-5625_ 9.375 A,
i 10
i3(02) Zu“b(()*): 5625 =5.625A4 or i3(0:)=1(0s) —i(0.) =5.625 4,
73ty 10

ur(0+) = up(04) — r2ir(04) = 56.25 - 10-3.75=18.75 V.
Let’s write down the transient components for moment ¢ = 0.
i1(00) =4, =10;(05) —i;,=9.375-10=-0.625 4,
1(0.)=A;=105(0:) — i, =3.75-5=-1.25 4,
i3,(0+) = A3 = l3(0+) — l'3s =5.625-5=0.625 A,
ur(05)=B=u(0:) —u,,=1875-0=18.75 V.
Thus:  i1(t) =—0.625¢ " 4, i(t)=10-0.625¢ " 4,
bt)=—125¢ 7" A,  i)t)=5-125¢ """ 4,
(1) =0.625¢ " A, i3(t)=5+0.625¢ " 4,
ur(t) = ur(t) = 18.75¢ " V.
11" way of solution
Integration constant 4, may be determined at once, for the current 7, obeys the first
commutation law:
Az = 12(0+) — izs =3.75-5=-1.25 A,
bt) =Ase PV =—125¢ " A, ix(t) =in(t) + irft) =5 —1.25¢ " 4.
Let’s determine the voltage across the inductance

u(t) = %= 20-10 +(= 1.25)(— 750)e "' =18.75¢ " V.
The junction voltage is

Uap(t) = Faia(t) + up(t) = 10-(5 — 1.25¢ ") + 18.75¢ " =50 + 6.25¢ " V.
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The currents are i3(2)

_ugy(t) _50+6.25¢"

13+

5+5
i1(t) = ix®) + i) = 5 — 1.25¢ " + 5+ 0.625¢ " =10 - 0.625¢ " 4.

5. Let’s plot iy(¢) and u,(t). The transient process duration is

=5+0.625¢ "% 4,

T,= 4T=—=L s =15.33 ms.
Pl [=750]
The calculation results are presented in table 7.2.
Table 7.2
t, ms 0 1.33 2.67 4 5.33
i, A —1.25 —0.46 —0.17 —0.06 —0.02
I, A 3.75 4.54 4.83 4.94 4.98
u, V 18.75 6.9 2.54 0.93 0.34
The curves are presented in fig. 7.22.
V. us a) A A i2 l'zs b)
20 /___...:F—
4 b irt)
\ )
N ot 20 3 40
T T 3t 4r t
\ 0 >
\\ t iy
E_> 2
0 = 2t 37t 4«1 Fig. 7.22

7-10 (7.10). Calculate the transient currents in scheme fig. 7.23,a by classical method.
The circuit parameters are: U=50V, r; =r; =100 Ohm, r, =50 Ohm, C =100 uF.

a) b) —| I
r h I3 " VZAIjL
: e

rcs

Fig.7.23 g
Solution. 1. The circuit state before the commutation is: i;(¢)=iy(¢)=0, uc(t)=U=
=50 V. In accordance with the second commutation law, the independent initial
condition is as follows —  uc(0.) = uc(0) =50 V.

2. In accordance with the classical method, the required transient currents are
presented as the sum of steady-state and transient components:

()

h=lstiy, D=hytiy B=iTh
3. Let’s calculate the steady-state components of the currents:
: .. U 50
y=0; ii;=1i%= =0.25 4.

R+r, 1004100
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3. We draw the characteristic equation through the input impedance in the operational

form: Zp) =4+ B
pC n+n
The root of the characteristic equation is:
P n+r _ 100 +100 — 100"

C(nry +nrr+rrs)  1074(100-50+100-100+50-100)
4. The transient components of the currents in case of a single root of the
characteristic equation are as follows: i, =A4-e”, iy=B-e”, iy=D-e".
5. The integration constants 4, B, D are found with the aid of the initial conditions,
which, however, may be obtained in different ways. Let’s consider some of them.
a) the I way. The equation system under Kirchhoff’s laws is generated for the
post-commutation condition for the initial time moment:
i1(0+) — i2(0.) — i3(0,) = 0,
i1(0:)-r1 + 13(0.)-r2+ uc(0:) = U,
i1(04)-r1 +13(0.)-r; = U.
With the numerical data: i1(0.) — i5(0.) — i3(0.) =0,
i1(0+)-100+ i5(0.)-50+ 50 = 50,
11(0+)100 + l3(0+)100= 50
The system solution is: i1(0.) =0.125 4, i,(0.) =—0.25 4, i5(0,) =0.375 A.
The integration constants are: A=10140.) =1i1(0,) —i;,=0.125-0.25=-0.125;
B=105(0.) =i0,) — iy =—0.25-0=-0.25;
D =i3,(0,) = i3(0.) — i3, = 0.375 - 0.25 = 0.125.

a) 11(0+)
aQ—|>—

Fig.7.24

b) the 2" way. Calculation is performed under the equivalent scheme, it being
drawn for the initial time moment. This time, we use the consequence of the
commutation laws: an inductance at the commutation moment behaves as a current
source i;(0.), a capacitance behaves as a voltage source u(0.). Correspondingly, for the
initial time moment, we obtain a scheme fig. 7.24,a. Taking into account that in the
circuit there are two identical sources uc(0.) = U, we may claim that the potentials of
the points a and b are equal; that’s why they may be connected by a jumper. We obtain
the scheme fig. 7.24,b; from which the initial currents are found:

i3(0,) = Urr = 5500_100 =0.375 4,
7+ 12 100+
n+n 50+100
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, . oo 50
ll(O+) 13(O+) "7, 0.375 504100
i»(0,) =i1(0,) —i5(0,) = 0.125 - 0.375 =-0.25 A.
Further, the integration constants are determined like in the 1* way.
¢) the 3" way. Calculation is performed under the equivalent scheme for the
initial time moment concerning only the transient components (fig.7.24,c). Let’s
determine the required initial value of the transient component of the voltage across
capacitor. The steady-state component is: uc, = izg73=0.25-100 =25 V.
Then, I/lCt(O+) = Uc(0+) —Ucs = 50-25=25V.

=0.125 4,

—u~(0 —
The integration constants are: B= c:(0) = 25 =-0.25;
nr 100
ry + 50+—
n+n 2
A=B - = 025100 _ 05,
n+n 100+100
D=l —025—19 _g 5.
n+r 100 +100

6. Write down the final expressions for currents:
i) =025-0.125-¢ " 4; i@t)=-025¢"""4; iy1)=025+0.125-¢ """ 4.
7. In order to plot i(?), let’s calculate:
- the circuit time constant 7= 1/|p| = 1/100 s= 10 ms,
- the practical duration of the transient process 7;,= (3+5)7=4-7=40 ms.
The diagram is presented in fig. 7.25.

AN a) I

0.2

0.1

01 e

-0.2 Fig. 7.25 Fig. 7.26

7-11 (7.15). Calculate the transient currents in scheme fig. 7.26,a, by the classical
method. The circuit parameters are as follows: r; =173 Ohm, r, =100 Ohm,
C =100 pF, u(t) =100-sin(100z + 30°) V.
Solution. 1. Work out the independent initial condition by analyzing the circuit before
the commutation: iy(z)=0; i1(t)=i3(t) = [1,,-sin(100¢ + y;1);

I = Ui, 100

\/rlz +(%)C)2 173 1007

161

=0.54,



- yc 100
Wi = W, — arctg—9% = 30° + arctg——= 60°,
n

Ucw= Ilm-i= 0,5-100=50V, w,c=y; —90° =-30°;
oC

uc(t) = Ucysin(100¢ + y,c) = 50-sin(100z — 30°) V.
The independent initial condition with account of the second commutation law is as
follows: uc(0+) =uc(0.) = 50-sin(— 30°)=-25 V.
2. In accordance with the classical calculation method, we have
uc(t) = ucy(t) + uct),
(1) = i1s(t) T i1?), Da(t) = ins(t) + i2u(1), T3(1) = i35(1) T i3,(2).
3. We calculate the steady-state components by the complex-notation method:
U, =100-¢”" 7,

1
" '(— jj i
Z=r 4O 473 OO ppg 7.0 526 oy,
py— j L 100 — 7100
: oC
I] — Qm — 100 . 6]30 _ 0 437_ej42'60 A
2 28767710
_; L
lZSm = llsm'—wC: 0.437'ej42'60-ﬂ= 0.309-¢ —52.4° A,
Py — 100 — j100
2 oC
L, = Lsm-r—zz 0,437.@/’42-6?&: 0.309-¢”575" 4,
- 100 — /100
n=—J 4
oC

Ucon = bonry = 0.309-¢ 74100 = 30.9-¢ 7>+ V.
The instantaneous current values are: i15(t) = 0.437-sin(100¢ + 42.6°) A,
ir(t) = 0.309-sin(100¢ — 2.4°) A, i35(t) = 0.309-sin(100z + 87.6°) A.
The instantaneous and initial values of the steady-state component of the voltage
across the capacitor are:
ucs(t) =30.9-sin(100¢ - 2.4°) V,  uc(0) =30.9-sin(—2.4°) =—1.29 V.
The initial value of the transient component of the voltage across the capacitor is:
ucl(0:) = uc(0.) — ucy(0,) =—25+1.29=-23.71 V.
4. Let’s generate and solve the characteristic equation:
Z0) :L+ nr —0, p:_rl +r,_ 127+100
pC n+n Crr,  107*-173-100
Current transient components are: i;,= A-e”, i, = B-e”, i3 =D-e”.
5. The integration constants are determined under the equivalent scheme for the
initial time moment only for the transient components (fig. 7.26,b):

uc(0) _ -23.71
4 173

=_1578s .

A=iy,0,)=— =0.137;
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uc;(0) —-23.71
B =1i5(0.) = = =-0.237;
7 100

D =i3(0,) = i1,(0,) — i»,(0,) = 0.173 + 0.237 = 0.374.
6. Work out the final formulae for the currents:
i(t) = i\(t) + i1(t) = 0.437-sin(100¢ + 42.6°) + 0.137-¢ "™ 4,
ir(t) = irs(t) + In(t) = 0.309-5in(100f — 2.4°) — 0.237-¢ °"¥ 4,
i3(t) = ixs(t) + i3(t) = 0.309-5in(100¢ + 87.6°) + 0.374-¢ " 4,

7.1.2. Transient processes in the circuits with two storage elements
7-12 (7.23). In scheme fig. 7.27, compute the transient currents by the classical method.

The circuit parameters are: U= 100 V, »r =100 Ohm, L =0.1 H, C=1.6 uF. Plot i.().
Solution. 1. This time, there are zero independent o

initial conditions: i L

uc(0+) =uc(0)=0; ,(0,)=1i,(0.)=0.
2. The steady-state current components are:

(o
icy=0, i =iy, =%=@= 1 4. Fig.7.27

PL__ G o LrCp+Lp+r=0.

3. The characteristic equation is: 1 +
pC r+pL

The characteristic equation roots are:
—LANIP—42LC  —0.1£+0.12 =4-100%0.1-1.6-10°° _~0.1£0.06 =

Pr2= 20 C - 2.0.1-100-1.6-10"° ©32.10°°

pr=—1250s", p,=—5000s"
4. The transient components have the following view:
iLz(t) =A1'ep1[+ Az.epzf’ irz(f) = Byeplt + Bz~ep2t, iCt(t) :Dl.el’lf +D2.epzf.
The initial conditions for the transient components are:
i/(0:) = A, + A, i(0-) = B+ By, ici(0+) = D+ D,
i/ (0:) = pr-A, + pyAs; i,/ (04) = pr-Bi+ pyBy; ic/ (0+) = p1-Dy+ py-Ds.

5. In order to determine the integration constants, we calculate the initial conditions.
For that, we generate the equation system under Kirchhoff’s laws for a zero time
moment; moreover, we take into account the coupling equation between the current and
voltage of the capacitor: ir(0.) —ic(0:) —i,(0.)=0,

L-i;'(04) +uc(0)= U,
uc(0-)—i(0.)-r=0,
ic(0+) = Cuc'(04).

From here, the initial values of currents are:

i,(00)=uc(0)/r=0; ic(0.)=ir(0)—i(0,)=0.

The initial values of the derivatives are: uc'(0.) =ic(0.)/C =0;

i’ (0)=ud (0)/r=0; i/'(0.)=(U—-uc0.)/L=100/0.1=1000 A/s;
ic(0.)=1;(0,)—i'(0,)= 1000 A/s.

The initial conditions for transient components are:
ir(0.) =ir(0,) —ig(0)=0-1=-14, i;/0.)=1i,0.)—i,'(0.)=1000—-0= 1000 A/s,
(04) = i,(0) = in(0.) =0— T =— 1 A, i,/(0.) = i//(0) — i,/ (0,) = 0,
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ici(0+) = ic(0:) —ic(05) =0, ic/(0:.) =i (0:) — ic/(0.) = 1000 — 0 = 1000 A/s.
Thus, we obtain and solve the following three systems of equations:
A+ A, =-1, Ay=-1-4,=-1+1.065=0.065,
{ 1000+ p, _ 1000-5000

pir-A;+ prrA> = 1000; A= b= ps 1250+ 5000 1.065.
B+ By,=-1, {Bz=_1—31=_1+1.33=o.33,
{p1-31+pz-32:0; g =P 7300 4y
pi—py 3750
D+ D,=0, D, =-D;=-0.266,
{pl-Dl +prD, = 0; { D, = 1000 _ 1000 =(.266.
pi—py 3750
6. Write down the final expressions for currents in 4 A ;
accordance with the classical calculation method: 1 k--d- I T .
() =ir(t) T ir(t) =1—1.065-¢ " +0.065-¢ """ 4, —]
i(t) = lg(t) + i(t) = 1 — 1.33-¢ 2% +0.33.¢ " 4, l/(t)

ic(t) = ic(®) + ic(t) = 0.266-¢ 5"~ 0266 4. 5|/
7. Let’s plot i(?) (fig. 7.28). The transient time

. ) 4 4
with account |p,| > |py| is T}, =——=

| pi| 1250

7-13 (7.24). Calculate the transient currents in

scheme fig. 7.29 using the classical method. The

circuit parameters are: U=100V, r=50 Ohm,

L=0.2H, C=40 uF. Plot i(1).

Solution. 1. The independent initial conditions are:
uc(0+) =u0.) = 0;

U 100
i3(0+) = l3(0_) =7=—= 2 A.

2. The steady-state current components are: i), =0, ij;=iz,=—=——=14

3. The characteristic equation is:

1 r(pL+r) ’ 2
—+r+——2=0 or 2LrCp + (L+3r°Clp+2r=0,
pC r+plL+r

or 2-0.2:50-40-10%p* + (0.2+ 3-50%-40-10 °)p + 2-50 = 0,
or 0.8:10°.p>+0.5-p+ 100 = 0.

The characteristic equation roots are: p;, =—312.5 ;1654 s -

4. The transient components have the following view:

iu(t) = A-e *sin(ot +y), i) =B-e “sin(wt tyn), iyt) =D-e “-sin(wt +ys),
where the decay coefficient is a=|Re(p)|=312.55"";

angular velocity of the free oscillations is @ = Im(p;) = 165.4 rad/s "

The initial conditions for the transient components are:

i14(05) = A-siny, i1/(0.) = - v A-siny; + ©-A-cosy;
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i(04) = B-siny,, i»'(0) = - o-B-siny, + ©-B-cosyy;
i3,(04) = D-sinys, i3/(0) = — o-D-sinyz + @-D-cosys.

5. In order to determine the integration constants, we calculate the initial conditions.
Toward this end, let’s generate the equation system under Kirchhoff’s laws for a zero
time moment; moreover, we take into account the coupling equation between the
current and voltage of the capacitor: i1(05) —i2(0,) — i3(0,) =0,

rii(0:) + ri(04) + uc(0,)= U,
ri(0.) + L-is'(0,) + ri3(0,) = U,
i(0,)= Cuc (04).
From here, the initial values of currents are: i;(0.) = i,(0.) + 2,
_ U-uc(0)-2r 100-0-2-50 . _
12(0+) 2 2.50 O, 11(0+) 2 A.

The initial values of the derivatives are: uc'(0.) = i,(0.)/C = 0;

U-r-(iy)(0)+i3(0)) 100-50-(2+2)

i3'(0,)= — 500 A/s;
(0 L 0.2
i1'(0,) =— 1y (0,) = i5'(0.)/2=— 250 A/s.
The initial conditions for the transient components are:
11/(0-) =11(0,) —i15(0,) =2 - 1=14, i1/ (0) = i)' (0,) — 115'(0,) = — 250 A/s,
i2(0+) = i5(01) — ip5(04) = 0, i/ (04) = iy'(0+) — ipy'(04) = 250 A/s,
13(0.) = i3(0,) — 13(0,) =2 -1 =1 4, i3/(0:) = i5'(0.) — 15/ (0,) = — 500 A/s.
Thus, we obtain and solve the following three equation systems:
A-siny, =1,
—a-A-siny,+ w-A-cosy, =-250;
Aecosy, == 250+a - Asiny; _ —250+312.5 _ 0.3779,
® 165.4
A=(Asiny, } +(dcosy, )} =17 +0.3779° = 1.069, 4 A ;
i Fig. 7.30
rqu =5V L 5 a6y =693, 2
Acosy, 0.3779 L
{B-sin%:O, B=1511, SN
—a-B-siny, + @-B-cosy, =250;  y, =0°. 1 K TTTIOTT S——
D-siny; =1, \ _
— a-D-sinys Z&Dgizl/? =_500; 0 ~ _t>
D-cosyy =—22 2122 - 134, 2 4 6 8 ms
165.4
D=+1*+1.134* =1.512, tgys= = _0.882,

-1.134
but cosy; <0, that’s why wy5=180°+ arctg(-0.882) = 138.6°.
6. Write down the final expressions for the currents in accordance with the classical
calculation method:
i1(t) = is(t) + i1 (1) = 1 + 1.069-¢ >'*.sin(165.4t + 69.3°) A,
i) = ry(t) + Iny(t) = 1.511-e ' **.5in(165.4¢) A,
i3(1) = i3(t) + in(t) = 1 + 1.512-¢ ' *.sin(165.4t + 138.6°) A.
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4
312.5

7. Let’s plot iy(2) (fig. 7.30). The transient time is T, _4 s =12.8 ms.
o

The period of the free oscillations is

2r 2w o—
=—=——=10.038 5 = 38 ms.
"o 165 * 0
L
7-14 (7.30). Calculate the transient currents in the
scheme fig. 7.31. Numerical data are: o )
U=50V, r=10 Ohm, L=0.1 H, M=0.05H. Fig.7.31
Solution. 1. The independent initial conditions are zero: i;(0.) = i,(0.) = 0.
2. The steady-state currents are: iy =g=%= 54, i=0.
r
3. The equation system under Kirchhoff’s laws for the circuit state after switching is:
ri+ 19y g
dt dt
oy pdh
dt dt

Having presented the equation system in the operational form and having equated its
determinant to zero, we obtain the characteristic equation:
r+pL —pM
Ap) =

= rpL+ p’L’— p*M* =0,
oM pL+p L =p

L 10-0.1
>-M*  0.17-0.05
4. The transient components of the currents have a view:

i1(t) = Ay-e”"+ Ay e’ = 4, + Ay ™'
izt(f) = Bl' ep1t+ Bz' epzt = Bl + Bz'epzt .
5. Let’s calculate the dependent initial conditions (values of the current derivatives at

the initial moment) with the aid of the equation system given in step 3 above for the
time moment = 0:
Li'(0.) — Mi,'(0.) = U—-ri(0,) =50, or [0.14,'(0,) — 0.054,'(0.) = 50,
{— Mi'(0,) + Li,'(0.) = 0; —0.054,(0,) + 0.1i,'(0,) = 0.
The system solution is: i,'(0.) = 667 A/s, i,'(0.) =333 A/s.
6. The initial values of the transient currents and their derivatives are:
- on the one hand, i1(0.) =A1 + As,  i1/(05) = Aypo;
i2(0) =By + By, 15/(0:) = Byps;
- on the other hand, i1:0:) = i1(04) —i14(0,)=0—-5=—-5 4,
i/ (0+) =1,'(05) — i), (0,) = 667 Als,
i2(0+) = i5(04) — i54(0+) = 0,
ir'(05) =iy (05) — ip,'(0,) = 333 AJs.
We obtain and solve the equation systems:
A+ A,==5, Ayp,=667, A,=667/(—133,3)=-15, A =0;
Bi+B,=0, Byp,=333; B,=333/(-1333)=-25, By =—B,=25.
7. Finally, we have:  ij(t) =iy, +i,=5—5¢e "4, it)=2.5-2.5¢e 4.
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The fact i(0) # 0 is explained by zero secondary resistance 7, = 0, which means the

secondary circuit is made of the superconductor. w( ~
A Vo

7-15 (7.31). Calculate the transient currents in scheme * * 0

fig. 7.32. Numerical data are: E=10V, r=1 Ohm, E I, L,

L,=01H, L,=0.05H, M=0.05H. i r

Solution. 1. The independent initial conditions are zero:

i1(0,) = i»(0,) = 0. Fig. 132

2. The steady-state currents are: i, = E/0 =0, iy, =0.
3. The equation system under Kirchhoff’s laws for the circuit state after switching is:
Llﬂ _ Mdﬁz E,
dt dt

di
—M—1+ V'i2+ Lz—— 0.
dt
Having presented the equation system in the operational form and having equated its
determinant to zero, we obtain the characteristic equation:
rLy - pM
A(p) :‘

2 24 2
=p° L\ L,+pLir—p" M =0.
_ oM r+pl, D Lilo ™ plar—p

rL, _ 1-0.1
LiL,-M?*  0.1-0.05-0.05
4. The transient components of the currents have a view:
i1(t) = Ay + Ay e ir(t) = By + By eP?,

5. Let’s calculate the dependent initial conditions (values of the current derivatives at
the initial moment) with the aid of the equation system given in step 3 above for the
time moment ¢ = 0,:

Liiy'(0.) — Miy'(0.) =E=10, or 0,1,'(0.) — 0,05, (0.) = 10,
- Miy'(0,) + L»iy'(0,) = 0; —0,054,'(0,) + 0,054,'(0,) = 0.
The system solution is: i,'(0.) =200 A/s, i,'(0.) =200 A/s.
6. The initial values of the transient currents and their derivatives are:
- on the one hand, i1(0.) = Ay + As, i1/ (05) = Ay po;
i2(0+) = By + By, 15/(04) = Byps;
- on the other hand, i1,(0+) = i;(0.) — i15(0,) = — oo,
i1/ (0.) = i)' (0,) — 11'(04) = 200 A/c,
i2/(0+) = i5(0) — ip5(0) = 0,
i»/ (04) = iy’ (0.) — i5'(0,) = 200 A/c.

The first equation system A4, + A, =—o00, A-p; + Ayp, =200

cannot be solved, that’s why we solve the second equation system:

By +B,=0, B,p,=200; B2=£4(())=—5, By=-B,=5.

=_40s "

The roots of equation are: p;=0, p,=—

7. Thus, the secondary current is: iy(?) =5 —5-¢ *" 4.
We obtain the primary current from the first equation of the system drawn under
Kirchhoff’s laws:
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di
ﬁ:EJ“ME:10+0.05-(—5).(_40).6—40r
t

dt L 0.1
Ldi
i) =[=Ldt=[(100+100e™*" )dt= 100 — 2.5-¢ * - 2.5 4.
odt

Unusual expression for the primary current is explained by zero resistance of the
primary loop r; = 0. Here (1007 —2.5) is not a steady-state component but a sum of the
steady-state component and one of two parts of the transient component. The constant
component of the secondary current 5=5-¢ " is not a steady-state component but one of
two parts of the transient component as well. The transient component of the secondary
current is not died away because the primary current goes up to infinity. Certainly, such
situation may be observed in practice but approximately and for a short time interval.

=100 + 100-¢ ** 4/s;

7-16 (7.32). Compute the transient currents
in scheme fig. 7.33. Numerical data are as
follows: U=100 7, r1 =1, =50 Ohm,
L,=0.1H, L,=02H, M=0.05H.
Solution. 1. The independent initial
conditions are:

U 100

i1(0y) =1,(0.) = = =
1(0) =10 n+rn 50450
i3(0+) = 13(0_) =0.

b

n 50

3. The equation system under Kirchhoff’s laws for the circuit state after switching is:
i 1— iz — i3 = O,
I’l'il + Lll'l’ + Mi3’ + ing' + Mi]’ = U,
I’l'il + L1i1’ + Mi3' + I’z'iz =U.

4. The characteristic equation obtained on the ground of the equations under

1 -1 -1
Kirchhoff’s laws is: Ap)=n+p(Ly+M) 0 p(L,+M)=0,
n+ ply p) rM

P (LiLy— M?) + p(riLy + 1Ly + 1Ly + 2r,M ) + 1, = 0,
£°(0.1:0.2— 0.05°) + p(50-0.2+ 50-0.1 + 50-0.2 + 2-50-0.05) + 50-50 =0,
p>0.0175 + p-30+ 2500 = 0,
Prla=-657.1%£7693s""; p=-878s""; p,=-16264c".
5. The transient components of the currents are:
i1(t) = Ay-eP' + Ay eP?y int) = By-eP'+ ByeP?; iy (t) = Dy-eP'+ Dy eP?.

The initial values of the transient components of currents and their derivatives are:
i1/(0:) = Ay + Ay; i2(0-) = By + By; i3(0+) = Dy + Ds;
0/ (0)=Ap1 + Ayps; 02/ (0) =Bip1 + Bapy; 01/ (0.) =Dip1 + Dy

6. We obtain the initial values from the previously generated equation system for zero
time moment: i»(0:) =i1(0,) —i5(0,)=1 4,
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i'(04)-(Li+t M) +i5'(0.)-(Ly+ M) = U—r-i1(0),  0.154,'(0,) + 0.2555(0,) = 50,

Lii)'(0.)+Mi5'(0.) = U —r-i;(0.) — ryix(0,),  0.17,'(0,)+0.0545'(0.)=100—-50-50=0.
The equation system solution is:

ii’/(0,)=—1429 A/s, i3'(0,) =285.7 A/s, i,'(0,) =i,'(0.) —i5'(0,) = —428.6 A/s.
The initial values of the transient components and their derivatives are:

0i14(0+) = 11(05) — i1,(0,) = 1 —=2=~-1 4, i/ (0.) =1,'(0,) =—142.9 A/s,
i2(0.) = ir(0,) — is(0.) = 1 —0=1 4, ir/ (0,) = iy'(0,) = — 428.6 A5,
i34(0,) = i3(0.) — i35(0) = 0 — 2 =24, i3/ (0.) = i3/ (0,) = 285.7 A/s.

7. We obtain and solve the following equation systems:
A +A,=—1,  Ap +Ap=-1429 = A4,=-1.150, A4,=0.150;
By +B,=1, Bypi+Byp,=—4286 = B, =0.778, B>=0.222;
Di+Dy=-2, Dp +Dyp,=2857 = D =-1928, D,=-0.072;
8. Finally, we have:  iy(t) = iy(t) + i) =2 — 1.150-¢ ¥ 4+ 0.150-¢ "% 4,
ir(t) = iry(t) + i) = 0.778-¢ 7% + 0.222.¢ 120" 4,
i3(t) = ia5(t) + i3(t) =2 — 1.928-¢ V¥ —0.072-¢ %% 4.

7.1.3. Transient processes at the instant change of the reactive parameters of the
circuit parts (ill-conditioned commutation)

7-17 (7.35). Using the numerical data of problem 7.15,
calculate the current i, in scheme fig. 7.34 when the
switch is opening.

Solution. The currents before the commutation are:

ir(t)=0, il(t)=¥ =10 4.

>

Fig. 7.34

The equation under Kirchhoff’s voltage law for the secondary loop is
—Md—l+ r12+L2dL= 0.
dt dt

Owing to the jump change of the primary current from 10 4 down to 0 the derivatives
di,
dt

r-; can be neglected. Thus, we have an equality Mdi, = L,di,, which is integrated from
t=0_to ¢t =0, during the commutation period. During this period, currents change:

iy — from §;(0_)=104 to 7;(0,) =0,

i, — from (0 ) =0 to required #(0.).

di : s : :
and 7; at the commutation moment reach the infinite meanings, so the quantity

12(0 )
Idlz M Idll or L,ir(0.)=—Mi0)=-0.0510=-0.5 Wbh.
0 i(0_)
From here i,(0.) = 0505 10 A.
L, 0.05
The circuit time constant is 7 —ﬁ—g =0.05s.
r
The root of the characteristic equationis p=—7"'=-20s"".

The required transient current is i»(2) = i»(0)-e” =—10-¢ >* 4. “Minus” sign means
the opposite direction of the current in comparison with that shown in the figure.
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7-18 (7.36). Calculate the current of the
first coil in scheme fig. 7.35 with the
following numerical data: U=100V,
ri =60 Ohm, r,=400hm, L,=0.1H,
L,=0.2 H, M=0.05 H. Plot the current of
the first coil.

Solution. 1. Before the commutation,
currents in the coils are different: the

current in the first coil is —

4|
but no current flows through the second coil — i»(0,)=0.
Thus, before the commutation, the circuit flux linkage consists of the sum of the coils
flux linkages:
#(0,) = ¥1(0,) + ¥5(0,) = L1i1(0.) + Mir(0,) + Lyir(0,) + Miy(0,) =
=0.1-1.667 + 0+ 0+ 0.05-1.667 = 0.25 Wh.

The independent initial condition in accordance with the first commutation law is:
Y(0.)=¥(0.)=0.25 Wb. However, after the commutation, with account of the series
connection of the coils with additive polarity, the circuit flux linkage is as follows
Y0.) =i0.)-(L, + L, + 2M). From here

i(0,) = ¥Y,) _ 0.25

= =0.625 A.
Li+Ly+2M 0.1+0.2+2-0.05

_ 100 _
n+r, 60+40
3. The characteristic equation is: p-(L; + L, +2M) + ri+r, =0,

2. The steady-state current component is: i =

p=— n+r _ 60 + 40 — 9505
4. The transient current component is i, = A-e””, i,A A
where the integration constant is 2
A=1,0)=1i0)—i;=0.625—-1=-0.375. Fig. 7.36
5. Finally, we have:
i(t) =iyt) +ift)=1—-0375e " 4.
6. The current curve is shown in fig. 7.36. I
7-19 (7.37). Calculate the current of the second
coil in scheme fig. 7.37 with the following -
numerical data:  E=11.7V, r =1 Ohm, 0 5 10 t, ms
ry=9 Ohm, r=>3 Ohm, L =10 mH, L, =20 mH, 5 M
M =10 mH.
Solution. 1. Before the commutation:
R=r+""2 =319 _ 39 Opy,
n+n 1+9
no)=2. 2 L7055y

R n+r, 39-10
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no)=2. LT 5,
R I”1+I”2 3910

2. According to Kirchhoff’s voltage law the equation for the loop with the second coil
for the commutation moment is:

V'(i] + 12) + Vz'i2+ dei‘k Mﬂ: E or deiz = —Mdil
dt dt

or Ly (ir(0.) — ix(0.)) = — M-(i1(0.) — i,(0.)).

But i,(0.) =0, then i(0.) ZL%il(O_) +i5(0.) =£ 2.7+0.3=1.65 4.
2
. . E 117
3. The steady-state current component is Iy =—=—-—=0.975 A.
r+r, 12
4. The root of the characteristic equation is p=- rin_ 3+9__ 600 s~
L, 0.02

5. The transient current component is i,, = 4-e”,
where the integration constant is 4 = i,(0.) = i5(0.) — ip, = 1.65 - 0.975 = 0.675.
6. Finally, we have: iy (t) = ixy(t) + in(t) = 0.975 + 0.675-¢ " 4.

7-20 (7.38). Calculate the transient current i;(z) in scheme fig. 7.38 with the following
numerical data: E,=36V, E,=6V, r, =300 Ohm, r,=r;=600 Ohm, C;=300 uF,
C, =200 ufF.

Solution. Before the commutation, the voltages across the capacitors and their summary

charge are:

Uer(0) = E, = 36-600

n+n 300 + 600

uc(0)=—E,=-61V.

Q(O_) = Clua(o_) + Czucz(o_) =
= (300-24 — 200-6)-10 °=60-10"* C.
After the commutation, the Fig.7.38

capacitors have the same voltage uc(0.) = uci(0.) = u(0.). That’s why the capacitor

charge after the commutation is ¢(0.) = (C; + Cy)-uc(0.). However, in accordance with

the second commutation law ¢(0,) = ¢(0_). From here

ue(0,)=4(0) 60107y
C,+Cy  (300+200)-107°
The initial value of the required current is
i1(0)=E1 —uc(0)_36-12
n 300
E _36:107 _
n+r 300+ 600
The transient component of the current is i;,=A-e” ‘" where the root of the
n+r _ (300+600)-10° 0!
(C,+C, )nry (300 +200)-300-600

b

=0.08 4 =80 mA.

The steady-state current is i, = 40 mA.

characteristic equationis p =—

b
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the integration constantis A4 = i;,(0) = i;(0) — i}, = 80 — 40 = 40.
Finally, we have: i,(2) = i1,(¢) + i1(t) = 40 + 40-¢ " mA.

7.1.4. State variable method
7-21 (7.40). Calculate the
transient currents in scheme
fig. 7.39 by the state variable
method. The numerical data are:
E=100V, J=54, r =20 Ohm,
7, =30 Ohm, r3 =10 Ohm,
L=0.09 H, C=100 uF.
Solution. 1. The current through
inductance i,(¢2) and voltage across the
capacitor uc(¢) are set as the state

variables. Output variables are the rest of /
the currents: i(2), i3(2), is(2). \ .
2. The independent initial conditions = Fig. 740
are: i1(0.) = i;(0.) :EZ%: 54, uc(0.)=uc0)=Jr;=510=50V.
n

3. For the state variables, we generate the system of the differential equations in
Cauchy’s form. The derivatives #,'(z) and uc'(t) are obtained, respectively, from
u; = Liy'(t) and iy = Cu('(?). In order to find u; and i4 let’s replace the inductance by the
current source #; and the capacitance — by the voltage source u¢ in the initial scheme . In
a resistive scheme fig. 7.40, we determine u; and iy as well as the output quantities i5(?)
and (). It may be done by any method of the composite DC-circuits analysis. Let’s
perform the calculation by the mesh current method. We have three independent loops
with two known currents i#; and J and one unknown current i;. Let’s generate an
equation: (I"Z + I"3)'i3 + Vz'i] =Uc.

: R s L s 1
The equation solution is: i3 = ¢ 21- I ‘Uc.
O R A Y Py + 13
. o oo 1
The rest of the necessary quantities are: i, =i; + i =———-i; + U
vy + 1 vy + 13
. du . r )
14:C_C:J_l3: 2 ‘I — uc—}—J’
dt T+ vy + 1
di , ) oY% , r
up = —1=E—r1-11—r2-12=—(r1+ 23 )'11— 2 'uc+E.
dt v+ 1 7+
Two last equations are followed by the state equations in Cauchy’s form:
di 1 iy . r 1 1
L=+ )iy - —2——uc+ —E;
da L ry+ 13 ry+ry L L
du r 1. 1 1 1
_Cz—z._ll_ _uc—|—_J
da n+r C r+r C C

The rest of the equations are called the coupling ones. They are necessary to find the
output variables.
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4. We solve the equation system by the classical method:
L()=115(8) + L(1);  uc(t) = ucs(®) + uc?).

There are direct-current sources in the circuit, that’s why the steady-state components
are direct-current too, their derivatives being equal to zero. In accordance with the
superposition principle, the state equation system is true for both complete i;(z) and u(?)
and their components. The system of the state equations for the steady-state components
is the following:

2B o = E or | =275+~ 0.75ue, = — 100;
1”2 + 1”3 7"2 + 7”3
nogoo o b— 0.75-i1, — 0.025-uc,=— 5.
7y + 13 P+

The system solution is: ij,=—14, wuc=170V.
5. Having presented the state equations in the operational form and having equated
the system determinant to zero, we obtain the following characteristic equation:

l(r oY J+p r
—n 2
L r+r L(r, +r
Alp) = 2T (r,+13)

-7 1

—+p
C(ry+ry) C(ry+ry)
| s L R 25556, 4 138900 = 0.
L rnt+r) C(r+r) LC(ry +13)

The roots of the characteristic equation are: p,, =—277.8 £;248.5 s
The transient components have a form:
i(t) = A-e “sin(ot +y); uc(t) = B-e *-sin(wt +y,),
Here a=|Re(py)| =—277.8 s ' — decay coefficient,
o =Im(p;) = 248.5 s ' — angular velocity of the free oscillations.

The initial values of the transient components and their derivatives are:

i1(0.) = A-sinyy; i1/ (0.) =— a-A-siny; + 0-A-cosyy;

uc(0.) = B-siny,; uc' (0.) =— a-B-siny, + ®-B-cosy,.
6. The independent initial conditions are: i1(0.) =54, uc0,)=50V.
We obtain the initial values of the derivatives from the state equations:

., 1 . . r 1 1
if'(0,) = —— (r) +—22—)-i;(0,) - —2——uc(0,) + —E=
L 7+ rht+ry L L
— L 7550751 50+ 100=_833.3 4.
0.09 0.09 0.09
ul0)=—"2_ Loy Ly 0y L=
< vy + 13 c' r2+r3CC v

=0.75-10%5-0.025-10%50 +10*5 = 75000 V/s.
The initial values of the transient components and their derivatives are:
i10) =14,(0,) — i1, =5+ 1=06 A4, i1/(0) =1,'(0,) — i)’ =—833.3 A/s,
ucl(0:) = uc(0:) —ucy=50-170=-120 7, uc/ (0+) = uc' (05) — uc,' = 75000 Vs.
We obtain and solve the following equation systems:

173



A-siny, = 6, B-siny, =—120,

—o-A-siny; + w-A-cosy, =— 833.3; —o-B-siny, + w-B-cosy, = 75000.
A =6.874, y = 60.8°, B=452.1, v, =—15.4°.

7. The final expressions for the state variables are:
(1) = i(t) +i(t) =— 1 + 6.874-¢ 2" .5in(248.5¢ + 60.8°) A;
uc(t) = ucs(t) + uc(t) = 170 + 452.1- >"".5in(248.5¢ — 15.4°) V.

8. The output quantities are:

ht)=— g+ ! ue=0.251;+0.025-uc =4 +11.83-¢ *""¥.5in(248.5t — 7.29°) 4;
I’Z + 1”3 I”Z + 7”3

) =—"2 .+ ! e =-0.75-1;+0.025-uc =5+11.25-¢ >"".5in(248.5t — 41.83°) 4;
I"2 + I"3 I"2 + 7”3

) =— 2 L e = 0754, - 0.025 U + 5 =
1’2 + 7"3 7’2 + I’3

=11.25-¢ 2""¥.5in(248.5¢ + 138.17°) A.

7.2. COMPUTATION OF THE TRANSIENT PROCESSES BY OPERATIONAL
METHOD
7.2.1. Transients in circuits with a single storage element
7-22 (7.45). The voltage impressed to circuit fig. 7.41,a obeys the law
u(t)=307+18t+10 V.
The circuit parameters are:
r1=r,=100 Ohm, C=10 uF.
Compute the capacitor current. u(t)
Solution. Until there is an input i
voltage, the circuit is at rest. So, ©
the problem under the question
has zero independent initial conditions, its equivalent operational scheme being like in
fig. 7.42,b.
The image of the impressed voltage may be determined with the aid of the table of

302,18 10

P p P

Laplace transformations: U(p) =

U(p)

" %C;
1

rﬁéc
L(p)rn_ Ulp)  npC _ Up),pC _
,,2+L nt—2 npC+1 pnnCtn+n
pC rpC+1

The images of the 1 and 3" currents are:  [;(p) =

n+

Lp)=

_ 60r,C N 18%,C N 10r,C
pi(prnC+r+r) p(prnC+r+r) prnC+r+r '
Let’s resolve the latter expression into the vulgar fractions:
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B D

A
L) =—+—2+ .
P p prnrC+n+n

Having reduce the fractions in the expression for current /3(p) to the common
denominator and having equated the numerators, we obtain the following equation:
Ap(prir,C+ri+ry) + Blprir,C+ri+r)+ Dp2 = 60r,C + p-18r,C +p2-10r2C.

We equate the coefficients at the identical exponents of p and obtain the equation

system:
coefficients at p’: ACriry + D= 10rC;

at p: A(I”1+I’2)+BCV1F2=18V2C;
at 1: B(r + ry) = 60r,C.
-5
From here B=6OF2C=6O 100-10 =3-104;
r+r,  100+100
A:18r2C—BCr1r2:18-10_3—3-10_5 9105
"+ 200 ’
D =10r,C — ACryr>» = 0.01 —9-10 >-10 >-10* = 0.01.
Finally, we have:
-5 -4
.10~ 3107, 001 =0 9.10 °+3-10 £+ 0.1-e ™™ 4 = i32).

I = .
3(]9) p p2 p01+200

7-23 (7.46). Compute the voltage and current of the inductance in scheme fig. 7.42,a.
Numerical data: U=24V, L=0.25 H, R, =30 Ohm, R, =10 Ohm.

) > b) Ip) Li(0,)
\/(
v Rlﬁ Rz 5:]:\([)) Rl R2
(o]

Fig. 7.42
Solution. 1. Let’s calculate the independent initial condition and write down the inner
operational EMF: i;(0,) =1i,(0.) =% =% =244,
2

Li;(0,) =0.252.4=0.6 V's.
2. The equivalent operational scheme is presented in fig. 7.42,b.
3. As both operational EMF are in the same branch, we determine the current image

I;(p) by Ohm’s law:

U . U 24
—+Li;(0,) . =+ pi, (0 = 4 p-24
L) =P O yapLigo,) o PO st _
R R RR RR 30-10
L+ 122 L+ 122 12 +
:96+p-2,4: F(p)

p(p+30) pF(p)
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On the ground of Kirchhoff’s voltage law

U
—+pi (0,)
Ustp) = pLe1u(p) ~ Lin(0,) = pL. e Liy(0,) =
1432
p(p+— )
L(R +R,)
U pL-i, (0. )= Li, (0. )(p+— 2R
e P R v Ry)) 245 p0.6-0.6(p+30) 6
P+ R1R2 p+30 p+30
L(R +R,)

4. We determine the current original i;(?) with the aid of the expansion theorem:
iL(t) — Fi(o) + f“ Fi(,pk) epkt ]
Fy(0) SipiFr(pi)
The root of equation Fo(p)=p+30=0 is p=-30s",
derivative F,'(p)=1; F>0)=30; F0)=96, Fi(p)=96—-30-2.4=24;

iL(t)=%+ 24 30 _39 08 4,
30 —30-1

The image of the voltage across the inductance U, (p) =% is a standard
p+

(reference) function. This is the image of an exponent, that’s why u;(¢) = 6e > V.

a)

7-24 (7.47). In scheme fig. 7.43,a, compute the current ir(#) and voltage across the
capacitor uc(t), if U=240V, E;=100V, R, =R; =50 Ohm, C=1000 uF.
Solution. 1. The independent initial condition is:  u¢(0+) = uc(0) =— E;=—100 V.
uc-(0) 100

P p

2. The equivalent operational scheme is presented in fig. 7.43,b.

3. As in the given problem it is necessary to determine only current, we determine its
image by the method of equivalent generator (fig.7.43,c). According to Kirhhoff’s

voltage law:

The iner operational EMF is

ug(0,)_240—(~100) _340
p p p

Unp) + Ri-Ly(p) =%

U, E
p p _240+100 _3.4
R +R; p(50+50) p

Under Ohm’s law I,(p) =
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Then U()—ﬂ—SOE—m
p

p p
The scheme input impedance concerning the separated terminals is
Zip(D) = RiRs _59-50 _ 5 o,
R +R; 50+50
The image of the required current /,(p) is:
U 170 6.8
L) = o(D) - _p+40
Z, +— 25+
inp( D) »C p( 0.001p )
L, ug(0,)

On the ground of Kirchhoff’s voltage law Uc(p) ——Clz(p)
p

~100, 1 68 _-100p+2800_ Fi(p)

0.00lp p+40  p(p+40) pE(p)
4. The current original is found from the table of Laplace transforms:
ir(t) =6.8¢ " 4.
We find the voltage original with the aid of the expansion theorem:
the root of equation Fs(p)=p+40=0 is p=-40s",
derivative F,'(p)=1, F»(0)=40; F,(0)=2800, F({p)=-100-(—40)+ 2800 = 6800;
uc(t) = 2800 62801 H=70-170e " V.

Fromhere Uc(p) =

7.2.2. Transients in the circuits with two storage elements
7-25 (7.58). In scheme fig. 7.44,a, find the current i3(#) and voltage uc(t) by the
operational method. The circuit parameters are: E=300V, ri=r;=25Ohm, L =0.02 H,

C =100 uF.

a) b) L(p) 2

Fig. 7.44 3
Solution. 1. In order to construct the operational scheme, we determine the independent
initial conditions: i3(0.) = i3(0.) = £ _ 300 _ 64,

n+r 25+25
Llc(0+) = uC(O_) = V3'i3(0_) =25-6=150V.
2. The equivalent operational scheme is shown in fig. 7.44,b.

3. Perform the scheme calculation using the method of two nodes:
E . i + uC(O+)pC _ Li3(0+)

7 L
—+ pC+—

n pL
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_EL+npLCuc(0,)-nLiz(0,)_ Fy(p).

nLCp® + pL+1 Fy(p)’
]3(p):U23(p)+Li3(0+):E+’ﬁpC“C(O+)+i3(O+)pL(I”1pC+l)zFll(p)
pL p(VlLCp2 +pL+n) Fy(p)

4. We find the originals under the expansion theorem.

Assume Fs(p) =rLCp*+pL+r=510"p* +0.02p + 25 =0,
the roots of the equation are  p;,=— 200 % j678 =—706.9-¢ 7> 57!;

F>0)=25; F'(p)=10"p+1; F'(p;)=,0.0678.
The formula for the voltage across the capacitor is: uc(?) = 2Re (M e’ lt);
Fy(p)

Fiu(p1) = 300-0.02 + 25-(=200 + j678)-0.02:10 *-150 — 25-0.02-6 = 5.3-¢/7";
5 3,/73.56

t) =2Re
elt [ 70,0678

ezoofefmfj 156.3¢ " cos(6781 — 16.44°) =

=156.3¢ *"sin(678t + 73.56°) V.

Calculate the current  i3(2) =F”—m)+ 2Re(—FI{ (p1) epltj;
£5(0) Fy(py)

Fi(0) =300;  Fi(p) = 300 + 25-(-200 + j678)-10 *150 + |
+ 6-(=200 + j678)-0.02-(25-(=200 + j678)-10 * + 1) = 265-¢/7";

i3(t) :@qL 2Re 265¢/7%¢ o200t ,j678¢ | _
25 _ —j73.56 .
706.9¢ j0.0678

=12+ 11.06e **sin(678¢ — 32.88°) A.
b)
1/pC

0P S i0)ip

Fig. 7.45

7-26 (7.59). In scheme fig. 7.45, determine the current i(z) at the following circuit
parameters: e(t) = E,sin(wot + y); E,, =400V, w,= 100 rad/s, w=— 45°, L=0.25 H,
C=400 uF, ri=250hm, r,=75 Ohm.

Solution. 1. Calculate the independent initial conditions.

E 400e/

n= - B = 167 4;
. 1 "
i+ jol+ - 25+ j100-025+
JooC 7100 - 400
Uon = Ly —— = 16-¢ 5. (25) = 400-e 7 1
J W
i(t) = 16sin(wot — 45°) A4; uc(t.) = 400sin(aot — 135°) V:
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i(0,)=i(0,)=16sin(-45°) = —8+2 A4, uc(0.)=uc(0.)=400sin(-135°) =-200/2 V.
2. Calculate the steady-state components iy(?), irs(2) and ucy(?) by complex-notation
method.

E,, 400e /%

I = _ — 16077305 4.
- 1 75(25- a5, o ’
nh—j——=) J25+ _ —— =
w,C 75+25-j25
]CO()L+ 1
rt+n —]—C
0
rn—7 !
1—J 4 :
Ly =1, 0 C  _ 16.¢ 77305, 25-j25 _ 5.49.0 71 4.
o1 100 — ;25
h+n —17
0
Ucs = Lims '1 =1, " — '1 =16-e’j73'05°-L.-(—j25)=
Jjo,C Fyt R — : Jjo,C 100 - ;25
0

=291.4.¢ 7Y%y,
Ir(t) = 5.49sin(wot — 104°) A, iy(t) = 16sin(wet — 73.5°) A,
ucs(t) =291.4sin(wot — 149.05°) V.
The initial values of the steady-state components are:
is(0) = 16sin(=73.05°) =—15.3 A, ucs(0.) =291.4sin(— 149.05°) = - 150 V.

3. We apply the operational method to determine the transient component of the
current i,(¢). For that we determine the initial values of the transient components of the
inductance current and the capacitance voltage:

i(0,) =i(0.) — i,(0.) = — 8~/2+ 153 =4 4,
uc0:) = uc(0,) — ucy(0,) = —200~/2+ 150 = — 133 V.

The operational equivalent scheme for transient components is presented in
fig. 7.45,b.

4. Perform the calculations for the scheme obtained using the method of two nodes.

Lit (0+) + Ucy (0+)

pL !
p(n+——) :
pC _[(npC+1D)Li (0, )+uc, (0, )pLC]r,

Undp) =
2 1 1 1 (n+ VZ)Lsz +(L+nnC)p+r,

L) = Uin(p) _(npC+ l)Lit2(0+ )+u (0. )pLC _K(p)
7 (rp+r )LCp~ +(L+nrnC)p+r, Fy(p)
5. We determine the current original i,,(¢) with the aid of the expansion theorem.
The roots of the equation Fa(p)=0,.01p* +p+75=0 are pi12=-50 ijSO\/E s
F'(p)=002p+1; F)(p)=j2.
Fi(p1) = (10 2(=50 + j50~/2 ) + 1):0.25-4 + 10 (=50 + j50~/2 )-(~133) = 1.188-¢ """,
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2( P J'\/E
= 1.68¢ cos(70.7t — 101.3°) = 1.68e sin(70.7¢t — 11.3°) A.

—j11.3 .
izz(f) =2Re (?(—pl)epﬂj: 2Re {Mesmeﬂo,n _

Finally, we have:
ir(t) = ins(t) + in(t) = 5.49sin(100f — 104°) + 1.68e "sin(70.7¢t — 11.3°) A.

7-27 (7.60). Calculate the transient currents in scheme fig. 7.46,a, using the operational
method. The circuit parameters are: U =200 V, r, =40 Ohm, r, =60 Ohm, L =0.7 H,
C=100 puF.

Fig. 7.46

Answers: the independent initial conditions are — i;(0,)=3.33 4, uc(0,)=200V, the
equivalent operational scheme is in fig. 7.47,b; images of the junction voltage and
currents are: Uip(p) = szCrzuc(g+) +pry(Liy(0,) +uc(0,)Cri) + Uy |
p(p°LCry + p(L+1n1C)+n+r)

p°Li;(0, )Cry + pLi;(0, )+U
p(szCrz +p(L+nnC)+r+n,) )
1) = P7LCuc (0. )+ p(Lin(0, ) +uc(0.)Cr)+U
p(p2LCr2 +p(L+nnC)+r+n,)
]3(]?): uC(0+)Crl .

szCr2 +p(L+n1nC)+n+n

the current originals are: i;(2) =2+ 1.39-¢ ""'sin(106.2¢ + 106.3°) 4;
() =2+1.936-¢ " sin(106.2t + 43.5°) A;  izt) = 1.794-¢ "'sin(106.2¢) A.

Lp) =

7-28 (7.61). Solve the problem 7.16 by the operational method.
Solution. 1. The independent initial conditions are:

U 100
i1(0,) = i1(0,) = = =14, i3(0.)=i5(0,)=0.
10-) = 1,(0.) W+ 50450 3(0) = 13(0.)

2. The equivalent operational scheme is presented in fig. 7.47.

3. Perform the circuit calculation by the mesh current method. The equation system
for the loop currents (the currents of the branches 1 and 3 are assumed to be the loop
ones) has the view:

Lp)(r + pLit o) + L) (oM — 1) =% + Lin(0,),
Li(p)(pM — ry) + Ii(p)(pL, + 1y) = Mi;(0,).
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) L
1(]?) r L1i1(0+) Mi2(0+):O P L2i2(0+)20 Mi1(0+)
Ulp "
’_Dll(P)
(o

I
b(p) Fb“p) L(p)

Fig. 7.47
Solve the system by Cramer’s method:
A) :‘le +n+r, pM-r

:pz(Lle—Mz) +p((L1 + 2]\4)1’2 +L2(I”1 + 1”2)) + rira,

pPM —r, pLy, +r,

U

—+ L,i,(0 M —r
Al(p):p ll( +) p 2| —
Mi (0, ) pL, +1,

1 : : .
:; (0 (LiLy— M?)ir(0.) + p(Mir(0-)r2 + ULy + iy (0)ry) + Ury);

pL,+1+n, Q+Llil(0+)_1 _
= p =—{p[i(0)(Liry+ M(r\+ ry)) — UM] + Ury};
pM -1, Mi(0,)
_A(P)_p*(LiLy—M? )ir(0, )+ p(Miy(0, )ry +ULy + Liiy (0, )ry )+ Ury _
A(p) pLP*(LiLy =M? )+ p((L+2M + Ly )ry + Lyry ) + 111y |
_ p-0.0175+ p-27.5+5000 _ k(p) .
p(p*-0.0175+ p-30+2500) pFy(p)’
As(p) _ pliy(0, )(Liry + M(r +1,))—UM ] +Ur, _
A(p)  p[p*(LiLy—M? )+ p((Li+2M + Ly )ry + Lyry ) + 111y |
_ p-5+5000 _ F(p)
p(p?-0.0175+ p-30+2500) pFy(p)
4. We determine the current originals with the aid of the expansion theorem.
The roots of equation F»(p) = p>0.0175 + p-30 + 2500 = 0:
P12=-857.1+£7693s"; p=-878s"; p,=-162645".
F»(0)=2500; F>'(p)=0.035p+30; F,(p)=2693; F,)(p,)=-26.93.
The calculation of the first current: Fy(p) = p*0.0175 + p-27.5 + 5000;
F1(0)=5000; Fi(p)=2720; F(p,)=6565.
_R(0) S R(p) e 5000, 2120 s,
Fy(0) =1 pirFr( i) 2500 —87.5-26.93
6565
—1626.4-(-26.93)

The calculation of the third current: F3(p) = p-5 + 5000;
F3(0) =5000; Fs(p) =4561; F3(p,)=-3132.

Lp) =

i)

e—1626.4t: 2 . 1'154.6—87.51 4 0'150.6—1626.4tA.
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F3(0)+kz=:2 F(pi) 5000 4561 s,
Fy(0) i piF(pi) 2500 —87.5-26.93
~3132

—-1626.4-(-26.93)
We determine the current of the second branch by Kirchhoff’s current law:
ib(t) = i1(t)— i3(t) =2 — 1.154-¢ 7'+ 0.150-¢ 0% _2 4+ 1.929.¢ ¥+
4 0.072-¢ 1254 Z () 775.0 8751 4 (0 2970 16264 4

i(t) =

.871626.412 2 o 1.929-6787.51‘ o 0.072‘671626.4114.

7.3. CALCULATION OF THE TRANSIENT PROCESSES WITH THE AID OF
THE DUHAMEL INTEGRAL
7-29 (7.71). A circuit fig. 7.48,a 1s supplied with voltage u;,,(¢) (fig. 7.48,b). The circuit
parameters are: r;=r,= 10kOhm, C=200 uF, Uy= 100V, t; =1 s.

Compute the voltage across "
the capacitor with the aid of
the Duhamel integral. Plot it. /

50

40

u%(t)mo /
20 /
/ d
. 4 10 -
Fig.7.48 / Fig. 7.49
Solution. Calculate the |
transient characteristic by the % 0.5 1 15 2 25 3

classical method. When the t
circuit fig. 7.48,a is connected to the unit voltage source, we have:

1 1 106 O
Uoutps =1 = 10/(10+10)=OS I/, p=- =_ =_1s ,
ntn 7oC  5000-200

Uouip(0) = 05 Upup(t) = Uougps + (Uourp(0) — Upups)e” = 0.5 —0.5¢ " V,
finally, g(t)=0.5—-0.5¢™".
Let’s present the voltage u,,,(?) analytically:

U1 (1)=1006 V' if 0<t<t;

uinpz(t):loot—loo Vif t>¢.

Uyt (1) =100 V /s if 0<t<t;
U (1) =100 V /s ift>1,.

The output voltage in the interval 0<7<1t:
t t
Uoup1 (1) = Uinp1(0) g(2) +.fulfnpl(f)g(t — )dt=0+[100(0.5 - 0.5¢ ("™ )dr =
0 0

=50t—50+50e" V.

uinp(t) =

The voltage derivative is:  u;,,"(¢) =
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The output voltage in the interval > #:

Uoup0) = i (0)- (1) + [ty (7 ) (1~ )T+
0

t (Uinpa (1) — Uinp1 (1)G(E — 1) + Jt.“;npz(f)g(f — )dt =

4

=—100 + 50z + 50e " + 50e Y =—100 + 507 + 68.4¢ TV V.
Ugyp (1) =506 =50+ 50e™" V' if 0<t<y;

(t)=-100+50t + 68,4 (" Vift>1 =15s.

In accordance with the latter expression, the graph u,,,,(?) is presented in fig. 7.49.

a)0—| \
u(t) Lﬁ Ew(t) 150\ Fig.7.51
4\

Thus, Upuy(t) [

uoutp2

b) 400 () \\
\ 0 ~ |
u(t) 200 ~— /
— -50 /
0
0 0.001  0.002 =100
Fig. 7.50 t
—150

0 0.001 0.002 0.003 0.004 0.005 0.006

7-30 (7.72).  The  circuit t

fig. 7.50,a is supplied with the
voltage impulse () = 400e **” V' of duration ¢, =2 ms (fig. 7.50,b). The circuit
parameters are | =r, = 100 Ohm, r; =50 Ohm, L =0.1 H. Calculate the voltage u;(2)

and plot it with the aid of the Duhamel integral.

Answers: g(t) =0.5¢ """ ontheinterval 0<r<¢:

t
ur(t) = u(0)-g(t) +u'(t )g(t — )dr=333.3¢ """~ 133.3¢ """ ¥,
0
on the interval 2> ¢;:
|
ur(t) =u(0)-g(t) + [u'(t )g (1 —t )dt+ (~u(t))g(-,) = — 109.3¢ " — 89.87¢ 1" .
0

The diagram u;(?) is shown in fig. 7.51.

7-31 (7.73). With the aid of the Duhamel integral, compute the current i»(z) in the circuit
fig. 7.52,a when there is the disturbance because of the staircase voltage u(?)
(fig. 7.52,b), if | =r, =20 Ohm, r; =10 Ohm, C=1000 uF, t, =20 ms.

t)=1V if 0<t<¢;
() :|:u1( ) if 1

Answers: g(t) =25—12.5¢ " mS .
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on the interval 0<¢<¢: i)t)=u,(0)-g(t)=25- 12.5¢ % mA,
at 21 ip(t)=u(0)g(t) + (ua(t) —u(1)g(t-1) = 50 — 12.5¢ ' ~12.5¢ "' mA.
The diagram i,(2) is shown in fig. 7.53.

50
r r3 /
r —_—— C 40
M(t) -1 /
Iy
o 30
2(t)-1000
b) ’ 20
2
u(t)
1 10 ) ]
Fig.7.53
00 0.01 0.02 0 .
Flg 752 t 0 0.02 0.04 0.06

t
7-32 (7.74). Compute the current through resistor 7, in scheme fig. 7.54,a. The circuit
parameters are: »; = 50 Ohm, r, = r; = 100 Ohm, C =200 uF. The voltage of the source
is set by the diagram fig. 7.54,b. Use the Duhamel integral.

Answers: g(t) =0.00667 + 0.00333-¢ "' S,

133t +1.78 —1.78¢ 37" 4 if 0<£<0.01s,
i1(t) =| =133t + 0.889 + 2.334¢ 277000 4 0.01<£<0.02s,
—0.174¢7375007002) 4 if 1> 0.02s.

The current diagram is in fig. 7.54,c.

a) b) VAu C)AAZ‘1

200 ---- 1.5 A
| A

t~0’5/ \ 30 40 50 ¢

Fig. 754 O 00100257y ms
L | |

7.4. APPLICATION OF THE COMPLEX TRANSFER FUNCTION WHEN
CALCULATING THE TRANSIENT PROCESSES

7-33 (7.79). Calculate the transient voltage u,(?) (output quantity) when supplying the
circuit in problem 5.13 with direct current (input quantity) J=0.05 4 by both the
classical and operational methods. Formula for the complex transfer impedance
obtained in the solution of the problem 5.13 is as follows:

Z(0) = b jo+by 83333
jo+a, jo+66.67

Ohm.
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Solution. 1. When classical method is applied to solve the problem, the required voltage
uy(t) 1s found as the sum of the steady-state and transient components:
Us(t) = uns(t) + ua(?).
As a D-C source is used, the steady-state component is constant too and may be

determined through the complex transfer impedance at the frequency o = 0:

Z(0) =b—o=%= 1250 Ohm;  uy,=7(0)-J =1250-0.05 = 62.5 V.

4o

A complex transfer function is a so-called system function. Then, in order to obtain
the characteristic equation it is sufficient to replace jo by p and to equate the
denominator of the fraction with zero. Doing in this way, we have:

pt+ay=0, p=—ay=—66.67s"

At the single root of the characteristic equation, the transient component has a view:

us(t) = A-e”, where the integration constant 4 is found from the initial conditions:
A= MQI(O) = uz(O) — MZS(O).

In order to obtain the initial value of voltage u,(0), we again use the complex transfer

impedance, however, this time at the frequency equal to infinity:

4

Then u,(0) =Z(x)-J=0, and 4 =—uy,(0) =—62.5.

Finally, we have: uy(?) = 62.5 — 62.5-¢ %" V.

2. In order to compute the output voltage u,(?) by the operational method, we make
use of the operational transfer impedance Z(p), which is obtained from the complex
transfer impedance through the replacement of jo by p:

Z0) _bip+by _ 83333 .
p+ay, p+606.67
The images of the source current and output voltage (with application of MathCAD)
laplace,t _, -5000¢ —1 0.05

, 1.e. Jp)=——;
float,4 s () p

a . simplify .1250e5
VA =200 e) O s T (B pe200) p

We find the original of the required voltage by means of the Laplace inversion:

20 = U20p) invlaplace, p
u(t) ==
P float,4

7-34 (7.80). Solve the problem 7.33 using the spectral method on the condition that the
source produces a single rectangular current impulse of the amplitude J=0.05 4 and
duration 7= a, 1=0.015s.

Solution. The instantaneous value of the disturbance current may be presented in the
0.05 if0<t<rt

0 otherwise

are: J(s):=J

> 62.5—62.5.¢ (0671

following analytical way: J(?) : =‘
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In order to perform Laplace transform using the program MathCAD let’s present the
instantaneous current by one formula with the help of the Heaviside function 1(¢) which
is presented in MathCAD as @t):  J(t) : = 0.05-(D(t) — D(t—1)).

The source current image is:

laplace,t _ (—.1500e—1)-s
J(s):=J@) aprace N :5000e -1 5000e-1- € ’
float 4 s s
0.05

ie. Jp)=—(1—e?Y.
p

The spectral density of the source current may be obtained from the current image

replacing p byjo: J(w) :=3‘.'—0a5) (1—e”?“7).

The spectral density of the output voltage is found through the complex transfer
impedance: U2(w) = Z(w)-J(®).
Eventually, with the aid of MathCAD we perform the calculation of the Fourier
+60000
inversion integral: u2(t) =—- | U2w) e’ “"do.
T 60000
For any time moment, it is possible to obtain the answer. For instance,
u2(0.005)=17.717 u2(0.01)=30.386  u2(0.05)=2.113.
Eventually, the voltage u2(#) may be obtained in the graph form through the
application of the function invfourier:

invfourier,»

u2(1) = U2(w) 5 31.24-D(1.-t) — 31.24-D[(-1).t] — 62.49-6 V.
float 4
The voltage curve u2(t) is presented in
fig. 7.55.

30
20
u2(t) / \\

0 0.02 0.04 0.06 0.08

Fig.7.55 ¢
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8. ELECTRIC CIRCUITS WITH DISTRIBUTED PARAMETERS
8.1. ELECTRIC CIRCUITS WITH DISTRIBUTED PARAMETERS AT THE
STEADY-STATE CONDITION
8.1.1. Calculation of the line parameters and its working modes
8-1 (8.1). In order to determine the parameters of the communication line 160 km length
at the frequency 1000 Hz, the no-load and short-circuit tests were performed; the results
of which were: Z,=887-¢ 7" Ohm, Zs=540-¢’"" Ohm. Determine the primary and
secondary line parameters.
Solution. 1. Determine the secondary line parameters.

05 iz 70.5°
Zc=\Z, Zs=692-¢"> Ohm, thyl= E—S=O.780'eﬂ°‘5 =0.26 +,0.735;

1+thyl _ 1+(0.26+0.735) _ 1 399.p/7511°=/1311rad _ ,2al 2l
1-thyl 1-(0.26+0.735) '
The latter equality splits into two ones:  e** =1.399
and 2p/=1.311+2zk.
From the first equality, we find the decay coefficient
2al=1Ine*"=1n1399=0336, a=0.00105 Np/km.
In order to estimate the number k of complete 27 radians along the whole line, let’s
determine approximately the total phase shift along the whole line at the speed
v=150-10" km/s:

2p0'1 =21 @ 2-160-2”'—10030= 13.4 rad >4n, k=13.4/6.283 =2.
v 150-10
Accordingly: 2p/ = 1311 + 272, from here f=0.04337 rad/km.
Thus, Zc=692-¢"" Ohm,

y=0a+jf=0.00105+0.04337 = 0.04338¢"**°"" 1/km.

2. Determine the primary line parameters:
Zo=ro+ jowLy = y-Zc=0.04338¢"**°""-692¢/" = 30.02¢"*'"" = 0.46 +30.02 Ohm/km,
Yo =go+ jwCy=y/Zc=0.04338¢"**"/(692¢"°") =

=62.68-10 °-e/*!" = (2.06 + j62.64)-10 ° S/km.

With account of the frequency o = 2nf'= 6283 rad/s, we eventually have:
ro = 0.46 Ohm/km, 20=2.06-10"° S/km,
Lo=30.02/6283 Hlkm = 4.79 mH/km, Co=62.64-10 /6283 F/km = 9.97 nF/km.

8-2 (8.2). The no-load and short-circuit tests for the communication line / = 120 km long

at the frequency 800 Hz give: Z, = 182¢”*>" Ohm, Zs=209¢ 7**'" Ohm. 1t is necessary

to determine the secondary and primary line parameters as well as to calculate the line

input impedance if it is loaded with impedance Z,=2Zc.

Answers: Zc=195¢ % Ohm, y=28.93-10"+18.40:10 > 1/km; ro=2.3 Ohm/km,
20=130-10"° S/km, Lo=0.65 mH/km, Cy=20 nF/km, Z,=191e” Ohm.

8-3 (8.3). Some parameters of the communication line /= 140 km long working at the
frequency f=1500 Hz were found experimentally: Zc=710-e” Ohm, Z,=
=19.2-¢’"" Ohm/km. 1t is necessary to calculate the primary and secondary parameters,
to determine the input impedance at no-load and short-circuit conditions.
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Solution. Angular velocity is o =2xf=27-1500 = 9425 rad/s.
Because Zy=ry+jwly=6.57 +;18.04 Ohm/km, then the longitudinal primary

parameters are  ry = Re(Zy) = 6.57 Ohm/km, Ly =llm(ZO) =%= 1.91-10 ° Hlkm.
o]

Further, from Zc.=,Z,/Y, we find

Zy _ 19.2.¢/"
2

Yo=gotjolCy=
Zc (710.519 )

-=38.1-10 *-¢’*" = (1.33+38.08)-10 ° S/km.

From here, the transversal primary parameters are

1 38.08

2o =Re(Yy) =1.33-10 *Slkm, Co=—Im(Yy) ==———-10 °=4.04-10"° F/km.
) 9425

The secondary parameters are:
- the characteristic impedance is Zc=710-e 7 Ohm,
- the propagation coefficient is

Y=+Z,Y, 1926/ .38.1.1076 ¢/ =27.1-10 %/ =(5.16+,26.55)-10 > 1/km.
From here, the decay coefficient is — a=Re(y) = 5.16-10 > Np/km,
the phase constant is — = Im(y) = 26.55-10 > rad/km.
Let’s calculate the hyperbolic functions: Y/ =0.722 +;3.717,
e’ =2.059-¢"" =—1.727 - j1.121; e ?=0.486-¢ 7> =—0.407 + j0.265;
sh yl ="[e — e ] =—0.660 — j0.693 = 0.957-¢ 7',
chyl=Y[e"+e ] =—1.067 —j0.428 = 1.150-¢ /""",
th vl = sh yl/ch vl = 0.832-¢”*"
No-load and short-circuit impedances are:
Zo=Zc/th yl=710- ”°/(0.832-¢”*") = 854-¢ 7> Ohm,
Zis=Zcth Yl =710-¢7-0.832-¢"*** = 591-¢/>>" Ohm.

8-4 (8.4). The secondary parameters are known for a two-wire overhead communication
line, at the frequency 50 Hz:  Zc=440-¢ 7' Ohm,  y=(4+;18)-10 > 1/km.
This line works as the D-C line and supplies the load ;=400 Ohm. The input voltage
is U; =600 V. Determine U, and [, if the line length is /=200 km.
Solution. Determine the line primary parameters ry and gy, which do not change in a
D-C line:
ro=Re(y -Zc) = Re(18.44-10 >-¢/"7°"-440-¢ /') = 3.105 Ohm/km,

103,775
goRe(ZLJRe[lg'M 10 "e ]1.826-106S/km.

Zc 440¢~/"
The secondary parameters in a D-C line are:

Zo= |10 = /Lsflm Ohm,
2o \1.826-10°

y =100 =V/3.105-1.826-107° = 2.382-10 " 1/km.
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We find the output voltage and input current by means of the principal equations of
the long line in hyperbolic functions with account of the correlation I, = U,/r;:

U1 = Uz'Ch 7[+[2ZC'SI/I ]/lz Uz'Cl/l ]/l+&ZC'Sh 7/12 Uz'(Cl’l }/I+Z—CSh 7/1),

Ui i
from here, the required voltage is
Cam UZ1 - o 1303 -0V
chyl + ZC€ shyl  ch(2.382-107°-200) + sh(0.4764 )
1y 400

The input current is
I U shyl + L-chyl Uy “shyl +& chyl _ 220 -0.4945 +ﬁ ‘1.116 = 0.697 A.

Zc Zc 7 1303 400

8-5 (8.6). Determine the impedances of 7- and I7-equivalent schemes of the long line
[ =400 km long with the parameters:
Zc=391e "> Ohm and y=(0.187 +/1.058)-10 > 1/km.
Answers. T-scheme: Z,7=Zr=20.74 +j82.69 Ohm, Zyr=92.4—;932.1 Ohm,;
I1-scheme: ZOIYZ 37.1 +]1589 Ohm, Zlﬂ = Zzn =206 —j1781 Ohm.

8-6 (8.7). Three-phase steel-aluminum overhead transmission line 300 km long
possesses the following parameters (per a phase):
ro =0.08 Ohm/km, g,= 3.75-10 ° S/km, wLo=0.42 Ohm/km, ©Cy=2.7 uS/km.

Calculate the line secondary parameters, phase velocity and the wave length.

Find the phase voltage, current and power at the sending end of the line, its
efficiency, if the voltage at the receiving end is 330 £V, power is 300 MW and the load
power factor is equal to 0.92.

Calculate the voltage complexes of the incident and reflected waves at both ends of
the line.

Solution. Assume, the line load is balanced and it is Y-connected. Accordingly, we
perform a calculation for but one phase.

Calculate the line secondary parameters:

- the characteristic impedance is

j ; j79.2 .
Zo- | Tt ioly 0.088 +,0.42 - 0428¢/"> 300 5 O,
go+joCy \3.75-107° + j2.7-107° | 2.7.1076¢/82

- the propagation coefficient is

y=+(1 + joly )(gy + joCy) =J 0.428¢/77% .2.7.107%/%% =
=1.07-10>-¢”***" = (0.108 +1.069)-10  1/km.
From here, the decay coefficient is — a =Re(y) = 0.108-10 > Np/km,
the phase constant is — 8= Im(y) = 1.069-10 > rad/km.

The phase velocity and the wave length are:

p=Ce 3 204000 kmis; A== 2T 5880 kim.

B 1.069-107 B 1.069-107
Let’s calculate the hyperbolic functions:  y/ = 0.033 +;0.321;
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e’ =1.033-¢/%*'=0.980 + j0.326; e=0.968-¢7"**'=0.919 - j0.305;
shyl =Ysfe" —e¥]=0.031+,0.316 = 0.317-¢***;
ch yl =" + e ?] =0.949 + j0.01 = 0.950-¢"%%",
Determine the complexes of the phase voltage and current at the receiving end of the
line: szh:U_;l:@: 190.5 kV; cosp,=0.92, then ¢,=23.1°;
P, _ 300
3U, ppcosp,  3-190.5-0.92

lth = Izph'e_j(pz =0.571-e F23.17 kA.
Under the principal equations of the long line with hyperbolic functions, we calculate
the complexes of the phase voltage and current at the sending end of the line:
Uipin= Uspich Yl + LypZesh yl =
=190.5-0.95-¢/*% + 0.571-¢ /"398 77"-0.317-¢/* = 229.3-¢/ k¥,

U 7 o 4 o o o
=2 syl + Dyych = 0S5 317,084 10 571.07231°.0.95.0706% =

Zc 398¢/°

=0571 k4; ywp =W —@2=— @y

Ith =

llph:

=0.505-¢ 7% kA.
The active power at the beginning of the line

P1=3Re(Uy- I1,,) = 3:229.3-0.505-cos(15.6° + 6.3°) = 322 MW.

The line efficiency is n = P,/P;=300/322 =0.93.
Electromagnetic processes in a long line are considered as a result of the
superposition of the incident and reflected waves —
(_]: Qreﬂ+ l_]inc = Alezx + AZe _Zxa

A A4, -
l:__rf?fl+linc:_z__leyx+ —_Ze ®

VA

Lc Lc

where 4; and 4, — integration constants which may be determined through the voltage
and current at the receiving end of the line:

Usph ~LopnZc -y _190.5-0.571e /> -398¢ 7

b

4,= ) > 10.968-¢ 718 = 51.9.¢776%",
U +1, .7 —Jj23.1 —J3 o 1o 1o
42:_2ph 2_2ph_C 8212190.5+0.57le g 398¢ 1.033-0/54 = 209 3.0/31°,

At the beginning of the line x = 0, that’s why
Une(x=0) = 4,=209.3-¢”"kV,  Uep(x=0)=4,=51.9-¢/°% k¥,
Lne(x = 0) = Upne(x = 0)/Zc = 0.526-¢"" k4,
Linefx = 0) = Uje(x = 0)/Zc = 0.13-¢™ A,

At the end of the line x =/, that’s why

U= ) = Ay =220 Lo 2

€ =202.6e75% ky,

Usoh —LopnZc
Ueitx=10)=4 .eyl:—2ph P
Uep(x=1) = 4, 5

L = 1) = Upe(x = )/ Zc = 0.509-¢ """ kd,
Lop(x =) = Uren(x = D/Zc = 0.135-¢"% kA
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As one should expect, the incident wave decreases towards the end of the line
because of the losses in the line, the reflected wave decaying in direction from the end
of the line towards its beginning.

8-7 (8.8). At the end of the line described in problem 8.6, the following happens: a) load
disconnection; b) three-phase short-circuit. For each case, determine the line voltages
and currents at the line beginning and end, if the input phase voltage is the same as
calculated in problem 8.6.
Determine additionally the values of voltage and current of the incident and reflected

waves at the receiving end of the line.
Solution. To solve the problem, we use the principal equations of the long line with
hyperbolic functions.

a) at the load disconnection (no-load condition), the current at the line end is

l2ph = 0, that’s Why

_ Ui 229.3¢"°

=241/ kV,  Uy=~3Uyy=+/3 241 =418 kV;

T eh(yl) (.95
J15 q o : o
Lph—_zz"h sh yl =241%-0.317-e184-4 =0.192-¢""*" k4,  1,=1,,=0.192 kA.
Zc 398¢7/

At no-load condition, the reflection coefficient is +1, it means the incident wave is
reflected completely without the sign change. That’s why Us,.(x = 1) = U,ep(x = ).
Taking this into account:
Uppn = Unne(x =) + Upep(x = 1) = 2Uyue(x = 1) = 241-¢’ k¥,
fromhere  Upe(x = 1) = Uep(x = 1) = Uppi/2 = 120.5-¢’"" k¥,
Lie(x=1) = Lep(x =1) = Upne(x = DIZc =0.303-¢"""" k4.
b) at shot-circuit, the output voltage is Us,;, = 0, that’s why

U 22937150

Zcsh(yl)  398¢775 0.317¢/844
Lipn=Lpwch Yl = 1.817-¢7°%-0.95-¢" = 1.726-¢ "** kA, I;=I,,,=1.726 kA.
At the short-circuit condition, the reflection coefficient is equal to —1. That’s why
Liyc(x = 1) =— L.p(x = ). Taking this into account:
Ly = Lne(x = 1) = Lp(x = 1) = 2ye(x = ) = 1.817-¢ ™ kA,
from here Lne(x=1) =~ Log(x = 1) = L,,/2 = 0.909-¢ T8 jy.
Une(x =) ==Uepx =1) = Lne(x = 1) Zc = 362-¢ 75 kv

=1.817¢ 7% kA,  Iy=ILy=1.817 k4;

lzph =

8-8 (8.9). Under a) no-load and b) short-circuit conditions, determine the line voltages
and currents at the beginning and end of the line described in problem 8.6, if its length
is 900 km, while the input phase voltage is U,,, = 229.3 kV.
Answers: ch yl=0.574 +;0.080, sh yl=0.056 +;0.824;

a) Uy=685kV; I,=8214; b)L=6974; [,=404A.

Comparing the calculation results for two similar lines but of different length (in
problem 8.6 the line length is 300 km, while in problem 8.8 it is 900 km), we see that in
the second case the output voltage and the input current have sharply increased under
no-load condition while the current has appreciably decreased under short-circuit
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condition. It can be concluded the no-load condition for high-voltage transmission line
may be much dangerous than short-circuit condition.

8.1.2. Lines with matched load
8-9 (8.10). For a three-phase transmission line with the matched load, the complexes of
the input phase voltage and the output phase current are known: U; =100 kV,
L=190¢ 7" 4. Determine the line efficiency, if its characteristic impedance is
Zc=500e 7' Ohm.
Solution. The load impedance is equal to a characteristic one for the line with matched
load, then the output voltage is Uy =15Zc=0.19¢7"-500e 7' = 9571 k.

Because of the equality U, = U,e " for the matched line, there is

e = UyU, =95/100 = 0.95.
The line efficiency is 1= e > =10.95>=0.903.

8-10 (8.11). Two-wire line 100 /.m in length 1is loaded with the impedance
Zc=410e 7" Ohm.

The input voltage is — u(?) = 220+/2 sin(314t +120°) V, the output one is —
ur(t) = 188.7~/2 sin(314¢+79.9°) V. Determine the current and voltage at point 4
situated at a distance of 20 Am from the line end, write down their instantaneous values.
Solution. As it is stated in the problem, the line is with the matched load, its principal
equations being as follows: { U, = Uye? = Uye™ e

I,= lz'ezl =Lre ol LBl

In order to determine the current and voltage at point A it is necessary to know the
line parameters, namely: the decay coefficient a and phase constant 8. We find them
from the first equation of the line:

e = UJU, = 220e712%°/188 7/ = 1.166¢01°= 707 rad.

e”=1.166; al=In1.166=0.153; a=0.00153 Nplkm; Bl=0.7 + 27k rad.

B =—=—"-——~ 10" radlkm;  B,I~0.1 rad

thus, k=0 and p=0.007 rad/km.

Then the voltage at point 4 is:
U, = Uye? = 188,775 00015320, , 000720 _ g ,7799°, ,i0147ad =802 _ 194 6,792 |

The ratio Z;,,= Z¢ is true for any cross-section of the line, that’s why the current at
point 4 may be calculated in the following way

L= UJZc=194.6¢""%/(410e ") = 0.475¢"" 7% 4.
The instantaneous voltage and current are:
w(t) = 194.6~2 sin(3141 + 87.92°) V, i1 (1) =0.475~/2 sin(3141 + 117.92°) A.

8-11(8.12). A line 25 km long is supplied from the voltage source e; =141.4s5in5000¢ V'
with inner resistance r;, = 100 Ohm. The line parameters are: Z-= 335.5 —j497.4 Ohm,
y=(3.48+ j19.70)-1073 1/km, Z,= Zc. Determine the currents, voltages, powers at the
line input and output, find the line efficiency.
Answers: U;=90.6 7, 1,=0.151 4, P,=7.65W,

U,=83.047, 51L,=0.138 4, P,=643 W, n=0.84.
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8-12 (8.13). Two-wire line 100 km long is loaded with impedance Z-=1410e ”** Ohm.
At a distance of 20 km from the line end, the voltage is u,(t) = 141.4sin(314¢+ 60°) V.
At point “b” situated at a distance of 40 km from the line end, the current is known
i(t) = 0.164sin(314¢ + 120°) A.

Determine instantaneous and effective values of the input voltage.
Answer: u,(2) = 715.6~/2 sin(314t + 180°) V; U, =715.6 V.

8-13 (8.14). A line /=20 /km in length has the following secondary parameters:
Zc=1350e 7** Ohm and y =0.0175 +0.039 1/km, it being loaded with the impedance
equal to the characteristic one. Determine the power P, delivered to the load as well as
the power P; supplied into the line, if the input voltage is U; =10 V.

Answers: P, =67.67T mW, P,=33.6mW.

8-14 (8.15). An air communication line possesses the following parameters:
ro=2.84 Ohm/km, g,=0.7 uS'km, Lo=1.94 mH/km, Cy= 6.25 nF/km.

Determine: 1) at which consumer impedance there is no reflected wave in the line at
the medium rated frequency 800 Hz; 2) the voltage, current and power of the source as
well as the efficiency of the line 59 km long, the load voltage being 20 V, the load
impedance being as in paragraph 1.
Solution. Let’s calculate the line secondary parameters at the frequency 800 Hz:
o=2nf=2mr-800=5027 radls,

7 - [fotjoly _ 2.84+ j5027-1.94-10° | 10.15¢/7%
- 8o + joCy 0.7-107% + j5027-6.25-1077  \ 31 56.100/%87
=567-¢ 7" Ohm,

y=A/(1y + joLy )( g +jcoC0)=\/10.ISej73'8 31.56-10°¢/*7 =17.9.10 3.¢/** 1/km.
From here, the decay coefficient is — o = Re(y) = 2.71-10 > Np/km.
There is no reflected wave in the line with matched load, it means its impedance is
Z,=Zc=567-¢7"* Ohm.
Then the output voltage, current and power are:

U=207, n=Z2— 20 035367 4,
Zc 567¢7774

P,=Re(Us I,)=20-0.0353-cos (-7.46°) = 0.7 W.

In case of the matched load, the line efficiency may be found under the formula
n= e—Zal — e—2~2.71'0.059: 0.73.
The input poweris Py= P,/n=0.7/0.73 =0.96 W.
The input voltage and current are Uy = U,-e® =20-e“ =20e*"" =234 7,
Li=Le”=0.0353-¢>"""%" = 0.041 4.

8-15 (8.16). A D-C generator with voltage 10 £V supplies the overhead and cable lines
connected in series. The overhead line parameters are: [, =20 km, ry; =4 Ohm/km,
@o1= 10" S/km. The cable parameters are: I, = 40 km, ro, = 0.5 Slkm, g =0.5-10"° S/km.
The cable is connected with the matched load. Determine the powers of the generator and
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consumer, find the efficiency of the overhead line, as well as that of the cable line and of

the line as a whole.
Answers: P,=943 kW, P,=822kW, n,=0907; #,=0.96; 7 =0.872.

8.1.3. Distortionless lines
8-16 (8.19). An overhead two-wire communication line 100 km in length possesses the

parameters: 7o = 2.8 Ohm/km, gy=0.7 uS/km, Ly=2 mH/km, it working under a
matched condition at the frequency @ = 5000 rad/s. What additional inductance L' is to
be added per each kilometer of the line to eliminate distortions and the output voltage
would lag the input one by 100° in phase?
Solution. In accordance with the problem statement, the line phase shift is
Bl =100°+ 360°-k = 1.745 + 27k rad, it means B= (1.745 + 27k)-10 * rad/km.

Let’s estimate 8. The phase velocity for the overhead line is practically equal to the

light speed, that’s why fr—=——"=1.667-10 7 rad/km.

Comparing two results obtamed, we conclude that £ = 0.
Finally, we have p=0.01745 rad/km.
For a distortionless line the following relationships are true

_ ' 1 _gO
=w(Ly+L,)C, and —0 =20
p (Lo 0/)Co Ly+ 1L

0

or VI Epp =l g et

Multiplying two latter equalities, we find

(Lo+Lo)= ﬁ T DO | 28 —=0.00698 Hikm.
g 5000 V0.7-10

Eventually, we have: LO' =6.98 -2 =4.98 mH/km.

8-17 (8.20). A cable communication line is 150 km in length and the wave impedance is
Zc=60 Ohm. It takes signals 1ms to pass along this line without any distortion, they
decaying by 11.3 dB. Determine the line primary parameters.
Solution. The line decayis a/=11.3dB=11.3-0.115=1.3 Np.

From here, the decay coefficientis o =¥—%— 8.66-10 > Np/km.

At the same time, a distortionless line obeys to the correlatiOHS‘

Lo _ ”0 N
Coy \/7 &0 \/LoCo

Furthermore, it may be assumed that v= 150 000 km/s.
From these correlations, we find:
ro=a - Zc=8.66-10>-60 = 0.52 Ohm/km,

2 2 -6
g0=0‘——866—;0— 1.44-10 ™ Sk,
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Co= = =0.111-10° Flkm = 0.111 uF/km.
" Zov 60-1.5-10° HE"

8-18 (8.21). The primary parameters of the two-wire copper 4mm telephone line (at
f=100kHz) are: ro=14 Ohm/km, Ly=2-10" Hlkm, go="5-10"° S/km, Cy= 6.36 nF/km.
Calculate which inductance L; should be added per each kilometer to obtain the
distortionless line. What are the line secondary parameters under these conditions?

Answers: L, =ﬁ—Lo= 15.8:10 7 Hlkm, Zq= ,Log L = 1673 Ohm,
8o 0

y=a+iB=yrage+joL,Cy=837-10"+6.685 1/km.

8.1.4. Zero-loss line

8-19 (8.23). A voltmeter at the receiving end of the zero-loss line reads 100 V.
Determine the ammeter reading, it being mounted at distance of 2 m from the line’s end,
the generator frequency and the line wave impedance are f=3-10" Hz and
Zc=1000 Ohm.

Solution. High impedance voltmeter is connected at the line end. Under this
circumstance, the line works in no-load condition, and there is no current at the line end
1,=0, that’s why one of the principal equations of the zero-loss line takes a view:

U,y .
I(y) =j =2 sin(fy).
Zc
Phase velocity of an overhead line is practically equal to speed of light ¢ = 3-10° m/s.

Then the phase constant of the line is:
_ o _2nf _2r-3-10
v oc o 3.10°
Eventually, the ammeter reading 1s

00
Li=[=2)|=—% = in(0.2-2) = 0.0951 A.
4= 0=2)| = chm(ﬂy) 1000”"( -2)

= 0.2z rad/m.

8-20 (8.24). A generator with wave length A =20 m supplies an ideal zero-loss line
/=5 m in length. At the line’s end, there is an ammeter reading 0.17 4, furthermore, at
the middle of the line, there is a voltmeter reading 120 V. Determine the wave
impedance of the line. Take ry= o0, r,=0.

Solution. Zero-loss line’s equation at the short-circuit condition has a view:

Up) =jZcLrsin(By).
. 27r 25
In the centre of the line  sin(fy) = °)=0.7071.

Then the required impedance i1s  Zq = 120/(0.17 0.7071) =998 Ohm.

8-21 (8.25). Determine the parameters of the overhead zero-loss line 30 m in length
having the wave impedance 600 Ohm and working at the frequency 15 MHz. Calculate
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the power delivered into the line as well as its efficiency at the load impedance
300 Ohm and voltage U, =120 V.
Answers: y=jB=;0314 1/m, Ly=2 uH/m, Cy=5.55nF/m, Pi=48 W, n=1.

8-22 (8.26). Determine the current of a generator supplying voltage U,= 120V to a
zero-loss line loaded with resistance 7, =380 Ohm, the line possessing the following
parameters: /=100m, A=60m, Ly=5.3 uH/m.

Answers: Zc= 1590 Ohm, B=0.1047 rad/m, Z,,=255.6¢”"%" Ohm, I, = 0.047¢ 7> 4.

8-23 (8.27). There is an inductive load L = 17.3 uH at the end of the overhead zero-loss
line /=12 m in length. Determine the distance between the line end and the nearest
voltage and current anti-nodes, if the source frequency is = 10®rad/s while the line
parameters are Ly=10 uH/m, Cy=1.11pF/m.
Solution. Inductive reactance wl may be simulated by the segment of the short-
circuited zero-loss line of length /. Let’s calculate the segment length.

The inductive reactance in a complex form is presented as jwL, the input impedance
of the short-circuited zero-loss line is Zs=jZctg(pl,), it means L =Zctg(pl,),

10-107°
1.11-107"2

B=arLyCo = 10°3107° -1.11-107'% = 0.333 rad/m.

8 -6
We obtain: /; =iarctg oL =;arctg 10°-17.3-10 7 ) _7 m.
B 0.333 2

where the line secondary parameters are Zc= /% = = 3000 Ohm,
0

Zc 3000
The wave length is 4 _m_ 67 m.
B 0.333

In case of the short-circuited zero-loss line, the voltage anti-node nearest to the line

end is situated at a distance equal to the quarter of the wave length:
Yah=15m m.
For the line under consideration with account of the segment /;:
1.5z— L, =157—-0.5r=n=3.14 m.

The current anti-node is shifted in comparison with the voltage anti-node by the
quarter of the wave length. That’s why the coordinate of the current anti-node is as
follows: n+157=257="7.85m.

8-24 (8.28). In order to match the line with the load at the frequency 100 MHz, it is
necessary to add the inductive reactance 800 Ohm, which can be simulated by the
segment of the zero-loss line. Determine the shortest possible segment of the short-
circuited zero-loss line made of copper wires with radius »=2 mm, the distance
between the wires being d = 20 cm. Calculate the impedance of the segment at the open-
circuited line end.
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Direction. The primary parameters of zero-loss line may be calculated by the following

formulae: L0=&lni=4-1077-ln£ Him; C =ﬂ—80.
T r md

n

r

Answer: y,;, =46.1 cm, Z,=-;381.9 Ohm.

8-25 (8.29). A zero-loss line with parameters [/=30m, f=15 MHz, Z-= 600 Ohm
supplies a load: U, =120V, r,=300 Ohm. Determine the position of the voltage
minimums and maximums along the line.
Solution. It is known that there are standing waves in a zero-loss line in no-load and
short-circuit conditions. As this time the reflection coefficient is n = £1, the incident and
reverse waves are identical in value, their superposition results in the voltage nodes and
anti-nodes distributed along the line in no-load (short-circuit) condition in accordance
with the respective expressions:
Ynode(anti-node) = (2k + 1)/1/49 Yanti-node(node) = k/1/2, k= O, 1, 27

At the arbitrary non-matched load the reflection coefficient is n <1, and the incident
and reflected waves are not equal to each other. As a result of the wave superposition in
the line there are the voltage minimums and maximums. It is obvious that they are
observed in the points where the direct and reverse waves are in phase (maximums) or
out of phase (phase shift is 180°) (minimums).

1. Determine the reflection coefficient n» from the load and estimate the direct
and reverse wave voltages Uy, U,,,.
_n—=Z-_ 300-600

n= =-0.333, itmeans U,,=-—0.333U,.
n+Zs 300+600

At the line end the voltage is determined as
U,=U;+ U,=U;—-0.333-U;=0.667-U; =120 V.
As n <0, then at the line end there is a voltage minimum U,,;, = 120 V, furthermore:
Us=U,in/0.667=180 V, U,,=—-0.333U,=-60V.
The voltage maximum is U, =180 + 60 =240 V.
2. So, the first voltage minimum is at the line end. Further, the voltage minimums
takes place every /2. Estimate the wave length:

=2 =Y~ 300-10%(15-10%) = 20 m.
B f

The voltage maximums are shifted in comparison with minimums by a quarter of the
wave length 4/4 =5 m and further they also takes place every 4/2 along the line.
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8.2. TRANSIENT PROCESSES IN THE LONG LINES

8.2.1. Calculation of waves arising

8-26 (8.30). A zero-loss line with parameters Zo=250 Ohm, [ =140 km, v=280-10 km/s
is connected to a D-C voltage source E,= 120k} possessing the inner inductance
Ly=0.15 H. Receiving end of the line is open-circuited (fig. 8.1,a). It is required to plot
the voltage u(t; y) and current i(t, y) distribution along the line for two time moments:
H= 0.75//v and th = 1.5//v.

o a) b)
N—
USW 1 ZC, l, 14 2
Eq
Ly )

o Fig 8.1

Solution. 1. At the time moment #= ¢, = 0.75//v = 0.375 mc, there is but the incident
wave in the line. We calculate its parameters based on the equivalent scheme for the
section “1-1” (fig. 8.1,b): Iime(t) = iy(t) + Ae”";
iinc(04) = i1nee(0) = 0, i5(t) = Eo/Zc=120-10°/250 = 480 A,
A=1;,.(0;) —i,(0;) = 0 — 480 =— 480, p=—2Zc/Ly=-250/0.15=-1667 1/s.
iime(f) = 480 — 480 """ A;  wie(t) = Zctiime(t) = 120 — 120e 7 kV.
In order to obtain the voltage and current dependencies on the coordinate according

: . x
to which the diagram should be constructed, we pass to the argument /¢, —— J:
v

-3 3
iinc(tf; x) =480 _4806—1667[0.37510 -x/28010°] _ 480 — 4806_1'667[0'375_X/280] A;

Uine(ts; X) = 120 — 120 o~ 1-667/0.375-x/280] 117
At t;=0.375 ms the expressions are true for but the coordinate x <v-,= 105 km.
The voltage

distribution plot wu;,.(t5x) 60
50 T

along the line for time
moment ¢, is presented in

_‘_ ul:nc: k V . . . . : 2.

fig. 8.2. The current curve Azt det i

ime(t;x) is  analogous, 30 i-rrriieintedebe i g o
because i =t/ Zc. UL cEa B S e o

2. At the time moment i L R R
tr=1t, = 1.5llv=0.75 ms,
in the line there are both
the incident and reflected
waves. As the line end is open the wave is completely reflected without the sign change:
n, = 1. Thus, the expressions to construct the plots are:

GG e B e R

N 4 60 g0 00 120 140

Uinc(l}; x) =120 — 1206—1.667[0.75—x/280] kV, 0 <x< 210 km,
il'nc(tf; x) =480 — 4806—1.667[0.75—x/280] A;
Urep(ty, y) = 120 — 120~ 607[0230 /2800 ey 0 < <70 kmm,

Lrop(t, v) = 480 — 480 ¢ 1067/ 0.257y 1280
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Notice: the incident wave lifetime is ' =t,=0.75 ms, the reflected wave lifetime is
"=1t—-1,=0.75-0.5=0.25 ms.

The calculated values of waves for separate line points are shown in the table 8.1

Table 8.1
x, km Upe, KV Lines A v, km Urepts KV Irefl, 4
210 0 0 35 22.57 90.3
105 55.78 223.1 17.5 32.21 128.9
70 67.86 271.4 0 40.9 163.6
0 85.63 342.5 - - -

The plots of the incident, reflected waves and summary values of the voltage u and
current 7 are presented separately (fig. 8.3). Moreover: u =ty + Uyep; 1= iine — lyep.

Uines le 5 iincaA '3
B0 3201
fu:l_'"f"" : . : 1 1601 : ..E............:_.....E.....-
O N /. I O S
0 20 40 &0 20 100 120 140 x’km ] A 40 &0 B0 100 120 140 x’km
urejﬂa kV" | Z ireﬂ:A 4 | 2
dm__..,i. 16 :.
2M0+- E T . | 2 i :
—feiel | 2 ——— ey 2
y, km 190120 100 80 60 & 20 0l v, Jon 140 120 100 80 60 40 20 i
u,kV 4 2 i,A4 i
lm--....g.....\....-.....,.............é......ll qgu__....:.....:......;.._..._-......E......E......I
100t 2oy ot i Zhpe— by
Sﬂ__...i .,.'; ; o B0+ e : ..- ..... E, ..... 5....E ...... {
l4['__..._:.....:...._..:..J._.’._i—...!....._!____.l Flg~ 8~3 ]ﬁD__:.,.i:t i......i.....f
201 u_ullnc. ureﬂ. I a0 : : L T J[
A O [ i it N2
0 20 40 &0 80 100 120 140 _x’km 0 A 40 &0 F0 100 120 140 x. km

8-27 (8.31). A zero-loss line initially working under no-load condition is suddenly loaded
with rC-circuit (fig. 8.4). Determine the parameters of the reverse wave arising and plot the

wave distribution along the line as the time interval z,=150 us passes after the load
commutation. Numerical data: Ey=100V,

1 irev 2
Zc=250 Ohm, [=25km, v=100-10°km/s, o

°© __x
r;=150 Ohm, C;=0.125 pF. Ze v Usw | |,
Solution. Considering the line condition E U U :
before the commutation, we determine the 010 0 C
voltage across the switch: 1 s 1 !
i(f_) = 0, USW: Ll(t_) = U() = E() =100 V. O O
We draw out the equivalent scheme for the Fig. 8.4
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section 2-2 for the moment when the reverse wave arises (fig. 8.5): emf E,,,= Uy 1s
directed with the polarity opposite to the polarity of the voltage across the switch, the line
being presented by its wave impedance.

Using the equivalent scheme, we calculate the load .9

current.
ucd0)=uc0)=0, p=—1/[(r+Zc)CJ=-20-10"1/s,

E Eequ i
l-l(l_) + lt O 4 Aepl equ 6_20000t 0 25 —20000¢ A Z )
i +Z C < Uyey g
Current and voltage of the reverse wave are as follows: 9 C —
fresf(t, y=0) =—i;=—0.25¢ """ 4, o

rolt, y = 0) = Ztiyey = — 62.5¢ 2" V. Fig. 8.5
In order to perform the voltage and current epures in the function of a coordinate, we
pass to the argument /#,— y/v].

b3 1) = — 0,25 701 00 g, y<vitp=15 km;
Uren(V; 1) = — 62.5¢ 20015 -/100]
ut), vV A i), mAk
100 |
< _ |
y,km 20 10 0 x, km
Uyeys V A .|
Y | x
= ' T >
~100- -6z, 5 !
u, V A |

100 % +97
A0 - |
4_ T T T t - T T T

v, km 25 20 45 10 5 0x km v, km 25 20 s 1@ 5 Oy kmy

Fig. 8.6

Epures of the initial, reversed waves as well as the summary graphs (u=u(t,)+ u,.,
and i=i(t)— i,.,) are presented separately in fig. 8.6.

8-28 (8.32). An overhead line (/=70 km, Zc-= 400 Ohm) is supllied from the generator
with voltage U,=100kV (rp=0), and the line has been working under no-load
condition for a long time .

Plot the voltage and current distribution along the line for the time moment when
0.2 ms passes after a non-ramified active-inductive load =200 Ohm, L =100 mH is
connected to the line end.

Solution. Let’s draw the initial scheme and work out a scheme to calculate the
parameters of the arising reverse wave (fig. 8.7,a and b).
The voltage and current along the line before the commutation are:
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ut)=Uy=100kV, it)=0.
The voltage across the switch at the commutation moment is: Ugy= Uy= 100 kV.

o a) b H\@

2 irev
1 2 r USW= UO r
U() ZC [] Urey
L L
1’ ok o
O Fig. 87 Lo

The arising reverse wave is calculated using the scheme fig. 8.7,b at zero independent
initial condition (i,.,(0.)= 0):

_ _l"+ZCt _ . 3 _@t
Lrev(t) = Uy (1-e <L ):Mﬂ —e 01 )=_167+ 167-¢ 9000 4
r+Zc 200 + 400
Ure(t) = Zc 1oy =400-(— 167 + 167-¢ )10 =~ 66.7 + 66.7-¢ """ kV.
= kV‘loo
\4_\
U
'\R
'H
50
v, km 60 40 20
-
0
-
urev \'\
H
H
-50
i, AN
200
) S
/41___,....---""‘ 100
v, km 60 /4() 20
- < .
\4—5\
ey —| —100
Fig. 8.8
— 200
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Formulae u,.,(?) and i, (?) are relevant for coordinate y = 0. In order to pass from the
time functions to the coordinate functions at #= 0.2 ms, we perform a substitution

fo> () (s )= — 167+ 16T-exp/~ 6000(2-10“—3 TOS )],

Uren(t, ) = — 66.7 + 66.7-exp[— 6000(2-10 3 fOS )].
During the given fixed time period #; the wave passes the distance:
yr=vt;=3-10 2210 * = 60 km. That’s why the formulae u,e,(,, ) and i,..(¢; y) are true
for corrdinates y <y,= 60 km. At y>y; u,, and i., are equal to zero.
Total voltage and current values in the line are found by superposing the condition
before the commutation and the reverse wave: u=u(t)+ e, =1i(t.)— irer
Eventually,

33.3466.7exp(—6000(2-104 ——2_ ) kV  if 0< y <60km,
) = p(~6000( IRV 0y

L 100kV  if 60km < y <70km.
. 167 =167 exp(—6000(2-104 ——2 ) 4 if 0<y <60km,
i) = p( ( TS A

10 if 60km<y<T0km.

The voltage and current epures for the time moment #=2 mc are presented in
fig. 8.8.

8-29 (8.33). Inductive load L = 0.015 H is connected to the centre of the working line (fig.
8.9,a), it possessing the parameters Z-= 300 Ohm, v = 240-10° km/s, 1= 120 km. The
load resistance and the source emf are: =600 Ohm, Ey=1.2 kV. Determine the
parameters of the arising reverse and direct waves, plot the voltage and current along the
line after time #,= 200 us has elapsed after the commutation.

a) b) < >
? O irev idir
— o
Usp=Ey
EO r []
L Zc Uyey Uiy Zc
1’ 2 ’LJ7 L
O

}d X2 Fig. 8.9
Answers: working mode before the commutation:
i(f_) = E()/I" =2 A, M(f_) = Eo =1.2 KB, USW: 1.2 kV,
equivalent scheme to compute the direct and reverse waves is in fig. 8.9,b:
lL(t) =8 - 88710000249 idir(ta x2=O) = irev(ta ylzo) == OSZL(t) =—4+ 4871000(”14;

tr=0.2ms, ig(t;xy) =—4+4exp[—10-(0.2 —x,/240] A4, 0<x,<48 km;
Ugir(ty, X2) =— 1.2 + 1.2exp[— 10-(0.2 —x,/240] kV, 0 <x, <48 km;
lreu(ts Y1) = — 4 +dexp[— 10-(0.2 —,/240] A4, 0 <y; <48 km;

Upen(ts, y1) =— 1.2+ 1.2exp[— 10-(0.2 — »,/240] kV, 0 <y, <48 km;
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total voltage and current values in each of the line halves are determined in accordance

with the following formulae: i} =i(z) — iy, Uy =u(t) + ey,
L= U8 + i, uy = u(t.) + ugp;
the voltage and current epures for the time moment #, are presented in fig. 8.10.
. u(r. A
i(t) 2hi A (t) 1 u, kV
| I | |
Y1, km X2, km Vi, km X2, km
- L g - L
60 0 60 60 0 n 60
A; Au,
| 2 T l’ A __| | 1 ]
yi, km Xo, km y km 0 X2, km
- —l - - ,'=\ /=.' >
67)\ o[ ]/ 60 60, 60
« NS I~ Urev Ugir—]|
bev ™NOAT lair
| -4 | )
6 1,2
i ] ‘
4 08—
T2 U 75
L 0.4 .
Vi kn—/lf / X2, km
00 0 L 60 i, ko
) ‘
Fig. 8.10
o a) b)
lﬁ Isw
L
U Rz ZC [
u(t.)
R,
Y Y ;
o S Fig. 8.11

8-30 (8.34). An antenna cable with parameters /=20m, Ly=0.5 uH/m, Cy=90 pF/m is
loaded in accordance with fig. 8.11,a: R, =150 Ohm, R,=50Ohm, L=0.01 mH, the
input voltage being U=1 V. Commutation (disconnection of the branch with R,) causes
the transient process in the cable. Plot the voltage u# and current i distribution along the
line for the time moment #;, when the wave which arises reaches ¥ of the cable length.
Solution. The preliminary calculations are:
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1 I
. _
JLCo /51077 -9.107"!

L . Ly |5-1077
- characteristic impedance is Zc= |—= —11=74.54 Ohm;
Cy 910~
[

- wave phase velocity is =1.49-10% m/s;

- wave travel duration is ty=—=—""—2= 0.134-10 °s=0.134 Us;
v 1.49-10

- specified fixed time momentis =% #,, = 0.1 us.
We analyze the circuit condition before the commutation:
ut)=U=1v, R=—2f2 199 _5;5,,,
R, +R, 150+50
i(t)=u(t)/R,=1/37.5=0.0267 A, Isw=u(t)/R,=1/50=0.02 4.

The voltage and current of the arising reverse wave are calculated using the
equivalent scheme fig. 8.11,b at zero independent initial condition #;(0,) = 0. Note, the
independent initial condition is considered to be zero despite the fact that there is a
current flowing through the inductance before the commutation.

Ireu(t) = iy + Ae?'; ;= Igy il =0.02-$=0.01336A,
R +Z 150 + 74.54
p=_Rl ~Zc =_150__Z4'54=—2.245-107{1.
L 10

The circuit time constant and the transient process duration are:
t=1|p| ' =4.45107%s, T,=47=1.7810"75~0.2 us.
The current initial value i,..,(0) with account i;(0,) =0 is as follows:
Ire(05) = Igr=0.02 A.
Then the integration constant is 4 = i,.,(0;) — i;= 0.02 — 0,01336 = 6,639-10 =,
Current and voltage of the reverse wave in function of time at zero corrdinate are:

o)) = 13.36 + 6,639 25100 4y 1) = Zeviy = 0.996 +0.495 72245101

15 1500

1 . 1000 >\
1 s ulx) ~‘~"\
obx(x | | | TTveeenl_d wbx(x | || Tl

0.5 500
0 : 0 !
0 5 10 _ 0 5 10
Fig 8.12
X

Current and voltage of the reverse wave against time at the fixed time moment #:
Lo, ¥) = 13.36 + 6.639exp/-2.245-10"-(10 7 —y/v)] =
=13.36 + 6.639exp/-2.245-(1 — y/14.9)] A,
Urer(t; ¥) = 0.996 + 0.495exp[-2.245-(1 — y/14.9)] V.
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The latter formulae are true but for y <v-t,=15m. At y > 15 m there is no reverse
wave.

We find the total current and voltage in the line in accordance with the formulae:
u=u(t)+ u,, i =Ii(t)—i.. The current and voltage epures are presented in fig. 8.12.

8-31 (8.36). In circuit fig.8.13,a with parameters E=10kV, L=0.09H, C=0.4 uF,
ro=100 Ohm, R =400 Ohm, Zc=500 Ohm, [1=10km, v=100-10"km/s, a
commutation takes place. Plot the voltage u(#; x) and current i(#; x) distribution along the
line for the time moment ¢, when the incident wave reaches the line centre.

> a) b) N~
J/_C ZC; l, Vv iinc
E R —1
— Z Uinc
L T =L
—C I ISW
ro
@
1 Fig. 8.13
20 10
.--""'"'-ar
iinc(x) 10 uinc(x) >
i(x) . u(x) .
.»--""""/W /
10 -5
0 2.5 5 7.5 10 Flg 814 0 5 10

X

X

Answers. Igy=i(t) =20 A4, u(t) = 8 kV; scheme to calculate the incident wave is in fig.
8.13,b: wie®) =— 10+ 10e "V kV, ije(t) = — 20 + 20e " 4;
tr=0.05 ms,
Uine(ts x) = — 10 + 10exp/— 5-(0.05 — x/100)] kV,
line(ts, x) = — 20 + 20exp/— 5-(0.05 — x/100)] 4;
u(ty x) = u(t) + wine(tp x), ity x) = i) + iie(ty X);

the current and voltage epures are in fig. 8.14.

0<x<5km,

8.2.2. Computation of reflected waves

A a) b)
~N—o0—o0 Iﬂ
1 Zc, l, \% 2
E, G R,
1 A 2

Fig. 8.15
8-32 (8.37). A loaded zero-loss line with parameters v = 280-10° km/s, Zo=250 Ohm,
[ =140 km is connected to an ideal source of the direct voltage Ey,=120 £V (fig. 8.15,a).
The load parameters are: R, =750 Ohm, C,=1.066 uF. It is required:
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- to plot the voltage u(t; y) and current i(#; y) distribution along the line for the time
moment when #,= 0.75 ms passes after the line turning on;

- to plot the diagram of voltage u,(?) variation against time in section A4 in the
line centre for the time interval equal to 2.5 wave travel: 0 <7 <2.5¢,.
Solution. Part 1. The wave travel time is ¢, = //v = 0.5 ms. Accordingly, by the moment
under consideration = 0.75 ms, in the line there will be both the incident and reflected
waves, furthermore, the reflected wave lifetime is #,= 0.25 ms. Let’s calculate these
waves.

1. The incident wave parameters: u;,.(t; x=0) = E, = 120 kV,

iime(t; x=0) = Eo/Zc = 120-10°/250 = 480 A.

2. It takes the wave ¢, = 0.5 ms to reach the section “2-2” where it faces the
heterogeneity. The wave partially passes into the load, and partially, it’s reflected. The
parameters of the reflected wave are calculated through the current or voltage i, uy in
cross-section “2-2” of the line. In the equivalent scheme for the cross-section “2-2”
(fig. 8.15,b), it is easier to calculate the capacitor voltage, which presents the required
voltage u;,:

un(t) = uc(t) = uy + de”' = 2Wine R+ [uc(05) — uy(04)]-e”
ct 1y
3
2-120-10
uA00) = u(0) =0, u,==-"""_.750 = 180 kV, A=0—180=— 180 kV,
250+ 750
Zinlp) =—=+ 22 1 - $ 200 g~ 5000 17,
C Zc+R, 1.066-107" - p 250+750
au, kV 4i, A
130 , ............................................. | LI TR ...................................... |
11 SRR ................. ui:nc .................. 1 I SERTEUITTITOOs ........... llnc .................
E i A ------- S S e . ------- T x, km
0] 10 40 €0 80 100 120 1400 0l d0 40 é0 & 100 120 140
hu, kV +34kV 41,4 e
J;zn 120 1qu 360 4 A0 o ¥ 120 100 20 &0 40 20 g
_?I:I__ ...... . ....... : ‘... . ...; ....................
cian LU W
2l 120kV
AU, kV
150+ g
II:II:I_ [ FRPRY R A D I RN DU ...E..
SD__. il sl ofiode ibidochei) da
. * —- L ] L |
0| 20 40 40 21 100 120 140 0| 20 41 640 21 100 1200 140
Fig. 8.16

206



Thus, wuxn(?) = 180 — 180e " kV.

From the correlation ux,(?) = u;,. + u,.; and then under Ohm’s law, we find:
Uren(t) = Unp(t) — Uinef) = 180 — 180 %" — 120 = 60 — 180e ™" k¥,
Ut (60180 )-10°

Zo 250
3. In order to plot the voltage and current distribution along the line, we pass to the
argument [t,— y/v]:

iren(t) = =240 —720 ¢ """ 4.

Uty X) = 120 KV, ie(t x) = 480 4, 0 <x < 140 km:
Uren(t's; ¥) = 60 — 180exp/—5-(0.25 — y/280)] kV, t'r=0.25 ms,
in(t; ) = 240 — 720 exp[-5-(0.25 — y/280)] A, 0<y <70 km.

Under these expressions, the voltage and current distribution along the line is plotted

in fig. 8.16. The total values of the voltage and current are
U= Upe T Urent and i= iinc - ireﬂ-

Part II. In order to plot the voltage u,(?) variation in cross-section A4 in the line
centre for the time interval equal to 2.5 wave travels 0 <¢<2.5¢,, we use the results
obtained in the first part of the solution.

Until the incident wave reaches the cross-section 44, that is during the time interval
t<t;=0.5¢, = 0.25 ms, in the cross-section 44 we have: uy(t) = 0.

From the moment ¢ =0.25 ms up to moment #,= 0.75 mc, when the incident wave
reaches the line end and then the reflected wave reaches the point 4, the voltage u,(?) is
equal to the voltage of the incident wave only u,(?) = u;,. = 120 kV.

At the moment #, the reflected wave reaches the point 4, the incident and reflected
waves are superimposed on one another:

Us(t) = Uine T Uyen = 120 + [60 — 180exp(=5000(¢ — 0.75-10 )] kV.

This law of the voltage u(?) variation lasts for
the time interval s when the reflected wave 160+ G o |
reaches the beginning of the line (0.25 ms) and an 5. ]

incident wave which has arisen reaches the point 4 0| i i i [i 0
again (025 15). 11 =y 1 IR RN g

The process of the voltage variation in time in o L7 tms
the point 4 of the line is presented in fig. 8.17: 0] 02 04 o6 o8 Lo 2
t=0-0.25ms ug(t) = 0; Fig. 8.17
£=0.25-0.75 ms wy(t) = 120 kV:
£=0.75—1.25 ms (1) = 180 — 180exp(=5000(¢ — 0.75-107) kV.

8-33 (8.38). The loaded zero-loss line (R, = 750 Ohm) with parameters Z-= 250 Ohm,
[ =140 km, v=280-10 km/s is connected to a D-C voltage source E,= 120 kV with
inner inductance Ly,=0.15 H (fig. 8.18). Plot the voltage u(?; y) and current i(z;y)
distribution along the line for the time moment ¢,= 1.5//v.

: ~1.667[0.75 — x/280] -
Answers: i;,.(t; x) = 480 — 480e As Uine(ty X) = Zctline

frep(t'; 1) = — 05050 = — 240 + 240 071025772801 4,

The diagrams are presented in fig. 8.19.
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400
100
Ze, L, 200 :\ - 50 N
Ey R, ﬁ
LO 0 . 0
\ \‘\\,J
Fig. 8.18 _ -50
. 2000 70 140 a0 0 140
= iinc (X X irefl (x upad (X) X el (x
| Zotv 2 SRRt
Eqy in2 (x) i®  Fig. 8.19 X
C R;
2' 8-34 (8.39). The loaded cable line (R, = 225 Ohm)
Fio 890 ~ with  parameters Zc=75 Ohm, [=50km,
18- © v=125-10° km/s is connected to a D-C voltage

source (Ey= 1.2 kV, r;,=5 Ohm). At the input the line is protected from the disturbance
with the aid of the capacitor C=153.33 uF" (fig. 8.20). Plot the voltage u(t; y) and
current i(1 y) distribution along the line for the time moment = 1.5//v.
Answers: i;,.(t; x) =15 — 15¢ 410671231 4. Uine(t, X) = Zct e

Lot 1) = — 050 = — 7.5+ 7.5¢ 1027151 4,

20
1000
The diagrams fine (")10__ uine (%) Q\
are in fig. 8.21.  1® urefl (x) N
1™ u®
0 10 20 30 40 50 0 10 20 30 40 50
« Fig. 8.21 )

8-35 (8.41). The loaded zero-loss line

with  parameters Zc =250 Ohm, 1

[=140 km, v=280-10"km/s is Eo

connected to an ideal D-C voltage I

source FEy= 120 kV (fig. 8.22). The O

load parameters: R, =500 Ohm, A Fig. 8.22

L=37.5mH, R, =250 Ohm. It is required:

- to plot the voltage u(t; y) and current i(#; y) distribution along the line for the time
moment when 7= 0.9 ms passes after the line turning on;

- to plot the voltage u,(?) variation in section 44 in the line centre for the time
interval equal to two wave travels: 0 <¢<2¢,.
Answers: i;,.(t) =480 A4, u;.(t)=120kV;

Uun(t) = 160 +20e > kV, in(t)=320—80e """ 4, ;= 0.4 ms,

Uren(t'; ) =40 +20e 04200y i at's ) = 160 + 80e 1047200 4,

The diagrams are in fig. 8.23.
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0 70 140 0 20 140 )
X Fig. 8.23 x
8-36 (8.42). The loaded =zero-loss line with .o Q_l |
parameters v = 280- 10° km/s,  Zg =300 Ohm, 1 2 I
[ =140 km 1is connected to an ideal D-C voltage E, Ci R
source FEy=120kV (fig.8.24). The Iload v Zely
parameters: R; = 950 Ohm, C;= 0.1 uF. Plot: o ©o ,.‘

- the current i, diagram at the line’s end in
function of time;
- diagrams of the voltage u(t; y) and current i(t; y) distribution along the line for the
time moment when #= 0.86 ms passes after the line turning on.
Answers: in() =192 """ A;  u.p(t'; y) = 120 — 57.6¢ 100 py,
Lrep(t's; y) = 400 — 192¢ 31036772801 4

Fig. 8.24

_ 400 — 250
The diagrams are P anl
in fig. 8.25. fine(x) tine(x) r
i_rgﬂ(x) 200 urefl(x) 150
x 100 e
i ) A
M = 50
e 0
0 70 140 Fig 825 0 70 140

8-37 (8.43). Using the conditions of problem 8.30, plot the voltage u and current i
distribution along the cable for the time moment #;, when the wave reflected from the
line beginning passes 2 of the line length.
Solution. Let’s use the calculation results of problem 8.30:
v=1.49-10° m/s; Zc=74.54 Ohm; t,=0.134 us; t,=(1+%)t, = 0.2 ps.
ut)=U=1V, i@t)=0.0267 A4,

fon(t) = 13.36 + 6.639¢ 22451070 1y g 4 (1) = 0.996 + 0.495 ¢ 22451071
The current and voltage of the reverse wave in function of the coordinates at the fixed
time moment #;are: Ireu(tp ¥) = 13.36 + 6.639exp[-2.245-(2 — y/14.9)] mA,
Uren(ts ¥) = 0.996 + 0.495exp[-2.245-(2 — y/14.9)] V.
The mner resistance of the source is zero, that’s why the reflection coefficient from the

. o -Z
line beginning is n, _0=Zc _

— 1. Then the formulae of the voltage and current of the
c

direct wave for zero coordinate in function of time are as follows (furthermore, time is
measured from the moment of reflection):
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. —2.245.10" ¢ —2.245.10"¢
igir(t) =—13.36 —6.639¢ mA,  ug(t) =—0.996 —0.495¢ V.
These formulae but in function of coordinate with account of the direct wave lifetime
tr—1,=0.066 us are:
iair(t, x) =—13.36 — 6.63%exp/— 2.245-(0.66 — x/14.9)] A,
ugir(ty, y) =—0.996 — 0.495exp/— 2.245-(0.66 — x/14.9)] V.
Formelae are true for x <v-(t,—1t,) = 10 m. At x > 10 m there 1s no direct wave.
The total current and voltage in the line are found under the formulae: u=u(t) +u,., +
+ Uy, [=1i(t)— i T ig- The current and voltage epures are shown in fig. 8.26.

30
20 ?
Z(X) - - - - M(X) C XK I Y g G ppp—"
. 10 K
l,ev(x) “reV(x) 0
R sy
~10 [T e
—p——=s 2
0 10 20 0 10 20
Fig. 8.26

X

8.2.3. Wave calculation when passing through R,.,C-elements
8-38 (8.45). The incident wave with a rectangular voltage front u;,.(z) =220 kV travels
along an overhead line with parameters Z¢, =220 Ohm, [,= 150 km, v; = 300- 10° km/s,
it passes through the elements R = 180 Ohm, L =30 mH into the cable with parameters
Zcy=88 Ohm, 1,=175 km, v,=150-10" km/s, the
cable end is opened (fig. 8.27).

It is necessary to plot current i,,(¢) and voltage
Uy (t) at the end of the fisrt line against time, as well
as the total voltage and current distribution along

both lines for the time moment # = 0.5/,/v;, which | Z¢, [}, v Zco, by vy
is measured from moment when the wave reaches © O S, O
the point of lines connection. Fig. 827 2 2 3

Solution. 1. Determine the current and voltage of the incident wave:
Uine(t, X1=0) =220 KV ljne(t, X1=0) = wjn/ Zcy = 220-10°/220 = 1000 A.

2. After time ¢, = [,/vi= 0.5 ms has elapsed, the wave reaches the section “2-2”, where
it faces the heterogeneity. The wave is partially absorbed by inductance, partially it’s
reflected, and partially in the form of the refracted wave passes into the second line. In
order to determine the reflected and refracted waves it is necessary to calculate either
current i, or voltage u,, in cross-section “2-2”, further they may be used to obtain
EXPIESSIONS Usefs, Lrefls Urefis Lrefi iy 2

The current i (#) 1s computed by the
equivalent scheme of the line for section
“2-2” (fig. 8.28). We perform the calculation
by the classical method:

i(09) =i(0.)=0, in(t)=i+Ae”,

irefr

Fig. 828 2 2’
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is(t) = 2/ Zoy = 2-220-10°/220 = 2000 A,

3
(0,) = 2u,,, _2-220-10 — 902 4,
Zey+R+Zey 220+180+88

A= (0:) - i,(0,) = 902 — 2000 = — 1098 4;
pLarBéZea) oo 4007 1),
Zey+R+Zy

Thus, ix(?) =2000 — 1098e %" 4.
The voltage ux(?) is found under Kirchhoff’s voltage law:
Un(t) = 2Uine — Zer inn(t) = 440 — 220+ (2 — 1.098¢ ") = 241.6e " kV.
The latter expressions are used to plot uy,(?), ir(?) in fig. 8.29. These expressions are
true for but time interval ¢ <2¢,=2-0.5=1 ms.

pL 7=—1/p=0.248 s = 0.25 ms.

0 02 04 06 02 L0
Fig. 8.29

3. Expressions for the reflected and refracted waves in function of time are found

through the voltage u;,(?).

Reflected wave: Uren(t, 1=0) = tino(t) — e = — 220 + 241.6¢ %7 kV;

ren(t, 11=0) = ttyon/ Zc1 = — 1000 + 1098 7" 4.

irei(t, X3=0) = tpo/ (R + Z) = 901.5e " 4,

Uregi(t, X7=0) = Z* e = 88-0.9015e 7" = 79.33¢ %7 k.

4. In order to plot the current and voltage distribution along both lines (fig. 8.30), we
rewrite the expressions for the reflected and refracted waves in function of argument
[tr—y1/vi] or [ty—x>/v,]. In the first line there are the incident and reflected waves:
Uren[ts 1] =— 220 +241.6-exp/[—4.027-(0.25 — »,/300)] kV,
Ireif 1, y1] =— 1000 + 1098-exp/—4.027-(0.25 — »,/300)] 4,

In the second line there is only a refracted wave:

Uit X2 = 79.33-exp[—4.027-(0.25 — x,/150)] kV,
Ireil 1y, Xof =901.5-exp/—4.027-(0.25 — x,/150)] A, X2 Svyty=37.5 km.

Let’s tabulate the results of the calculation of the current and voltage values for both

lines. See table 8.2.

Refractred wave:

yi <vit;=175 km.

Table 8.2

V1, km Uyefls kV ireﬂ, A X2, km Upefis kV ireﬁ, A
75 +21.65 +98.4 37.5 79.33 901.5
60 —22.42 —101.9 30.0 64.86 737.1
45 —58.46 —265.7 22.5 53.03 602.7
30 —87.92 —399.6 15.0 43.36 492.8
15 -112.0 —509.1 0 28.99 329.4
0 —131.7 —598.6 --- --- ---
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Fig. 8.30
See «Albumy
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8-39 (8.46). The incident wave with a inc o) 3
rectangular voltage front u;,. =220 kV moves J
1

along an overhead line with parameters
Zc1 =220 Ohm, 1, =150 km, v, =300-10° km/s.

It passes through the elements R =180 Ohm, 1 Zq, [, vi Zco, by vy
L=30mH into the cable with parameters O O O 0o
Zc2=88 Ohm, L=T75km, v,=150-10"km/s, Fig 8.31 2 2' 3

the cable end is opened (fig. 8.31).
It is required: to plot current i,,(2) and voltage u,,(?) at the end of the fisrt line against
time, as well as the total volltage and current distribution along both lines for the time
moment = 0.25 ms, which is measured from the moment when the wave reaches the
point of lines connection.
Explanations. In order to differentiate the points of R,L-section belonging to both
lines, they are marked at the scheme as 2-2 and 2'-2'.
Answers: (1) =93.17 + 104.83¢ * kV, in(t) = 1576. — 476.¢ " 4;
Urep[t5; y1] =—126.8 + 104.8exp[— 8-(0.25 — y1/300)] £V,
ire/l[tf; y1] =-576.5+ 4765€Xp[— 8(025 —y1/300)] A, B4 Svitr= 75 km.
In the 2™ line there is but the refracted wave:
Urefi 17 Xof = 93.18 — 93.18exp[— 8-(0.25 — x,/150)] kV,
Ireif 17 X2/ = 1059 — 1059exp/— 8-(0.25 — x,/150)] A4, Xy <vyte=37.5 km.
The diagrams are in fig. 8.32.

Z
iine (%) el ine (¥20( N
iren 9 ! urefl(9 S~
el \ et N\
. Fig. 8.32
150 -100 50 0 50 -150 -100 -50 0 50
X X
1 2 2! 3 in 2 Lrefi

Zct, 11, vy

2uinc U2 | e C Urefr

Fig. 833 _L_ o Fig. 8.34 .2

Ey

8-40 (8.47). An overhead line with parameters v,= 300-10° km/s, [,=150 km,
Zc1 =400 Ohm is connected with another overhead line v, = 300-10° km/s, I, = 150 km,
Zc =250 Ohm through the elements R = 150 Ohm, C =2 uF, they are connected to an
ideal voltage source Ey= 110 kV (fig. 8.33). It is required to plot the voltage u and
current i distribution along both lines for the time moment #=0.4 ms, which is
measured from the moment when the wave reaches the point of lines connection.
L;=20 mH.
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Solution. 1. Let’s write down the incident wave parameters:
Uine(t; x=0) = Eg =110 kV,  d;e(t; x=0) = 3,/ Zc1 =110/0.4 =275 A.

2. After the time ¢, = 0.5 ms has elapsed the wave reaches the section 2-2, here it
faces the heterogeneity and it is partially reflected and partially passes as a refracted wave
into the second line. Construct the equivalent scheme for section 2-2; with the aid of this
scheme, we compute the current i, or the voltage uy, (fig. 8.34) by classical method.
This time, it is easier to find the voltage wu = uc:

u{0)=0, p=-1/;
T:ZCI(R"'ZCZ) -C=4OO'(150+250)
Zoy+R+Zy 400 +150 + 250
R+Zc, 190 150 + 250

Zei+R+Zey " 4001150+ 250

2:10°=0410"s; p=-2500s".

uc(t) = ucs+ A€’ uce= 2. =110 kV,
A=ud0)—uc,=-110;
Finally, we have: uan(t; y=0) = uc(t) = 110 — 110-e > k¥,
: Qe —Upy _220—-110+110e >
lzz(t; y:()) — inc 22 _
Z¢ 0.4

The latter expressions are true over 2¢,., i.e. for the time interval until the waves reach
the ends of their lines, then they are reflected and again reach the section 2-2.

3. Through the expressions of current and voltage at the end of the 1* line, we can
work out the expressions for the reflected and refracted waves:
ureﬂ(t; y1:0) = U — Uipe = — 1 10'6_2500t kV, ireﬂ(t; ylzo) = iinc - i22 =— 275'6_2500t A.

~2500¢
bt 32=0) = Uy _ 110-110e -
R+Zc (150+250)-10

Uregi(t; X3=0) = Zo by = 68.75 — 68.75-¢ " kV.

4. In order to plot the current and voltage in fuction of coordinate, we rewrite the
expressions obtained above as functions of /t,—y/vi] and [t,— x,/v,/:
Uren(V1; ) =— 110-exp[—2.5:(0.4 — »1/300)] kV, 0 <y, <vit,=120 km,
ireﬂ(yl; ff) =-275 '€Xp[— 2.5 (04 —y1/300)]A,
Upefi(X23 ty) = 68.75 — 68.75-exp[— 2.5:(0.4 — x,/300)] kV, 0 <x, <v,t,= 120 km,
Irefi(X25 ) = 275 — 275 exp[— 2.5-(0.4 — x,/300)/ A.

Calculation results are tabulated in the table 8.3. The diagrams are performed in fig.
8.35.

=275 +275-¢ P% 4,

=275-275-¢ 2" 4,

Table 8.3
V1, X2, km Uyefls kV ireﬂa A Uyefiy kV ireﬁ, A
120 —-110 —275 0 0
90 —85.67 -214.2 15.2 60.83
60 —66.72 —-166.8 27.05 108.2
30 -51.96 -129.9 36.25 145.1
0 —40.47 —101.2 43.46 173.8
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8-41 (8.48). The incident wave U, =220 kV with a rectangular front moves along the
overhead line fig. 8.36,a with parameters Z-= 220 Ohm, =200 km. It passes through

U= Uipc + Ureft

&0 100 150

|3
!
! x
s
50 100 150

[

i iinca irefra A

2004 |2 174 A E
| 5
i . |
200 ﬁ v,
1001 . I
| 4] M
¥, 150 100 S0 O s0 4o 150
2|:u:|-l brep, 4 |2 E
i [ i
100 l I s
T 1 LI | t T T -
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—Z00 | |
000 2754 | i3
i, A
good ©
| = |2
500 i |
i 1376 4
S0 Vi ; 174A|
2001 Vs |
s 100 L X
o i 1' il T
J;': 450 100 50 O S0 100 180
Fig.835 | 17 tme T len

the elements r=440 Ohm, C=0.455 uF into the next identical overhead line.

It is required: 1) to plot the current and voltage at the end of the 1*' line in function of
time; 2) to plot the total voltage and current distribution along both lines for the time
moment #,= 0.5 ms, which is measured from the moment when the wave reaches the
point of lines connection.

O

mnc )
1 —c
r
1’ ZC) Z,V ZCa Z,V 3!
(o, O
X

a)

b)

2uinc

2 I refi

Fig. 8.36
Answers: 1) scheme to determine i,(2) and uy(?) is presented in fig. 8.36,b,
ir(t) = 1000 + 200-e *°" 4, wuyy(t) =220 — 44-¢ " kV;
2) oty 1) = — d4-exp[— 4000-(5-10 * —3,/(3-10°))] kV,

iren(t 1) =— 200 exp/—4000-(5-10~* = 1/(3-10°))] 4,

Unei(t, X2) = 220 — 44-exp[— 4000+ (5-10 * — x,/(3-10°))] kV,

et X2) = 1000 — 200-exp/— 4000-(5-10 * —x,/(3:10°))] A4,
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the voltage and current epures are presented in fig. 8.37.
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8-42 (8.49). The incident wave u;,. =220 kV with a rectangular front moves along the
overhead line fig. 8.38 with parameters / = 150 km, Z-= 220 Ohm. It passes by elements
r=150 Ohm, L =20 mH into the next identical overhead line. It is required:
- to plot the current i»,(?) and voltage u,,(2) at the end of the 1* line;
- to plot the total voltage u and current i distribution along both lines for the time
moment ¢ = 0.4 ms, which is measured from the moment when the wave reaches the
point of lines connection.
Answers: (1) = 68.75+ 151.25¢ " kV, in(t) = 1688 — 688¢ 2" 4,

Uren(ty, y1) =—151.3 + 151.3exp/— 8-(0.4 — y,/300)] kV,

Iren(ts y1) = — 688 + 688exp/— 8:(0.4 — y1/300)/ A4, Y1 <vity=120 km;
Urefi(ts X2) = 68.8 + 151.3exp[— 8:(0.4 — x,/300)/ kV,
Irefi(t X2) = 313 + 688exp[— 8:(0.4 — x,/300)/ A4, X Svorty= 120 km.

8-43 (8.50). The incident wave u;,. = 1.2 kV with a rectangular front moves along the
cable line fig. 8.39 with parameters: /=60 km, Z-=80 Ohm. It passes through the
correction element into the next identical cable line. It is required to plot the total

216



voltage u and current i distribution along both lines for the time moment #= 0.3 ms,
which 1s measured from the moment when the wave reaches the point of lines
connection, the correction element being:

a) R=120 Ohm, b)L=5mH, c)C=6.25 uF. n 2t
Solution. Case a): R =120 Ohm.
1. We calculate the incident wave’s parameters Qe U l Zc
Uine(t; x=0) = 1200 V = const,

Iine(t; Xx=0) = u;,./Zc=1200/80 = 15 A = const.
2. If the load is purely resistive, the reflected
wave may be determined through the incident wave with the aid of the reflection

coefficient n. For simplicity, let’s construct the equivalent scheme for section “2-2” (fig.
8.40):

Fig. 840 2

R - R-Z, _120-80 48 Ohm,  n _R-Z, _48-80 005,
R+Z- 120+80 R+Z, 48+80

3. Then the voltage and current of the reflected wave are:
Upen(t; Y1) = MU = — 0.25-1200 = — 300 V' = const,
Lren(t; Y1) = Wige = —0.25:15=—3.75 A = const, Vi<vity=45 km.

4. The voltage and current at the end of the 1*' line are:

U (t) = Uine(t) + tep(t) =900V, irn(t) = ijne(t) — irep(t) = 18.75 A.

5. The voltage and current of the refracted wave are (see the equivalent scheme):
Urei(t; X2) = Uz = 900 V' = const,
Irefi(t; X2) = Upesil Zo = 900/80 = 11.25 A = const, X, Sty =45 km.

The voltage and current epures along both lines for case a) are presented in fig. 8.41.

As there is a reactive element the calculation of the reflected wave in cases b) and c)
is performed with the aid of the reflection coefficient in operational form.

[ -7 VA -7 — 8000
Case b): Inu(p) =223 Z(p) =LE2C ;) =2(P) = Zc _ ;
p pL+ ZC Z(p)+Z- p+38000

~1.2-10° . ~8000¢
I, =np) L. (p) =————; Len(t)=—15+15¢ A,
A(p) = np) Linc(p) o( p+8000) a(t)

Iren(t; y1) =— 15 + 15exp[— 8:(0.3 — »1/150] A4, Vi< vity=45 km,
Upep(t; V1) = Zc lrep(t; y1) = — 1.2 + 1.2exp[— 8:(0.3 — y1/150] kV;

Unn ()= Uine®) + threp(®) = 1.2¢ VKV, ing(8) = iine(t) — irep(?) = 30 — 15> 4;
Urefit; X2) = 1.2exp[— 8:(0.3 —x,/150] kV,

Lrefi(t; X2) = 15exp[— 8-(0.3 —x,/150] A4, X2 < vy ty= 45 km.
ZC _
Case ¢): Imc(p)—— Z(p)= A :n(p)= Z(p)—Zc _ P .
/c Z(p)+Zo p+4000°

re - inc _—. re z _15 AOOOtAa
Lien(p) = n(p) Linc(p) 44000 Iren(t) = —15e

iren(t; 1) =— 15exp/—4:(0.3 —y1/150] A, Y1 <virt=45 km,

Urep(t; V1) = Zc “lrep(t; y1) = — 1.2exp[— 4:(0.3 — y1/150] &V,

u22(t) ulnc(t) +ureﬂ(t) 1.2-1.2e oo KB i22(t) = iinc(t) - ireﬂ(t) =15+ 15@400(»14;
Upeii(t; X3) = 1.2 = 1.2exp[— 4:(0.3 — x,/150] kV,
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Irefi(t; X2) = 15 — 15exp[— 4:(0.3 — x,/150] A4, X2 S vy ty=45 km.

By the way, the problem for case b) or ¢) may be solved by the equivalent scheme as
well similarly to problems 8.38 — 8.42.
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8.2.4. Multiple wave reflections in lines
8-44 (8.52). An overhead zero-loss line (fig. 8.42) of length / and the wave impedance Z
is connected to an ideal EMF source E,. Calculate the transient process and plot the voltage
and current uy,, i1; at the sending end and u,,, i, — at the receiving end of the line for two
cases: R;=47Z. and R, =Z//3. in 1 7

Solution. 1. The load resistance is greater than the \l>1—1C =

line wave impedance R, =4Z.

Perform some subsidiary calculations: H Un | R
47 -7 Ze, Ly

n = -1, I’IQZM: +0.6. < O

0+Zc 4Zc+Zc I Fig. 842 2
Us= Eo, is = E()/(4ZC) = 02510,
Utine = Eo, i1ine = Eo/Zc = I.
The subsequent calculations are tabulated in table 8.4, which is used for plotting (fig.
8.43).

From table 8.4 and graphs fig. 8.43, it follows the transient process has oscillatory
character because the reflection coefficients at the line befinning and end are of different
sign (n;=-1 and n,=+0.6). In this case the transient process lasts for 14-15 wave
triavels, 1.e. 1, = 15¢4,,.
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Table 8.4

No Time ) o .
interval U i Wave 1n line Uy in
1 0 +1[/V EO 10 Uline = E() — 0 0
2 1+21/v E() I() — Ulpef1 = 06E0 1,6E() 0,410
3 2+31/v Eo —0.2[0 Uoine = —06E0 — 1,6E0 0,4[0
4 3+4l/v Eo —0.2]() < Uppeft = —036E0 O,64E0 0,1610
5 4+5[/v Ey, |10.52], Usjne= 10.36E) — 0,64E, 0,161,
6 5+6l/v Ey, |10.52], — uz,en= 0.216E) 1,22E, 0,304/,
7 6=71/v E() 009]0 Usine = —0216E0 - 1,22E0 0,304]0
15" travel Usine= [0.6]" 1410 = —0.028 Ey = 2.8%u,
17" travel Uoine = [<0.61% 11 = T0.0168Ey = 1.68%u,
F Ly hiiz
En Eod{— =1 - i
t Iu t
0 2 & e;vh 0 a 8 Ery
4 4]
ID Iq I.:.- 2
0,510 i 0.5 1oy i
i P e o 2 4 & e
Fig. 8.43
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En Epjm— - ——— — — -
o 5
t Us Lt
0 z & eﬁ 0 R TR L
F 1.:-1 l-s 4 52
e EL:I'———_——I:I—; -
NEE AR EE % o a6 el
Fig. 8.44

2. The load resistance is less than the line wave impedance R, = Z/3.
Perform analogous subsidiary calculations:

Us= EO:

is: EO/(033ZC) = 3]09 Uline = EO;
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Iine = Eo/Zc = 1,




nl:O—ZC:_ n220'33ZC_ZC=—0.5.
0+Z, 0.33Z-+Z,
Subsequent calculations are tabulated in table 8.5, which is used for plotting (fig.
8.44).
Table 8.5
No iI;l‘;(larfveal Uy in Wave in line U i
1 0=1lv E) 1y Uiine= Lo — 0 0
2 1210y E() I() — Ulpef = — 05E0 O,SE() 1,510
3 231y E 21 Ujne=10.5E) — 0,5E, 1,51,
4 3+41/v Ey 21, — Uy, o= — 0.25E) 0,75E, 2,251,
5 451y Ey | 2,51, U3jne=10.25E) — 0,75E, 2,251,
6 5+6[/v Eo 2,5[0 — U3peff — — 0. 125E0 0,875E0 2,625[0
7 671y Ey | 2,751y | u4i.=10.125Ey— | 0,875Ey| 2,625,
11" travel Ugine = [11-12] U= 0.031 Eg= 3.13%u,
12" travel Ueren = Mo (111151 U1 i = 1.56%01,

If the reflection coefficients are of the same sign (n;,=—1 and n,=-0.5) the transient
process is of an aperiodic nature. In this case the transient process lasts for 11-12 wave
travels, 1.e. #, = 12t,.

8-45 (8.54). An overhead line (/=300 km, Z-=200 Ohm) connected to a generator
(E=100 kV, ry= 50 Ohm) has been carrying the load R, =950 Ohm for a long time. The
load changes when the resistance R,= 111.8 Ohm is connected in parallel to the
resistance R;. Plot the time dependencies of the current and voltage in section 4-4 at the
line centre.

Solution. For illustrative purposes, let’s draw the initial scheme and work out a scheme
to determine the parameters of the arising reverse wave (fig. 8.45,a and b).

a) b) 2

o 4 o \%
1 A 2 Lrevl
ZC [] Upeyl [] R 1

Fig. 8.45 o
The current and voltage along the line before the commutation as well as the voltage
across the switch in the commutation moment are as follows:

3
i) = E _100-10
rp+R, 50+950
Perform some subsidiary calculations:

[

ro

1’ A2

7 7

=100 4, U(t)= Ugp=Ry-I(t) = 950-0.1 = 95 kV.

RR, _950-111.8
R, +R, 950+111.8
- the reflection coefficients at the line beginning and end are:

- the load resistance after commutation is R;=

=100 Ohm,;
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pof0=Ze 50200 o R=Zc _100-200_ o

r0+ZC 50 +200 ' R, +Z, 100+200

- the wave travel durationi1s ¢,=—= s=1 ms;

- steady-state condition in the line after the commutation is:
_E _100-10°
r+R, 50+100

- 5% of the steady-state values of line voltage and current:

5%I;=3334, 5%U;=3.33kV.
The 1% reverse wave is calculated based on the scheme fig. 8.45,b:

=6066.74, U;=R;I;=100-0.6667 =66.67 kV.

P R -95-10° 950 _ eaay
revl — : - : = — . ,
R, + RZc Ri+Zc¢ q1g, 950°200 950+200
R +Z 950 + 200

Upey) = L Trey1 = 200+ (= 0.2833) = — 56.67 k.

The voltage and current of the subsequent arising direct and reverse waves are
calculated under the formulae: iz ;= 11 Tev g Udirg= 11" Urev g3

lrevq+l ny ldzrqa Urey g+1 = N2 Ugir ¢-

We keep on calculating until the voltage and current of the newly arising wave
become less than 5% of the steady-state values. The total voltage and current values in
section A-A are calculated by the formulae:

u=Ut) + 2ue,+ 2ugy; 1=1(t) — Ziye, T 2ig.
It is recommended to perform the calculations in the table form.

Table 8.6
Ne of Time Parameters of arising waves, 4 and | Currentin | Voltage in
travel | interval, kV section A-A" | section A-A'
ms i, A u, kV
1 0+0.5 frevi =—283.3; U1 =—56.67 100 95
1-2 0.5+1.5 igin = 170; ug = 34 383.3 38.33
2-3 1.5+2.5 freva=—56.67; Upp=—11.33 553.3 72.33
3-4 | 2.5+35 igin=34; Ug,=06.8 610 61
4-5 3.5+4.5 brev3=—11.33; Uyp3=-2.27 644 67.8
5-6 | 4.5+5.5 655.3 65.53

By data of table 8.6, we plot u(?), i(t) (fig. 8.46).

8-46 (8.55). Solve problem 8.45 under the condition that the switch opens using the
following numerical data: /=3 km, Zc=20 Ohm,
v=1.5-10" km/s, E=6 kV, ro=2 Ohm, R,=40 Ohm, R,= 10 Ohm.

Answers: [(t)=6004, U)=4.8kV,

Lsy=4804; [[=1429 4, U;=5716 V; n;=-0.818, n,=0.333;

the scheme to calculate the 1* reverse wave is in fig. 8.47;

the current and voltage values of the arising reverse and direct waves are:

lrev=1320;—87.3;23.8; = 6.5 4; o= Zc ler = 6400; — 1746; 476; —130 V;

igir=—262;71.3;—19.5 4, Ugir= Zc g = — 5240; 1426; — 390 V;
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the sequence of the current and voltage values in section 4-4" are:
is.0=600;280; 18; 105.3; 176.6; 152.8; 133.3; 139.8 4;
uq 4 =4800; 11200; 5960; 4214; 5640; 6116; 5726; 5596 V.

i, ANy kV
700
600
500100
400 80—
300 60—
200140
100 =~
200 2 3 4 No,
\ \ \ \ >
0 Fig. 8.46
a) b)
o e
[SW Ldir
R[ [] Rl[] Udirl [] ZC
o1  Fig 8.48 ®

8-47 (8.56). The connection scheme is presented in fig. 8.48,a. The commutation occurs
by disconnecting the switch S. The numerical data: [=75km, Zc=110 Ohm,
v=3-10 km/s, E= 110 kV, ry=6.111 Ohm, R,=440 Ohm, R,= 55 Ohm. Plot the time
dependencies of the current at the line beginning and voltage at the line end.

Answers: Igy=2 kA, I(t)=1.778 kA, U(t)=97.78 kV;, I,=0, U;=0;

n; =0.6, n,=—0.333; the scheme to calculate the 1* direct wave is in fig. 8.48,b;

the current and voltage values of i, ANy ky

the arising reverse and direct
waves are:

igir=-1.6;0.32; —0.064 x4;
ug,=-176; 35.2; —7.04 kV;
Irey=0.533;-0.107 x4,

Uy =158.7;-11.73 KV

the sequence of the total current
and voltage values are:
i=0.178;-0.035; 0.008 k4;
u=297.78; -19.52; 3.95; -3.09 kV;
the diagrams are in fig. 8.49.

Fig. 8.49

100

- - T
200180

-60
100} 40

u I
- 20
0 11 2 3 [4
L 20 g Rp—.




9. NON-LINEAR A-C CIRCUITS
9.1. CIRCUITS WITH INERTIAL NON-LINEAR IMPEDANCES
9-1 (9.34). An incandescent lamp with VAC U(l) (see 7

fig. 9.1) is supplied with the sinusoidal voltage
u(t) = 56.6sin(314t) V. 60—

Determine the effective current and the lamp power. 40 Fig. 9.1 /
Answer: 0.95 4,38 W. /’
9-2 (9.35). A circuit consisting of an incandescent lamp 20 //’

(VAC in fig. 9.1) connected in series with a capacitor L1

xc = 80 Ohm is supplied with sinusoidal voltage
uo(t)=113.1sin(314¢) V. U v

Determine the lamp current and voltage; verify the 80 g -

circuit power balance. 60 2

Solution. The applied voltage U, = 80 V is balanced by a Fig. 9.2 ", /ﬂ

phasor sum of voltages across the lamp U and capacitor 40 .

(I'xc). It means the solution of problem is reduced to / .

graphical solution of the equation system: 20 //-’ :
U=/, ©-1) uuﬁs 56 09 LA
U=\UZ~(I-xc ). (92)

where expression (9.1) is VAC of the incandescent lamp while (9.2) is the circuit
equation under Kirchhoff’s voltage law which is by essence the source VAC with EMF
U, and inner impedance x.

The graphical solution of the system (9.1)-(9.2) is given in fig. 9.2. Line 1 is the lamp
VAC, line 2 is the plot of the 2™ equation of the system. The intersection point sets the
system solution as well as the condition for a non-linear element: U=35V, I=0.9 4.
The phase shift between the source current and voltage is: ¢=—arctg(xc1/U)=-64°.
The source active and reactive powers are: P=UyI-cosp=31.5W, Q=Uylsinp=
=—64.8 VAr. The lamp power is: P= Ul =31.5 W, the capacitor power is: O =—I*'xc =
=—64.8 VAr.

9-3 (9.36). In the statement of problem 9.2 the reactance is replaced by a resistance
r =42 Ohm. Determine the lamp current and voltage; verify the power balance.
Answer: 095 4; 40V; 76 W.

9-4 (9.37). In the statement of problem 9.1, an ideal diod is connected in series with the
lamp. Determine the effective values of the lamp voltage and current as well as its

power.
Answer: 283 V; 0.8 4; 22.6 W.

9.2. CIRCUITS WITH INERTIALESS ELEMENTS

9.2.1. Graphical and analytical calculation methods

9-5 (9.38). Calculate the voltage u(wt) across the non-linear resistor with symmetrical
characteristic u(i) by means of the graphical method, if the circuit current in fig. 9.3
varies under the sinusoidal law i = j(t) = I,sin(wt) = Ssin(wt) A, while the resistor VAC
is set by table 9.1.
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<Y

Table 9.1

u, vV

0] 35

16

46.5

104

197.5

336

i, A

0 1

2

3

4

5

6

i) ”(”l

Fig. 9.3

Expand the curve u(wt) into the Fourie series, using only the

1*" and 3" harmonics. Determine the effective voltage across the
resistance.
Solution. The graphical calculation of the circuit is given in fig. 9.4. The results of the
voltage calculation for different moments wt, (with step 15° for the positive half-wave)
are tabulated in table 9.2. To make the current and voltage comparison more convenient,
the current curve i(wt) is shown in fig. 9.4 as well.

Table 9.2
p 1 2 3 4 5 6 7 8 9 10 | 11 | 12
wt,, deg | 15 | 30 | 45 60 75 90 105 | 120 | 135 | 150 | 165 | 180
u, V 5.8 1284 73.6 {130.4|178.7|197.5|178.7|130.4| 73.6| 284 | 5.8 | 0

The calculated curve u(wt) meets two symmetry conditions, that’s why it does not
contain any direct component, even harmonics and cosines. Finally,

u(owt) = Uy, sinot + Us,, sin3ot + Us,, sinSot + ...,

where Uy, =% Du psin(k-ot,),and n=12 parts for the half-period.
p=1
After substituting with the data from table 9.2, we obtain:
U, =150.7V, Us, =—46.83 V.
With account of the first two items of the Fourie series, we have:
u(owt) = 150.7sin(wt) — 46.83sin(3wt) V.
The effective voltage is

=\/lzu;
np=1

9-6 (9.39). Compute the current of an ideal coil with a ferromagnetic core with the aid
of the graphical method, the coil being connected to a sinusoidal voltage source
u = U,coswt with an effective value U =76.4 V and frequency = 50 cps. WbAC of the
coil for instantaneous values is set by table 9.3.

Table 9.3
¥, Wb 0
i, A 0

U, =J%Z(S.82+28.42+...+5.82+O)=111.6V.
p=1

0.1
0.092

0.15
0.311

0.2
0.737

0.25
1.44

0.3
2.47

0.35
3.15

0.4
59

Expand the non-sinusoidal current i(wt) into the Fourier series, using only the first
two items. Calculate the effective current /.
Answer: i(ot) =2.81sinwt —0.937sin3wt A; 1=2.10 A.

9-7 (9.41). Approximate the VAC of a non-linear resistor given in problem 9.5 (table
9.1) with a polynomial u = a-i + b-i°. Analytically compute the voltage across the
resistor u(wt).

Answer: u=2i+ 1.5, where ifA], u[V]; u=150.6sinot—469sin30t V.
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Fig. 9.4
See «Albumy
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9-8 (9.45). The core cross-section of an ideal coil is S = 10 cm?, the core mean length is
[ =50 ¢m, number of coil turns is w = 100. The magnetization curve of the core material
is set by table 2.10. The core possesses an air gap /, (fig. 9.5,a). Compute and plot
WDAC of the coil @(i) for instantaneous values and for two lengths of the air gap:
[,=0.1 and 0.25 mm.

<10~ wol @ b)
2) @ l e
| e | 12
Cl : - / 1,=0.25 mm
C\E\D la ¥ . / l,=0.1 mm
“ 4 " A I
ik s I
Y e IS ' 4
I
Fig. 9.5 >

0 5 10 15 20 25 A

Solution. Taking the different values of B, we compute the corresponding values
@ =BS, which set the current instantaneous values

= Hala e 11 =B — 8108 A/em, while B/T].

w Ho
The calculation results of WbAC are tabulated in table 9.4, the curve for two lengths
of the air gap (/,;=0.1 mm and [,=0.25 mm) is given in fig. 9.5,b.
Table 9.4

D, mWb 0 02 ] 04 | 0.6 | 0.8 1 1.2 | 1.4 | 1.5 | 1.55]| 1.6

i(l,y), A 0 1029|058 088|122 1.8 |329]7.12|12.2 | 17.7 | 25.8

i(lp), A 0 05 | 1.05] 1.6 | 218 | 3 |4.73 | 88 14 | 19.6 | 27.7

9-9 (9.46). The coil described in problem 9.8 is connected to a sinusoidal voltage source
of effective value U=31V and frequency f=50cps, the core having an air gap
1,=0.25 mm.

Compute the current instantaneous and effective values as well as the coil equivalent
inductance using the analytical approximation of WbAC with expression i = a®”.
Solution. Assume u = U,,cosot, then @ = @, sinwt,

where @mZU’”Z 312 =
ow 314-100

In accordance with the obtained flux value the current value is i = /,,= 8.8 4; on the
ground of these two values, we determine the approximation factor:

a=l’"= 838 =32.07-10% 4/Wb°.

@3 (141074 )
The current instantaneous value at the flux @ = @, sinwt is

14-10 * wb.

3

m
3 1

= a(Dm3sin3 ot ZZ a(Dm3sina)t — Z aCD,,13sin3 ot = 6.6sinwt —2.2sin3wt A.
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The effective currentis ~ 1=4/0.5(12, + 12, ) =+/0.5(6.6% +2.2% )= 4.92 4,

the coil equivalent reactance is X, =g=%= 6.3 Ohm,
. . . _ equ 63 .
equivalent inductance is Legu ———m— 0.02 H

9-10 (9.47). A reactor with a steel core and a linear capacitor of capacity C=30 uF are
connected in series to a sinusoidal current source i = I,,sinwt with frequency f'= 50 cps.

Neglecting the steel loss, the reactor coil resistance and the leakage flux, find the
current amplitude which guarantees the voltage resonance condition in the circuit;
additionally, determine the effective circuit voltage as well as the voltages across a
reactor and a capacitor in the resonance condition.

The relationship between the instantaneous values of the reactor flux linkage and its
current is set by the equation ¥=ai + bi >, where a = 0.4 Wb/A, b=—0.03 Wb/A’, i[A],
YIwb].

Solution. Firstly, determine the limiting value of the reactor current 7, for which the
given approximation of WbAC is true. According to physics, there cannot be any
negative-going part in WbAC ¥(i). That’s why, we determine [, from the condition

d—qj= 0: a+3bl,> =0, from here Imax=\/_ a_| 04
dt 3b 3-0.03

Thus, the required solution is to meet the condition 7, < /,,,,.
For a series resonance loop, in accordance with Kirchhoff’s voltage law

. d¥V 1 ..
u; +uc=u, while uL=7, uc=Efldt.

=2.11 4.

In a steady-state periodical mode if the current is sinusoidal i = I,,sinwt, the voltage is

uc=——"rcosot.
oC
The flux linkage is W=qi+bi’= (a+ %b],,f)sina)z‘ — Vibl, sin3 wt,
then u,= ola + 3Abl,,f)coscoz‘ — Vib-3wl,>cos3 wt.

Due to the voltage resonance u; +uc =0, which is possible only at mains frequency:
u, Y +u V=0, from here, having omitted the multiplier coswt, we obtain

o(a + ¥bl,’) — I_"é: 0.
w

After substituting with numerical data, we obtain a cubic equation
7.0651,” + 106.21,, — 125.6 = 0,
the canonical form of whichis y’+3py+2¢=0: I,”+15.03,—17.78 =0,
here p=5.01, g =—8.89.

The discriminant D = ¢*+ p° =204.8 >0, /D=14.31.
If the discriminant is positive, the canonic equation has one real root, which is found

using Cardan’s formulae yi=u+v, where u=3—g+~+D, v=3}-q-D.
Inourcase u=3/8.89+14.31=2.852, v=3/8.89-14.31.=—1.757.

The required value is 7,,=u +v=1.095 A4.

227



The instantaneous voltages are

across the capacitor at resonance Uc= —I—"é cosot =—116.3coswt V,
0]
across the reactor u;=116.3coswt + 9.28cos3wt V,
at the scheme input u=u;+uc=9.28cos3wt V.
The effective values are: Uc=8225V, U =825V, U=656V.

9-11 (9.50). A non-linear resistor is connected in series with a linear inductance
L =0.1 H. The resistor’s VAC is approximated by a polynomial
u=ai+bi*=2i+1.5i°, where u/V], i/A].
The obtained circuit is supplied with the sinusoidal voltage U =220 V' of frequency
=50 cps.
Calculate the first current harmonic by the describing function method.
Solution. Under Kirchhoff’s voltage law for a series circuit, we have

di
u(i) + L—=U,sinowt.
(i) 7

The required first current harmonic is i=[,sin(wt + y). After substitution, the
equation above takes a form:
alsin(ot + y) + bl sin’ (ot + y) + oLlcos(wt + y) = U,sinot. (9.3)
Furthermore, there is an identity  sin’a = ¥%sina — Vasin3a,
let’s omit the item —V4bl,’sin3(wt+ y), considering it as a negligible calculation
Inaccuracy;
sin(wt + y) = cosy -sinwt + siny -coswt, cos(ot+ y) = cosy -coswt — siny -Sinwt.
Let’s equate the coefficients at sinwt and coswt in the left and right sides of the
equation (9.3) to each other. We get the equation system
(al, + Yabl,? )cosy — wlLl,siny = U,,
{(a[m +%bl,’ )siny + oLl,cosy = 0.
The system with numerical data is
@I, + 1.1251,°)cosy — 31 .4L,siny =311,
{ 21, + 1.1251,})siny + 31.41,cosy =0,
it being solved with the aid of a computer: Im:=1 y:=-1
Given (2-Im+ 1.125-In’)-cos(y) — 31.4-Im-sin(y) = 311
2-Im + 1.125-Im’)-sin(y) + 31.4-Im-cos(y) = 0

Ot =MinErr(l ) o1 5.948
=MinErr(Im, =
v —0.644

Answer: iV =5.948sin(314¢— 0.644) A.

9.2.2. Piecewise-linear approximation method
9-12 (9.55). A half-wave rectifier is applied to charge a low-power accumulator, its
scheme being presented in fig. 9.6,a. It is known that E=57V; wu(t)=10-sin(314¢) V;
r =2 Ohm, the diod is ideal.

Plot the current; determine its average and effective values as well as the maximum
voltage across the diode.
Answer: 0.545 A4, 1.04 4, 15 V; the current plot is in fig. 9.6,b.
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wt
9-13 (9.56). A single-phase half-wave rectifier (fig. 9.7,a) carries the r—L load. Known
are: =10 Ohm, L = 0.1 H, the source voltage is u(z) = 100-sin(314-¢) V.
Plot the current; determine its average and effective values.
Answer: 1.73 4, 2.37 A; the current plot is in fig. 9.7,b.
Note. The moment when the diode is blocking wr,=265° is determined through the

solution of the equation 3.035sin(314+t, — 1.262) +2.892¢ %72 =,

a) 100 b) 9-14 (9.57). A sipgle-phase hglf—
: wave rectifier with a smoothing
NG ; capacitor C =100 uF is loaded
NF 1 ucft) /“ with  resistance = 100 Ohm
40 j \u(t) \L (fig. 9.8,a), the source voltage
z(o)fiocj oL \ | / being u(t) = 100-sin(314-1) V.
0 100 200 300 400 Plot the load voltage uc(?);

determine its average and
effective values.
Answer: 57.1 V, 62.2 V; the voltage plot is in fig. 9.8,b.
Note. o, =r—arctg(wrC)=1.88 rad=107.7°. Moment a;=12.6°=0.22 rad (or t,) is
found from the condition of the diode conducting, when the source voltage and voltage
a;—a, + 271)
wrC '
This transcendental equation can be solved graphically or by a numerical method
(e.g. step-by-step method).

ot, deg

across the capacitor become equal:  U,sin(a;) = U,sin( az)-exp[—

9-15 (9.58). In circuit fig. 9.9,a there are D-C and A-C sources: u(t) = 10-sin(wt) V,
E =15 V. Resistances are: r, =5 Ohm, r, =4 Ohm, r; =2 Ohm. Assume the diode VD to
be ideal; compute the currents.
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Solution. An ideal diode may be in one of two states — conducting or blocking, each
one is presented by the corresponding equivalent scheme, respectively, fig. 9.9,b and
9.9,c.

a)
r
r
u(t)
E
(o,

b Fig.9.9
Compute the circuit fig. 9.9,b by the nodal-pair method. The junction voltage is
Z_'_E IOSin(a)t)Jré

tap = 7 5 4 _ 2 105sin(ot) + 1.316 V.

LIRS S R
h n n
The branch currents are:
i _u—uy 10sinwt—2.105sinwt —1.316
n 5

.Uy, 2.105sinwt +1.316
l3= =

= 1.579sin(wt) — 0.263 A,

= 1.053sin(wt) + 0.658 A4,
r3 2

i =11 —i3=1.579sin(wt) — 0.263 — 1.053sin(wt) — 0.658 = 0.526sin(wt) — 0.921 A.
The angular range of the diode conducting state is determined from the condition the
diode’s current is always positive i3> 0:
1.053sin(wt) + 0.658 > 0; sin(wt) > —0.625;
—38.7° < wt <218.7°.
Perform the computation of circuit fig. 9.9,c, corresponding to the blocking state of
the diode:
. .. u—F 10sinwt-5
I3 = 0, 11 =1= =
n+r 5+4
uyp =u—ry'iy = 10sin(wt) — 5.555sin(wt) +2.778 = 4.445sin(wt) + 2.778 V.
Condition of the diode blocking state — u;, <0 — gives an inequality:
4.445sin(ot) +2.778 <0; sin(owt) <—0.625;  218.7° < ot <321.3°.
1.579sinwt —0.263 Aif 0< ot <218.7 ,
Finally, we have: ii(wt) =| 1.111sinwt —0.556 Aif 218.7 <ot <321.3,

1.579sinwt —0.263 A if 321.3 <wt <360 .

= 1.111sin(wt) — 0.556 A4,

[0.526sinat—0.921 Aif 0<wt <218.7
ir(ot) =| 111 1sinwt —0.556 Aif 218.7 <ot <321.3 ,
0.526sinwt —0.921 Aif 321.3 <ot <360 .
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1.053sinot +0.658 Aif 0<wt <218.7 ,
is(wt) =| 0 if 218.7 <wt<321.3,
1.053sinwt +0.658 A if 321.3 <ot <360 .

9-16 (9.59). Compute the current of the A-C source in the scheme fig. 9.10,a with the
parameters — u(t) = 100-sin(wt) V, E=50V, r=20 Ohm, Ug=10 V. Calculate its effective
value and plot it. Assume the stabilitron is i1deal.

Solution. The problem is solved by the method
of piecewise-linear approximation only for one
period of the alternating voltage. Stabilitron
VAC at the piecewise-linear approximation (so-
called VAC of an ideal stabilitron) is presented
in fig. 9.10,b.

Within the interval 0 < ot < wt,, the stabilitron is conducting owing to the action of
D-C source E, which means it works in the segment 1 of VAC. The circuit equivalent
scheme for this interval has the view fig. 9.11,a. The circuit currents calculated by this
scheme are as follows:

=1 100sinot _ 5o on A, iy =£=§—0= 254, ipp=ip—i=2.5Ssin(wt) A.
r

We determine the interval boundary from the condition the stabilitron is blocking
(iyp(ot) =0): 2.5 —Ssin(wt)) =0; sin(wt)) =0.5; ot; =30°= /6 rad.

In the interval ot, < ot < wt,, stabilitron is blocking (segment 2 of VAC), scheme
takes a view fig. 9.11,b. The required current and voltage across stabilitron are:

;U +E _100sinowt +50 _ 2.5sin(wt) + 1.25 A,
2y 40

uyp=—u+ri=—100-sin(wt) + 50sin(wt) + 25 =— 50sin(wt) + 25 V.
In order to find the interval boundary wt,, we solve the following equations
uyp(wt,) = 0 — condition when the stabilitron is blocking,

uyp(wt,) = — Us — condition when the stabilitron becomes stabilized,
— 50sin(wty) + 25 = 0; sin(wty) =0.5; wt, = 30° or 150°;
— 50sin(wty) +25 =—10; sin(wty) =0.7; ot =44.4° or 135.6°.

Thus, there are different meanings of wt,, and it is necessary to choose the minimal
one. However, the meaning wt,=30° does not satisfy the condition wt, > wt;, that’s
why the meaning wt, = 44.4° = 0.775 rad has to be chosen.

In the interval wt, < ot < wt;, the stabilitron is stabilized (segment 3 of VAC). Work
out the calculation scheme fig. 9.11,c and calculate the current:

231



u—-Ug 100sinot —10 _ Ssin(ot) — 0.5 A, iE:US +E _10+50 _

r 20 r 20
iVD = iE— i=3.5- 5Sll’l((i)t) A.

We determine the interval boundary wf; from condition the stabilitron is blocking
(iyp(ot3) = 0): 3.5 — Ssin(wt;) = 0; sin(wt;) = 0.7, wt; =44.4° or 135.6°. However, the
meaning ot =44.4° has already been passed, that’s why we have to take
ot; =135.6° = 2,366 rad.

In the interval wf; <wt<wt,, the stabilitron is blocking again (scheme fig. 9.11,b).
The required current is i = 2.5sin(wt) + 1.25 A.

The condition of passing onto the segment 1 of VAC: uyp(wty) = 0; wt, =30° or 150°.
As ot,> 135.6°, the interval boundary is wty = 150° = 57/6 rad.

Starting from the moment ¢ = wt, and up to the period end wts = 360°, the scheme
fig. 9.11,a works again. Here i(wt) = Ssin(wt) A.

34,

1=

Ssinot A if 0<wt<Lot =30 :%rad,

25sinwt +1.254 if oty <ot<ot,=44.4 =0.775rad,

Thus, i(wt) =| Ssinot —0.5 A4 if ot, <ot<wot; =135.6 =2.366rad,

2.5sinwt+1.25 4 if ot; <ot <owt, =150 :%md,

| Ssinot A if oty <wot<360 =2rrad.
Current i(wt) is plotted in fig. 9.12.

LY
4 /r‘ '1\1'(0)1)
2|/ )

3 Q8 180 ot

: ; -
0 wt 60 90 120 oty 210 240 270 300 330 deg
—2 \\ //
—4 N\ /

\-/

6 Fig. 9.12

The current effective value may be calculated under the formula
1 2w 5
I=|— | i(ot) dot .
\/ 7 g (wt)

As the diagram i(wt) is symmetrical concerning the vertical axes drawn at of = 'arr

and ot =37ﬂ , the integration may be performed for but the half-period:
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137r/2
I=|— [ i(ot)*dot=3.36 A.
T r/2

a) b)
mAA I

Is=100

Uy

o
Fig.9.13 0 Us=50 V
9-17 (9.60). Plot the current through a load ;=5 kOhm (fig. 9.13,a) in a circuit with the
diode tube, its VAC being approximated by the segments fig. 9.13,b. Circuit is supplied
with the voltage u =320sinct V; r=1kOhm.
Solution. Let’s consider the interval wt(0 ... wt;), here u > 0 and the diode works in the
slopping segment of VAC in the current range i;(0 ... Ig). While working within this

range, the diode may be presented by linear resistance rdl-f=ﬁ=&= 500 Ohm
S
(scheme fig. 9.14,a).
) U, sinot Tdi .
According to the scheme fig. 9.14,a i=—"m SO df 20sinot mA,
Tair 't Tair 1
r+—
rdl-Jr + 4]
the voltage across diode and load is u;=1i;r;=100sinwt V.
b) c)
i[ r il
‘e | L
U (224
(o, (o,
Fig.9.14
40 A — —16.67+53.33sinwt The diode becomes saturated
/ \\ o at the time moment #,, when the
20 + ~N\ 20sinot current reaches the value Ig,
0 N ‘ while the voltage — value Us:
oty o6\ | 33:33sinot Us = uy(wt,) = 100sinot,,
=20 / / from here
\ / = arcsinﬁ= arcsinﬂ=
~40 N_/ 1 U, 100
0 30 60 90 120150180210240270300330360390 The diode i1s out of the
Fig.9.15 ot, deg saturated state at the moment

ot,= 180° — wt; = 150°.
While the diode i1s in the saturation state, the calculation scheme takes a view
fig. 9.14,b, the load current in interval wt(wt; ... wt,) is
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r +Um sinwt

=—1I =—16.67 + 53.33sinwt mA.

r+r r+r
In the interval wt(7 ... 27) the diode is blocking, the corresponding scheme is in fig.

9.14,c: here §j=Ym SO _ s 3s cineot mA.

r+r
The load current is plotted in fig. 9.15.

9.3. CALCULATION BY CHARACTERISTICS FOR EFFECTIVE VALUES
9-18 (9.65). Two tests are carried out in order to determine the steel-core coil
parameters: 1) with a core: U=100V, f=50cps, I=1.25 A, cosp=0.2; 2) without a
core: U=32V, I=44, P=51.2W. Construct an equivalent scheme, determine its
parameters as well as the steel loss.
Solution. A series equivalent scheme of the real coil
with a ferromagnetic core is given in fig. 9.16.

The results of the test without a core are:

x0=0,r,=0, rW:IL;: 3.2 Ohm, Z=%= 8 Ohm,

Xs=Z% =13 =7.33 Ohm. °©

The results of the test with a core are:
Z=U/I=80 Ohm, R=Zcoso=16 Ohm, ro=R—ry=12.8 Ohm,

xo=VZ% - R* —x5=71.05 Ohm,

Py=ryF=20W or Py=Ulcosp—ryl=20W.

9-19 (9.66). A steel-core coil is supplied from the A-C network, /=150 cps. The
instrument readings are: U=120V, I=4 A, P=280 W, ryp=2.5 Ohm. Determine the
self-induction emf, cos¢, the steel loss. The leakage flux is negligible (xs = 0).
Solution. R :]i;: 17.5 Ohm, ro=R—ry=15 Ohm, Z:%: 30 Ohm,
xo=VZ*—R*=24.4 Ohm, cos¢ =§= 0.583, P,=rol?=240 W,

E=U'=\ry +x5 - I=115V.

9-20 (9.67). The choke current at U=200 V, f=50 cps is equal to 5 4, furthermore,
P=300W, w=600, ryp=60hm, @,=12mWb. Determine the equivalent scheme
parameters as well as the steel loss and copper loss.

Solution. Z=%= 40 Ohm, R =I£2= 12 Ohm, ro=R —ry=6 Ohm,
Py=ry- =150 Wm, Py=ryl'=150W, U'=®,,-4.44/W =160V,

Zy =U7= 32 Ohm, xo=+Z3 —r3 =31.4 Ohm,

x=vZ%* - R*=382Ohm, xs=x—2x,=6.76 Ohm.

Fig. 9.16
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9-21 (9.68). The choke magnetic core is made of steel 242, w=410, ry =15 Ohm,
xs= 10 Ohm. Determine the supply voltage of a choke (f=50cps) to obtain the
magnetic induction B, =1.17T in value inside the core, moreover, S=20 cm?,
y=7.8:10" kglem®. At B,=1.1T H,=300 A/m, Py=1.46 Wikg, Qy=6.5 VArlkg, the
core mass is G = 15.6 kg, £=1.05.

Solution. P, = Py G=228 W, Qu=0yG=101.4 VAr.

The core length is lzgz 1 m.
¥S

Maximum current is 7, :H_ml: 0.732 A, eftective current is [/ . 0.493 A4.

w \/55

The parameters of the series equivalent scheme are

L= 939 0hm,  x, =%= 417.6 Ohm,

ro =

Z=\(ry +1, )% + (x5 +x,)° = 441 Ohm.
The voltage across the chokeis U=Z-1=218 V.

9-22 (9.69). Two tests are carried out with a steel-core coil: with D-C source —
U.=20V, I.=104; with A-C source— f=50c¢ps, U.=100V, I.=5A4, P=100 W.
Determine the steel loss and copper loss, the equivalent scheme parameters, power
factor, loss angle. Neglect the leakage flux (@s = 0).
Solution. = U/I. =2 Ohm, Z:%: 20 Ohm, R =I£2

=4 Ohm,ro=R —ry=2 Ohm,

Xo=VZ?-R*=19.60 Om. Py=ryl>=50W, Py=rypl>=50W,

R 8o "o 2
cosp=—=0.2, loss angle 0= arctg=>= arctg—= arctg——= 5.83°.
¢ Z 8 & by gxo g19.6

9-23 (9.70). The primary winding of a transformer (fig. 9.17) is supplied with the
voltage U, =220V of frequency f= 150 cps. The transformer core is made of the
insulated sheets of steel 1512 with thickness A = 0.5 mm, the thickness of an insulation
layer between sheets is 6 =0.01 mm. The core sizes
are as follows: a=500mm, b=50mm, c =60 mm,
h =600 mm. The number of winding turns is
wy =75, w,=35. The air gap is [, = 0.5 mm. 7

It 1s required to calculate the voltage across the Ul

1

B
T
1
= 0

open secondary winding as well as the primary
current under the condition the leakage flux is 5%
of the main magnetic flux, resistance of the primary
winding being ry = 0.461 Ohm. | T $ brommmoes '
Determine the parameters of both series and
series-parallel equivalent schemes of the coil. b IC )
Solution. Calculate the mean path length of the - -
core [ as well as the steel cross-section S.
[=2-(a+h)=2-(500+600)=2200 mm=2.2 m, - a >

Q
o
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S = b-c'k; where the filling factor is k,= 4 05 _ 0.98;

A+6 0.5+0.01
S=50-60-0.98 = 2941 mm* =2.941-10 m’.
The secondary winding is open and current does not flow through it, so it has no
influence upon the primary current which is calculated by the step-by-step method.
Assume the component of voltage U; compensating EMF of the main magnetic flux
isequal to U =0.96U,=211.2V.
Then the amplitudes of the main magnetic flux and magnetic induction are as follows

' -3

v 2112 423107 b, Bm:cbm:4.23-10
4.44 fiw, 44415075 S 294.107°

The magnetization curve of steel 1512 (table 2.10) gives the maximum value of the
magnetic intensity for B,, = 1.44 T:

H, =14.26 A/cm = 1426 A/m.

Kirchhoff’s voltage law for the magnetic circuit gives H,!+H,, l,=1.,w,

where H,,, = B,,/ 1y — maximal value of the magnetic intensity in the air gap.
The maximum value of the current reactive component is as follows

H,-1+H,, I,

wm

D, = =1.44T.

L=

In order to find its effective value we use the factor & which takes into account the
unsinusoidality of the current curve resulting from the steel saturation. The factor &
dependes on the magnetic induction amplitude and if B,, = 1.44 T'it is equal to &= 1.39.

H,-l B, 1426-2.2 1.44.5-107
—I——-la +

-7
Then [—_° Mo~ _ 139 Am-107"  _ 5668 4.

\/E'Wl \/E'Wl

Active current component is determined through the steel loss, it being calculated

1.3
under the formula Py = piso Bi (%) M,

where py;s0— specific loss (per 1 kg) at the magnetic induction amplitude B,, =1 T and
frequency f= 50 ¢ps; in case of steel 1512 at the sheet thickness A=0.5 mm it is
3.3 Wikg; M — the core mass.

M=gS-I, where g— specific gravity of steel, which is 7.8 g/cm’.

1.3
M=17.8-29.41-220 = 50470 g = 50.47 kg; P, =3.3-1.44> (%) -50.47 = 1436 W.

: : P
The active current component is [, =— _ 1436 _ 6.80 A4
U’ 211.2
The total current is [=/12 + I? =\6.80% + 26.68% = 27.53 A.
. 1 :
The loss angle is o= arctg—+= arctgﬂ= 14.3°.
1 26.68

p
Let’s check correctness of U'. For this in accordance with fig. 9.18, we find the
calculated value of the input voltage
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Uca?c =|I(rw + jxs)+ (_]’|, here we assume U' = U =211.2 V.
Then [=Ie?®" *=2753:¢7"7 4.

Let’s calculate xs. In accordance with the problem task, @g=0.05®, as such
_w @y _0.05-w D, 0.05-75-4.23-107
I V21 V22753

The leakage reactance is xs= w'Ls=942-4.07-10 “*=0.384 Ohm.
Finally, we have ‘
Usate = I(rw + jxg) + U| = |27.53-¢ 777"-(0.461 + j0.384) + 211.2| = 224.8 V.

The calculation error is % -100% =2202_#%24'8 -100% =—2.18 %.

Lg =4.07-10* H.

It allows considering the current calculation to be correct.
Determine the equivalent scheme parameters. For a series scheme (fig. 9.16)

B 1436 89 omm, 2= =212 5 67 Onm,
1> 2753 27.53

Xo=+/z8 =1 =\7.67* —1.89% = 7.43 Ohm.
For a series-parallel scheme (fig. 9.18):

1 : :
gyt 680 o g e 2668
Uu' 2112 Uu' 2112
0 _ L2753 0.13 S
u' 2112
The voltage across the secondary winding is
U2:W2 d—@, however U:W1 d_(p
dt dt
From here, we have
U, =220 =2 2112=986 7. Fig.9.18
w 75

9-24 (9.71). The volt-ampere characteristic of a steel-core choke at frequency /= 50 cps
for effective values is approximated in definite range by the following expression

U, =200]—15I°, where U, [V],I[A],
the choke being connected in series with linear capacitor of capacity 20 uF.

Having neglected the steel loss, the copper loss and the capacitor loss, determine the
current value for the following cases: a) the voltage resonance condition, b) the input
voltage reaches the maximum value while the whole circuit is inductive.

Determine in addition: 1) the minimum capacitance which does not allow reaching
the resonance by varying the source voltage or current; 2) the maximum capacitance
which does not allow using the given approximation to calculate the resonance current.

Answer: a) U, — Ue=2001— 15I° ——1 =0, 1=1.65 4:
2nfC

b) dUL=Uc)_ 40845 = 0, I=0.9524;
dl
1) x(0)=dUL (0) =200 — 45-1* =200 Ohm = x Chi =;=159uF'
L d] Cmax» min 277:fxcmax . 9
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2) Wi _ 2004512 =0, 1=2.11 4, e =x1(2.11) =% (2.11) = 133.3 Ohm,
1
ax =—————=23.89 uF.
277:fmein ’uF

10. TRANSIENT PROCESSES IN NONLINEAR ELECTRIC CIRCUITS
10-1 (10.1). In scheme fig. 10.1, there are a source of <4
sinusoidal current j(¢) =0.5sin(500t+y) 4, two identical '
resistances ro=r=10kOhm and a varicap (voltage
variable capacitor) C(u). The transient process happens
when closing the circuit breaker. The coulomb-volt
characteristic of the varicap is presented in table 10.1.

Table 10.1
qg,mC|0| 01 ]02)|03]04|05]06)|07]08]09 095/ 1
uc, V10| 3 7 11 16 | 20 | 25 | 32 |455| 76 | 143 | 250
It is required to determine using the linearization method how many times the voltage
across the varicap during the hardest transient process exceeds its amplitude in steady-
state condition.
Solution. The circuit , C(u) is at rest before the commutation, that’s why we deal with
zero independent initial conditions ¢(0,) =0, uc(0;)=0.
In a steady-state condition, the circuit state obeys to the equation under Kirchhoff’s
voltage law

Uc

Fig. 10.1

I(r + 1) + ucy=jro.
Assume the following inequality is true iy(¥ + ) » uc, (we will prove it later). Then

i, =10 ;= 0.25sin(500¢ + y) A.
v+ 1"0

The steady-state value of the varicap charge is

qs :Iisdf = 5%35 -cos(500¢ +l//)=—0.5-10_3 -cos(500t +y ) C.

By the data from table 10.1, we plot the varicap CVC (fig. 10.2) and determine the
point A4 of the steady-state condition by the amplitude value of the charge g, = 0.5 mC.
The amplitude value of the varicap voltage corresponding to the obtained point is
U, Cm— 20 V.

Let’s replace the CVC of the varicap with the direct line in accordance with the
linearization method, the direct line passing hrough point 4, its equation is

q = Cu, (10.1)

0.5-1073

where ¢ = dsm =25.107% F=25 uF — varicap capacity in point A.

UCm

1 1
~oC 500-25-107°
i.e. relationship iy(» + ry) » uc is really true.

The circuit transient process is described by the equation
i(r+ry) + uc=jro, (10.2)

=80 Ohm,

The capacitor reactance is  x.
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moreover = f{—z , while from (10.1) wu,= 9 (10.3)
Substituting (10.3) into (10.2), we obtain C(r+ ro)% +q = jCry. (10.4)

t
The solution of (10.4)is g=¢, +¢q, =—0.5-10" - cos(500t +y )+ B-e ©, (10.5)
where 7= C(r+ry) — the circuit time constant;
B — the integration constant, which is determined from the condition ¢(0) = 0.
From (10.5), we obtain B =0.510 "cos(y). Then finally we have
t
g=q, +q,=—0.5-10"2 - cos(500¢t +y )+ 0.5-107 - cos(y )-e ") (10.6)
Analyzing (10.6), we conclude that the hardest transient process is observed at y =0
while the maximum value of charge ¢, during the transient process occurs after the
half-period has passed. From (10.6), we obtain
T
Gar =—0.5-1073 - cos(7 ) +0.5-107 . ¢ “C7+n0) =
T
=0.5-1073 - (14 ¢ S0025107:(10+10)10° ) _ 5 994107 = 0.994 mC,

Using the varicap’s CVC, we find the maximum voltage across the varicap during
transients corresponding to value g,.c:  Ucmax =250 V.

So,  Memax _250_ 155

Uc, 20
Note that in a linear circuit the maximum overvoltage cannot exceed 2.

1.0‘— q, mC

0.8

0.6

04
0.2
Uc, V
L g
0 50 100 150 200 250

Fig. 10.2
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10-2 (10.2). In the scheme fig.10.3 containing a non-linear resistance (NE), the
transient process happens when switching off the 3™ branch. NE characteristic is set by
table 10.2.

Table 10.2
u, V1 0| 9 | 15 |17.5] 19 |20.5|21.8| 23 | 24 | 25 | 26 | 27 | 28
LA 0101]02]03]04/05]06[07]08]09]14] 2 |26

Having approximated the NE characteristic with two
straight line segments, determine the instantaneous current
through NE as well as the voltage across capacitor C. By the
calculation results, plot the time dependences of the required
quantities, if U=100V, r,=5 Ohm, r;=52.9 Ohm, C=200 uF.
Solution. By the data of table 10.2, we plot u«,(i;) (NE VAC),
it being presented in fig. 10.4.

| S|

2.5
U—uc(0+) — i1(0)r,

2.0 U—i3(t)rs

1.5
1.0
0.5
. u, V
. -
Fig. 104 5 10 15 20 25 30

Before the commutation i(z) =0 (capacitor does not allow the direct current
flowing), correspondingly, #(¢,) = i3(t.), that’s why the point (1) of the steady-state
condition before the commutation is determined graphically in accordance with
equation  uy(t) +r3iz(t) = U.

From fig. 10.4, we obtain  iy(z) =i3(t) =14 A, uc(t)=ri3t)=529-1.4=T747V.

At the commutation moment, uc keeps its value in accordance with the second
commutation law, i.e. uc(0,)=74V.

On completing the transients, there are no currents in the circuit because of the capa-
citor; it means the point of the steady-state condition on NE VAC is in the coordinate
origin, while the steady-state value of the voltage across Cis uc,=U=100 V.

At the commutation moment, the operating point (point 2) on NE VAC shifts in
accordance with the expression

U1(0+) + uc(O) + i1(0+)r2= U or M1(0+) + i1(0+)l”2 =26.
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From fig. 10.4, we obtain:  i;(0,) = i{” =0.674;  u,(0,)= u{¥=22.77V.
The operating part of NE VAC is approximated with two straight line segments: 2-3
and 3-0.
The coordinates of point 3 are: i=0.18 4, u”=158 V.
The analytic expressions for segments 2-3 and 3-0 are
u = 13.3 + ilrdifla u = ilrd;‘/Z,
where the differential resistances rgn and 740

(2) _,,(3) (3)
rdifl_ 11(2)_11(3) —067_018—1408 Ohm, rdifz__l'l(?’) _—018_878 Ohm.

In order to compute the transients, let’s generate the circuit differential equations for
post-commutation condition

duc duc

urtuctim="U, Lp=C 7 or u+uc+tCr, .7:(]' (10.7)
When NE operated in segment 2-3 of VAC, the equation (10.7) takes a view
133 +irgntuctimm=U; or uc+C(r,+ rdiﬂ).d;‘_tc =U-13.3. (10.8)
The solution of the equation (10.8) is as follows uc=U—-133+4,e"",
where the root of the characteristic equation is
= ! 1 =-262 s .

(ry+ 741 )C (5+14.08)-200-10°°
We determine the integration constant 4, from the condition that at =0 voltage

uc(0,) =74V, ie. A1=uc(0)-U+133=74-86.7=—-12.7V.
The final solutions for voltage uc and the circuit current i when NE operates in

segment 2-3 are  uc=86.7—12.7-e ** V,
i= “Z‘—C= 20010 % (- 12.7):(- 262) e ***=0.67-¢e > 4.  (10.9)
t
When NE operates in segment 3-0, the equation (10.7) takes a form
duc

llrdlf2+ uc+i1r2: U, or uc+C(r2 +}’dlf2)7—U (1010)
The solution of the equation (10.10) has a view uc= uc,+ A,e”? (=h) (10.11)
where the root of the characteristic equation is
1 1
Py = =539 s,

(rytr42)-C (5+87.8)-200-107°
and #; —time moment, when the point passes from segment 2-3 onto segment 3-0.

Determine #; from a condition that at = ¢, the equation (10.9) has to give the result
=0.18 4, ie. 0.18=0.67-¢7>%"1

In 0.67

from here ¢ =% =5.0-10 " 5=5.0 ms.

We determine the integration constant 4, from the condition that at #=¢ the
equations (10.9) and (10.11) for uc have to give the same result, i.e.
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86.7— 12.7-¢ 2625107 Z 100 + 4,,
Ay =86.7—12.7-¢7 225197 _100=_16.7 V.

The final answers for u¢ and the circuit current i when NE operates in segment 3-0 are
uc=100-16.7-¢>>""1/
du _

from here

i= 200-10%(~ 16.7):(- 53.9)- e >>(171) = 0,18 (") 4. (10.12)
The required plots are constructed under (10.9) and (10.12) with application of
program MathCAD, they being presented in fig. 10.5.

100
80
60 ©\
uC(t) \
[}
i(t)-100 )
TTTT O 40N
[}
\
Y
\
[}
\
20 Y
Fig.10.5 | TTTeeall
0 ------------
0 0.01 0.02 0.03

0.04
10-3 (10.3). Determine the time dependence of the diode current in scheme fig. 10.6

during the transient process, if J=10mA, C=35 puF and the diode VAC is set by
table 10.3. Additionally, find the time ¢, from the condition u(#,) =0.8 V.

Table 10.3
i, m4 0 0.2 0.6 1 2.5 3.4 6 10
u, V 0 0.1 0.2 0.3 0.5 0.6 0.8 1

Solution. Let’s apply the analytical approximation method; that is we express the diode
characteristic by means of parabola i = ku’. By scheme, we have uc= u. In accordance
with the second commutation law, uc(0.)=uc(0)=0. Consequently, the initial
operating point of the diode is u(0.) =0, i(0,)=0 — the coordinate origin. Final

operating point is i;=J =10 mA, u;=1 V. Approximate parabola has to pass through the
final point, i.e.

107 i ulC
==k, k=L =100 g2 2 p ul €l
ug 1 VD ?
After commutation, ic
iCZCﬂ; JZichi:C@Jrkuz; Fig. 10.6
dt dt
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5 du
J—ku® du _Cdu C du C du  Cuy U
¢ a T T ka2 T (T (L
J 1-| — 1-| —
uS uS

Cu, _5:10°-1

N

=0.5-10 " s.
J 10-1073

Let’s mark 7,4, =

Taking into account that I d 5= Arth(x), we obtain

u t . . t
t= requ'Arth{—); u=ugsthl — |; i=ki =i, th*| — |.
U Tequ Tequ

We find ¢ from condition u(t;)=0.8 V- 1 = ToquArth(0.8) = 0.549- 1073 s.

10-4 (10.4). Solve problem 10.3 using the step-by-step method. Compare the newly
obtained result with the solution of problem 10.3.
Solution. The original equation for computation is

C@+i:J or @:i(.f—z').
dt a C

Replacing dt with Af, we obtain the expression for the voltage increment at A-th
. A
interval A uk=é (J— ik-l)-

We assume the current at the beginning of 4-th interval to be equal to the current at
the end of (k—1)-th interval. It allows passing from one interval to the subsequent one.

Assume At. It is recommended to take it in the range (0.1+0.2)7,,. Assume
At=0.17,,=510" 5 =50 us.

The circuit state in the commutation moment is: «(0,) =0, i(0,) = 0.

° e
0}
/" Y, 3
. T
u(t)-10 6

Fig. 10.7

0 02 04 06 08 1 12 14 16 18
t,t,Tq, Tq
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The calcultion results of the transient process under the obtained formulae are given
in table 10.4.

Based on the data in table 10.4 in fig. 10.7 the curves u(?) (curve 1) and i(?) (curve 3)
are drawn with the application of the program MathCAD. The same dependencies
obtained in problem 10.3 (curves 2 and 4, respectively) are also given there.

Table 10.4
k t, ms ir1, mA Auy, V W= +Auy, V ir, mA
0 0 - - 0 0
1 0.05 0 0.1 0.1 0.2
2 0.1 0.2 0.098 0.198 0.58
3 0.15 0.58 0.094 0.292 0.98
4 0.2 0.98 0.09 0.382 1.7
5 0.25 1.7 0.083 0.465 2.2
6 0.3 2.2 0.078 0.543 2.95
7 0.35 2.95 0.071 0.614 3.5
8 0.4 3.5 0.065 0.679 4.1
9 0.45 4.1 0.059 0.738 4.9
10 0.5 4.9 0.051 0.789 5.9
11 0.55 5.9 0.041 0.83 6.5
12 0.6 6.5 0.035 0.865 7
13 0.65 7 0.03 0.895 7.7
14 0.7 7.7 0.023 0.918 8
15 0.75 8 0.02 0.938 8.4
16 0.8 8.4 0.016 0.954 8.9
17 0.85 8.9 0.011 0.965 9.2
18 0.9 9.2 0.008 0.973 9.4
19 0.95 9.4 0.006 0.979 9.6
20 1.0 9.6 0.004 0.983 9.7
21 1.05 9.7 0.002 0.985 9.75
22 1.1 9.75 0.0015 0.9865 9.8
10-5 (10.6). A capacitor with 10
capacity C is charged up to voltage k
U, then it 1is connected to a .
semiconductor diode (fig. 10.8). The
diode VAC is approxinzlately \\ Fig. 10.8
described by equation i = au’. o 6
1. Find the analytical dependence
of the voltage across the diode (or =0 . \
the voltage across the capacitor) on é N\
time. 1
2. Compare it with the equation of 2
the capacitor discharge through the \
constant resistance equal to the . —
0 2.0 ° 410 ° 610 8-10 °




differential resistance of the diode at the beginning of the discharge
Taifp = du/di = 1/(2OCU)
Answers and comments:
C du

i=—Cduldt=ou*; or ———2=dt;
a u
t=£+A=£—£. So, in the first case ul(¢) = v .
au au oU 1+Ual
t ! 2aU
-t

In the second case u2(f)=Ue *=Ue o — 7 € , the capacitor discharges
quicker because in the first case the diode resistance increases with the voltage
decreasing.

For illustrative purposes, graphs ul(¢f) and u2(f) are plotted in fig. 10.8 for the
following values of the quantities: U=10V, a=0.01 A/V?, C=10"°F.

10-6 (10.7). Initially, the switch shunts the current source J =200 mA, then it opens and
the source becomes connected in series with the semiconductor p-n junction
(fig. 10.9,a), the equivalent scheme is approximately presented by capacitance
C =200 pF, connected in parallel with non-linear resistance VAC of which is given in
fig. 10.9,b (Ugr = 0.5 V; rgp=m,-tgB =12 Ohm). Find out the law of voltage variation
across p-n junction when it is in the conducting direction.
Answers and comments: ©(0,)=0; u,= Uy +ryrJ=29V.

The transient process is calculated by the piecewise-linear approximation method. In
the interval 0+,

t .
rar=o, u<Ug, u(z‘)=% [Jdt=10tV; u(t)) = Us, t1=%=0.5'10_9s.
0

In the interval ¢># w(f)=u,+Ae?’"™/, p= LI 417-10°s7",
A=ut) -, =—2.4:  w(t)=2.9— 2.4 H710°(1=05107)
10°tV if 0<t<4,=0.5-10"s,
2.9 2.4e N e sy
The voltage plot u() is presented in fig. 10.9,c.

Finally we have: u(7) {

a) p-npassage | b) v Ay c)
——> i 3 —
il B g u /
J ut) —— | 2
i NE | ‘ Udir /
_____ — 1
Udl’r‘-l t
Fig. 10.9 ' .
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10-7 (10.8). In the circuit fig. 10.10,a U=60V, r;=30 Ohm, r, =20 Ohm, L=0.2 H,
VAC of NE i1s set by table 10.5.

Compute the currents of the circuit transient process.
Answers and comments: the problem is solved by the linearization method. Steady-
state condition before and after the commutation is computed by the method of an
equivalent generator in a graphical manner. The circuit linear section is replaced with an
equivalent generator which has the following parameters before the commutation:

Ut)=U=60V, reu(t)=r=300hm, Iyt)=U,t)/reu(t)=2A.
For point 1 (fig. 10.10,b): i3(2)=1A4, uyt)=30V.
In the condition after commutation

Ut)=U—2— =24V, rot.)=—22-=120mm, Iyt,)=2 A.
I"l + I"z 7"1 + 7”2
2 v AU ®)
40 T 1 .2
Table 10.5
Us, V0] 18 |30 U 20+ o) E
L, A 1005 1 . !
5 i U()_.". i E ) J
[ 1 | |
Fig. 10.10 0 05 1 15 24
Forpoint2: i3,=0.54, uz,=18 V.
Linear VAC through points 1 and 2: rsair = AulAi = 24 Ohm.
For the calculation scheme fig. 10.11,a:  i3(2) = i3, + A€
nr
Tsdif ¥ ntr
p= —%= —180s ", ;300)=14, A=1i30,)— iz, =0.5.
Thus, i) =05+0.5¢ "4, wuyt)= %= —18¢ " Y.

The other currents and voltages are as follows: uyg(?) is determined graphically with
the aid of the plot i3(z) and NE VAC; wux(t) = uyg + uy; (1) = ua/ra; iy(t) = ir + is.
All the diagrams are presented in fig. 10.11,b.

a) b)

t

Fig. 10.11 e
0 5 10 15 20ms

246



