MINISTRY OF EDUCATION AND SCIENCE, YOUTH AND SPORTS OF
UKRAINE

DONETSK NATIONAL TECHNICAL UNIVERSITY

“Electromechanics and TFEE” Department
“English language” Department

Tutorial
on solving the problems
on theoretical fundamentals of electrical engineering
for students of specialty Electric Systems and Networks

PaccmoTtpeno Ha 3acenanun
kadeapsl «nekrpoMexanuka u TOD»
28 saBaps 2013 r., mpotokon Ne 5

VYr1BepxaeHo Ha 3acenannu Coseta UMC
HouHTY.
[porokon Ne 2 ot 26.02.2013 1.

Pexomen0BaHO Y4YeHBIM COBETOM
JlonHTY xak yueOHoe nocoOue.
IIpotokonm Ne 2 ot 22.03.2013 1.

Per. mHomep 22, O6béM — 19 .11

Donetsk — DonNTU — 2013



VIIK 621.3.01. (075.3)
T33

Tutorial on solving the problems on theoretical fundamentals of -electrical
engineering for students of specialty Electric Systems and Networks — Donetsk:
DonNTU, 2013. — 304p.

This textbook is intended for the foreign students of English Technical Faculty.

The tutorial comprises the problems on all parts of the course TFEE which is
studied by the students of specialty Electric Systems and Networks. Most of the
problems are given with their solution. In essence, this tutorial is the authorized
translation from Ukrainian to English of selected problems from the textbook
“TeopeTHuHl OCHOBU €JIEKTPOTEXHIKH. 30IpHUK 3a/Jay: HaBYAJIbHUW NOCIOHUK /
O.B. Kopomienko, B.®. [lennuk, O.A. XKypaBens Ta iH.; 3a 3ar. pea. O.B. Kopomienka.
— Houenpk: [IBH3 «lonHTVY», 2012. — 673 c.: in.” For every problem in the tutorial,
the number of the corresponding problem from the original textbook is given in
brackets.

CocraBuTenu: A.B. KopouieHko, fo1., K.T.H.
O.U. Kykcuna, ct. mpern.

PenieH3eHThI: B.E. Muxaiinos, j1o11., K.T.H.
O.I'. KaBepuna, pod., 1.11.H.



CONTENTS

1. LINear D=C CITCUILS ....eveiiiiiiiiiiiiieeeiiiee ettt ettt et e e 4
2. Nonlinear electric and magnetic D-C CITCUItS ..........ccevvevviieieeiiiiiiieeeeeeeiiieennn. 33
3. LiNear A-C CITCUILS ..uvviieiiiiieeiiiieeeiiieeeeiieeeesiieeeeeebeeeeetaeeeeabeeeesnnaeeesnnaeesennns 47
4. Three-phase CITCUILS ........uviieeeriiiiieeeeeeciieee e e e eesiateeeeeeseereeeeeeeennrreeeeeeennnnnneeens 75
5. Passive 4-terminal NetWOTKS .........cccciiiiiiiiiiiiiiiiiiieeee e 111
6. Linear circuits at periodical non-sinusoidal voltages and currents ................. 130
7. Transient processes in linear circuits with lumped parameters ....................... 150
8. Electric circuits with distributed parameters ...........cccccveeeeieiiiiieeeriiiiiieeeeee 187
9. NON-INEAr A-C CITCUILS ..uvviieeiiiieeeiiiieeeiite e et ee e et e et e e et ee s sieeeessineeeeeas 223
10. Transient processes in non-linear electric CIFCUILS ..........eeevvvveeiriiieeeinineeens 238
11. Electrostatic fleld ..........cccoeiiiiiiiiiiiiiiiiee et 247
12. Electric field in the conducting mediums .............ccceeevvvieeiieiiiiiiieee e, 276
13. Magnetic field ......cceviiieieeeiee e 279
L AN o] 0 1S) 1 1a b U SUPR 304



1. LINEAR D-C CIRCUITS

1.1. CIRCUIT CALCULATION UNDER OHM’S AND KIRCHHOFF’S LAWS
1-1 (2.1). In circuit fig. 1.1,a, determine currents for
two positions of switch S, moreover R;=4 Ohm,
R2= 1 Ohm, R3 =2 Ohm, R4 =6 Ohm, R5 =6 Ohm,
U=36V.
Solution. 1. Assume the positive directions of currents
(fig. 1.1,a). Perform the circuit calculation at opened
switch S. Resistors R, and R; are connected in series;
let’s substitute them by an equivalent resistor Rj;:

R23=R2+R3= 1+2=3Ohm.

Equivalent scheme is in fig. 1.1,b. Resistors R,; and
R4 are connected in parallel, let’s substitute them by an
equivalent resistor Rysq:

R234 = R23'R4/(R23 + R4) = 36/(3+6) =2 Ohm.
We have a circuit with series connection of resistors
R1-R»34-Rs. Input resistance of the obtained circuit is:
Rinp:Rl +R234+R5=4+2+6: 12 Ohm.
Input current under Ohm’s law:
Iy =1s=U/R;,=36/12=3 A.

Other currents are determined under the rule of
dispersion of currents into parallel branches:

12 = 13 = I]'R4/(R23 + R4) =3.6/9=2 A,
14 :[1'R23/(R23+ R4) =3.3/9=1A.

2. Perform the circuit calculation at closed switch S
(fig. 1.2,a).

Let’s enumerate the points with different potentials
(see fig. 1.2,a), construct the scheme in a convenient
form (fig. 1.2,b). Two nodes are marked with figure
«3», because they are connected through jump lead and
they have the same potential. Resistors R; and Rs are
connected in parallel, that’s why

R35 = R3'R5/(R3 + Rs) = 26/(2 + 6) =1.5 Ohm.

New resistance Rss 1s connected in series with Ry:

R354 = R35 + R4 =1.5+6=7.5 Ohm.

Then we adopt the parallel connection Rjs4||R5:

R3542 =R354R2/(R354 +R2) =17.5 1/(75 + 1) = 0.882 Ohm.

Circuit input resistance:

Rinp = R1 + R3542 =4+ (0.882 =4.882 Ohm.
Let’s calculate the currents: /; = U/R,,, = 36/4.882 = 7.374 A;
]2 = 11'R354/(R354 + Rz) =7.374-7.5/8.5 = 6.506 A,
I, =11-Ry/(R3s4 + Ry) = 7.374-1/8.5 =0.868 4;
Is=14Rs3/(R; + Rs)= 0.868-2/(2+6)=0217 A; =1s—1,=0.217 —0.868 =— 0.651 A.

1-2 (2.2). Node potentials of a circuit part fig. 1.3 are measured with a voltmeter /" and
are equal to:p, =— 15V, @, =52V, p;=64V.
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With the aid of Ohm’s law and Kirchhoff’s current
law, determine all the currents shown in fig. 1.3 if
R, =5 Ohm, R, =10 Ohm, R;=12 Ohm, E, =80V,
E;=70V.

Solution. In accordance with Ohm’s law in
generalized form, let’s calculate:

L=(p,— @, +E)/R =(-15-52+80)/5=2.6 4,
L= (03— @))/R,=(64—-52)/10=1.2 4,

L=(p,— @3t E3)/R;=(—15-64 +70)/12 =-0.75 A.

Under Kirchhoff’s current law we determine the
other currents:

Li=—(+5)=—2.6-0.75)=-1.85 4; o]
Ii=1+L,=26+12=3.84; a
Is=L—-L=-0.75-12=-1.95A.

1-3(2.3). For a scheme fig. 1.4, determine O
equivalent resistances between terminals a and b,
cand d, d andf, if R, =6 Ohm, Ry =5 Ohm, Ry =15 Ohm, R,=30 Ohm, Rs= 6 Ohm.

-1
Answers: Ry= (R4_1 + R5_1 +(Ry, + Ry )_1) =4 Ohm,

R,R
Ry +Rs
Rab: R1+ R.R =12 Ohm, Rcd_
Ry + R, + 43 R, + Ry +
R, + Rs

1-4 (2.4). Determine the circuit resistance between the
points a and b at opened and at closed switch S (fig. 1.5)
1fR1 :Rz :R3 :R4:R5 :R6:R7 =10 Ohm.
Answer: at opened switch—  12.1 Ohm,

at closed one — 8.33 Ohm.

1-5 (2.5). Determine the resistance of each presented
circuit fig. 1.6 between terminals 1-1" at no-load

a)

120
I 160 40 2
Fig. 1.6 o—=& °

condition (points 2 and 2’ are insulated) and short-circuit condition (points 2 and 2" are
joined). Resistances in Ohms are given in the scheme.

Answers: a) Rip=120 Ohm, R;s=72Ohm; b) R p=200hm, Rs=18 Ohm;
¢) Rio =838 Ohm, R,s=200 Ohm.



1-6 (2,6). Loading characteristic of D-C generator is taken experimentally according to
the scheme fig. 1.7,a, it being shown in fig. 1.7,b. A startup part of the characteristic 1s
described with sufficient accuracy by the direct line equation U =110 —0.25-1, where
urvy, I[A].

The nominal current of generator is /,,, =40 4, the maximum current protection is
adjusted to 7, = 60 4, the real short-circuit current is Ig= 200 4.

Perform the equivalent schemes of a generator and determine its parameters.

o

J A

Solution. Generator emf £ = Uy =110 V, its inner resistance »;= 0.25 Ohm, calculated
short-circuit current for a working part of the loading characteristic 1is

source £ =110 V and resistance ;= 0.25 Ohm is presented in fig. 1.8,a; a scheme with
parallel connection of the current source and resistance is given in fig. 1.8,b.

In order to obtain the equivalent schemes we work out the equation in accordance
with Kirchhoff’s voltage law [I-r,+ I-r;=E.

1 1
Eﬂ{ ri
3 U 7 J U J Uur I}
r; ]l
Fig. 1.8
Let’s multiply this expression by the circuit current / and obtain
I*r+1%r,=EL (1.1)

In accordance with Joule’s law
I*r=pP - power consumed by load,
I*-r;= AP; — power dissipated in heat form in inner resistance of a generator,
E-I1=P; —power produced by generator (emf source).

Expression (1.1) reflects one of the principal features of an electric circuit: summary
power generated by the energy sources is equal to summary power consumed by the
circuit load. This feature may be formulated in another way: the power balance is true
for any electric circuit.

For a parallel equivalent scheme in accordance with fig. 1.8,b on the ground of
Kirchhoff’s current law, we obtain 7+ [;=J. (1.2)

In this scheme, the voltage U, across terminals of the current source and the voltage
U across resistances are identical. Let’s multiply the obtained expression (1.2) by
U;=U and find out: U-I+ U-I;=U;J.



However, Ohm’s law gives U = [-r,, U = Ir; and we come to the power balance
expression for scheme with the current source: [ 2y + I[P =Pg=Upl. (1.3)

1-7 (2.7). For electric circuit fig. 1.9, the resistances r;= 100 Ohm, r,= 150 Ohm,
r3;=150 Ohm and voltage U= 150 V are given. Calculate the currents at opened switch
S. How much do currents change if the switch is closed?
Solution. At opened switch S the currents are determined
under Ohm’s law:

I;= 0, because the switch is opened;

n 100 r, 150
input current of the parallel connection is found in
accordance with Kirchhoff’s current law /=1L + L+ L5=15+1+0=2.5 A.

Fig. 1.9

At closed switch, the currents are [; :Q:%: 1.5 A — former value,
n
I =g =@= 1.0 A —doesn’t change,
rn 15
L _U_150_ 34
r; 50

Current of the common circuit part changes: [I=1I+5L+L=15+1+3=55A4.

1-8 (2.8). For circuit fig. 1.10, the instruments’ readings are known: voltmeter } reads
120 V, wattmeter W reads 240 W. Resistances are given r;= 16 Ohm, r,=40 Ohm.
Determine the currents, resistance 73, voltage U. Check a power balance.

Solution. Voltmeter /' measures voltage
U,; =120 V across the section with parallel
connection of resistances 7, and r;. Under
Ohm’s law, the current is

Wattmeter = measures the power o
consumed by resistance 73

Py= 132'7”3 = Uy L3,

U,; 120 15
The current through resistance r; in accordance with Kirchhoff’s current law is
]1:]2+]3:3 +2=54.
In accordance with Kirchhoff’s voltage law for a loop r-r,-U, the input circuit
voltage in fig. 1.10 is U=1r +U;s=516+120=200 V.
The generator power is Pg=U-1, =200-5 = 1000 .
Summary consumed power is
S Pe=17r + Ihry + Irs = 5716 + 3240 + 2%:60 = 400 + 360 + 240 = 1000 .
As power balance P =X P is true the problem is solved perfectly.
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1-9(2.9). In scheme fig.1.11 a
current /,= 8 A is measured by an
ammeter of D’Arsonval system.
Some circuit parameters are known:
E1=120V, E4=801/, E5=6I/,
7”221"4:6 Ohm, 7’3=7"5=2 Ohm, re =
=3 Ohm.

Determine the other currents, find
the resistance r;. Construct PC for

outer loop.
Solution. In accordance with Kirchhoff’s voltage law for the right loop, there is

Ey—1y-1y _80-8-6_ 16 4.
]
Under Kirchhoff’s current law for node a, we obtain /5 —Is—1;=0,
for node b Ig+1,— =0,
fromwhere Is=I=5L—-1,=16—-8=28 A.
Under Kirchhoff’s voltage law for the middle loop, there is
]6'7'6 — 12'7"2 + ]5'7"5 + 13'7"3 = —E5, from where
Igrg +1srs + 133+ Es 8-3+8-24+16-2+6
7 6
Under Kirchhoff’s current law for node d, there is
L=L+I=13+8=21A.
Under Kirchhoff’s voltage law for the left loop, there is
E,—1I,r, 120-13-6
I 21
A potential circle is a plot of the loop point potentials against the resistances of the
loop. In an outer loop let’s mark additional points n, m, p so that any element is defined
with two points. Assume potential of a loop point to be equal to zero, for instance
s = 0. Assume the positive direction of loop, for instance in a clock-wise direction, and
calculate potentials of the points next to the point d:

Fig. 1.11

Iyry + I;;rs = E4, from where ;=

=13 4.

Izz

=2 Ohm.

]2'7"2 +[1'I"1 :El, from where ry =

max =104V p




On=0—L1=0-212=-42V, @.=¢@,+E=-42+120="78V;
P,=@0.—Es=78—-6=T721V, O.=0,—Isrs=72-82=56V,
©p=@Q,tLrs=56+86=104V, @,=¢,—E,=104-80=247;
Oa= (pb_16'r6 =24 -83=0.
The maximum potential is max =104 V, minimum potential i1s min =—-42 V, total
resistance of the loop under consideration is
dr=ritrstrytre=2+2+6+3=13 Ohm.
Taking this into account, let’s choose the axes’ scales. A potential circle is presented
in fig. 1.12.

1.2. METHOD OF DIRECT APPLICATION OF KIRCHHOFF’S LAWS

1-10 (2.13). Applying Kirchhoff’s laws, calculate currents in a
scheme fig. 1.13 with parameters: J=34, E=307V, J7
r1=10 Ohm, r,=5 Ohm. r b

Solution. Arbitrarily assumed positive directions of currents GDJ

Iy and I, as well as the voltage across terminals of the current N 1,

source U, are shown in scheme. U; E Vzl::l
1) Circuit analysis: number of nodes — Y =2; branches —

B = 3; branches with unknown current — By= 1. v
Number of equations by Kirchhoff’s current law: b" Fig.1.13
M=Y-1=1;
number of equations by Kirchhoft’s voltage law: Ny =B — N, — Br=1.
2) the equation system is as follows: L+5L—-J=0,
12'1"2—]]']"] =F.
3) after simple transformations we obtain: I+ 15L=3,
{—10-[1 + 5-1,=30.

Solution of the equation system: I,=4 A4, [ =3-L=3-4=-1A4.
4) Under Kirchhoff’s voltage law for loop including U, and r,, we obtain:
UJ_ [2'1”2= 0, UJ= 12'1"22 4.5=20V.
5) Draw the power balance
Urd — E-L =121 + Ly,
20-3 —30-(=1)=1%10 +4*5 or 90 (W) = 10+ 80 (W).
Relative error is 0%, because all calculations are strict without round-ups.

1-11 (2.14). Applying Kirchhoff’s laws, calculate currents in scheme fig. 1.14,a with
parameters: J; =104, E;, =100V, Es=300V, ry;=ry=rs=rs=20 Ohm.
Solution. Arbitrarily assumed positive directions of Uj, I, L, Iy, Is, Is are shown in
scheme. For this scheme: B=15, Y=4.

In accordance with Kirchhoff’s current law the equations for nodes «1», «2», «3»,
respectively, are as follows:

J1_12+]6=O; ]3+I5—J1=O; —[3—[4—[620. (14)

To generate equations under Kirchhoff’s voltage law we use the directed graph of the
electric circuit fig. 1.14,b. Here the following feature of the electric circuit is taken into
account: there is a branch with current source J;, the inner resistance of which is ;= o
and emf is E;=oo. That’s why it is impossible to draw an equation by Kirchhoff’s
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voltage law for a loop with a current source in the form ¥ /-r = X E, because it starts
becoming indefinite: Isrs+Ji-ri=E,+ E; or Isrs+o00=FE,+ o0,

Keep in mind the infinities in different parts of the equation may be joined in the left
part of the equation and their difference gives the finite quantity U,, which follows from
the equation drawn under Kirchhoff’s voltage law for a loop including voltage
U;=-E;+ J,-r; instead of the inner circuit of the current source: Isrs+ U;= E,.

Thus, mentioned above loop is used to determine the voltage U, = E, — Is-rs across
terminals of the current source. Then, to draw the equation system, we use the other
independent loops.

For the loop with branches 3, 4, 5 we obtain ~ I3-r3 — Iyr4— I5r5=0, (1.5)

for the loop with branches 6, 4, 2 Igrs —Iyry=— E¢ + E. (1.6)

The equation system (1.4), (1.5), (1.6) includes 5 equations. Apply a method of
substitution. From equations (1.4): L=J,+ I; Is=J-L L=—L-1I.

Insert them into (1.5) and (1.6): | Li-(r; + r4 +rs) + Igry—Jyrs =0,

{[6-(7”6 +ry) + Iry=—E¢ + Es.
{60-13 +20-1¢ = 200,
20-Is+ 40-15, = - 200.

60 20
Solve the system by Cramer’s method: A =‘20 40‘= 60-40 — 20-20 = 2000.
200 20 1 20
Ay = =200- =200-(40 + 20) = 12000,
—-200 40 -1 40
60 200 60 1
Ag = =200- =200-(— 60 — 20) =— 16000.
20 -200 20 -1
Currents are I3 _ 4 _12000_ 64, I _4 _=16000_
A 2000 A 2000

]2:J1+16:10—8:2A,
142—13—]62—6—(—8)2214,
15 =J1—]3= 10-6=4A.
The voltage across the terminals of the current source is
U=—E,+Irs=—100+420=-20 V.
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Power balance is UJ'Jl + Ez'[z— E6']6 = 132'7"3 + ]42'7"4 + ]52'1"5 + ]62'7"6.
—20-10 + 100-2 — 300-(— 8) = 6°-20 + 2>:20 + 4>-20 + 820,
2400 W =20-(36 + 4 16 + 64) = 20-120 = 2400 W.

Notion. a)
Substitution
method to
reduce the
number of @
equations is
used to prove

the mesh current
method.

1-12 (2.15). Bridge scheme fig. 1.15,a is supplied with energy from a real source having
E=400V, inner resistance r»= 10 Ohm. Resistances of the bridge branches are
r1 =20 Ohm, r, =40 Ohm, ry =60 Ohm, r, =30 Ohm. Bridge is loaded with resistance
rs =30 Ohm.

Calculate currents applying Kirchhoff’s laws.
Solution. Let’s choose positive directions of currents and construct the circuit graph
(fig. 1.15,b). Here branches 3, 4, 5 are the tree ones and branches 1, 2, 0 are the
coupling ones, loops 1-5-3, 2-4-5, 0-3-4 are the main ones.

Number of unknown currents B = 6, number of nodes ¥ =4, number of independent

loops K = 3.
The Kirchhoff’s equation system

Node 1: ((L+1 —1,=0; (1.7)
2: [0—[2 —1420; (18)
3: ]2—15 —]1:0; (19)

LOOp I: < [1‘7"1—15'7"5—13'7'3:0; (110)
II: ]2'72—14'V4+15'V5:0; (111)
I1I: \ 1()'7"() +[3'7‘3 +[4'I"4:E. (112)

In order to reduce the number of equations we use the substitution method: from
(1.7)-(1.9) we express the tree branch currents through the coupling branch currents and
insert them into (1.10)-(1.12). We obtain a system of three equations:

Il'(l"l+I"5+7"3)—]2'7'5—]0'7"3:0, 110']1—30'12—60']0:0,
12'(7”2 + Vg + 7”5) —]1'7"5 —[0'7"4 = 0, or — 30'11"‘ 100]2 — 30[() = O,
]0'(]”“‘7”3 + 7"4) —11'1"3 —12'1"4 =F. — 60]1—3012 + 10010 =400.
By Cramer’s method:
110 -30 -60
A=1-30 100 —30/=10(11-10-10—3-3-6-2 —6-10-6 —3-3-11 — 3-3-10) = 443-10°;
~60 —-30 100
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0 -30 -60
A= 0 100 —30/=400-(30-30 + 60-100) = 276-10*
400 -30 100
110 0 -60
Ay=-30 0 —30/=—400-(—30-110 — 30-60) = 204-10*
—-60 400 100
110 =30 O
Ay=|-30 100 0 |=400-(110-100 —30-30) = 404-10".
—-60 —-30 400
The currents of coupling branches are  [; _4 =M= 6.23 4;
A 443-10°
bzﬁ:gﬁig:4MA;hzﬂzﬁﬁﬂ£=9UA
A 443.10° A 443.10°

The currents of the tree branches are L=1,—1,=9.12-6,23 =2.89 A4;
Li=1—1=9.12-4.605=4.52 A4,
Isi=5L—-1=4605-623=-1.63 A.

5
The power balance is ~ E-ly= Y17 -7, .
k=0
400-9.12 = 9.12%10 + 6.23%-20 + 4.61>-40 + 2.89%-60 + 4.52%-30 + 1.63%:30,
SPs=3648 W, ZXP-=3648 W.
The power balance is true. The problem is solved
correctly.

1-13 (2.18). Determine currents under Kirchhoff’s
laws in the branches of a scheme fig. 1.16 and
verify the power balance, if: £, =120V, E, =60V,
J=4A4,r,=r,=20 Ohm, r;=5 Ohm, ry=15 Ohm.
Answers: [, =24, L=—1A4, =14, I,=5 A4,
P =480 W.
1.3. MESH CURRENT METHOD (LOOP CURRENT METHOD)
1-14 (2.20). For scheme fig. 1.11, it is known: E, =120V, E,=80V, Es=61V,
ri=ry=rs=2 Ohm, ry=ry=6 Ohm, r¢=3 Ohm, 1,=8 A. Find the other currents by
MCM and check up the power balance.
Solution. Let’s present the circuit graph
(fig. 1.17), the branch 4 with known current
being taken as the coupling branch. Then the
loop current 11 starts becoming known:
]IH = ]4 =8 A.
Unknown loop currents are =1, Iy=Is.
Loop equations: Li-(ry +ry) —Isr=E,
{]5'(1”5 + rs + I"6+ I"z) —[1'1"2 +I4'7"3 = —E5.

12



With taking into consideration /,-r; =8-2=16 V, we obtain:
81— 6-15=120,
—6-1,+13-Is=-22,
from where Is=8 4; I, =21 A.
12211—15:21—8:1314; 16:]5:814; 13:I5+[4:8+8:16A.
Equation of the power balance is
Evl— Esls+ Eply=17r + Lors + L + I rg + Isors + I,
120-21 — 6-8 + 80-8 =21%2 + 13%.6 + 16>2 + 8%.6 + 8%.2 + 8%.3,
3112 W=3112 .
Power balance is true. The problem is solved correctly.

1-15 (2.21). The following parameters are given for the scheme in fig. 1.18,a:
Ji=44, E,=160V, E,=100V, Es=120V, Es=60V,
r1 =50 Ohm, r;=40 Ohm, r,=60 Ohm, rs=30 Ohm, rs=20 Ohm.

Calculate currents.

Solution. Assumed current directions are shown in fig. 1.18,a. Keep in mind: there are
two special branches.

The first one contains the current source J;. To work, it demands a single condition:
presence of a path for the current to flow at any circuit transformations or changes as a
result of commutations.

The first branch resistance i1s ry; = r; + r;= 50 + o0 = 00, where r; = o — theoretical
value of inner resistance of idealized energy source termed the current source.

Conductance of this branch is g, = rp =00 =0,

The second scheme branch contains the idealized emf source only with zero inner
resistance rp =0, that’s why the resistance of the second branch is r, =0, and
conductance is g, = rb[1 = o0,

Earlier it was said the branch with the current source has to be the coupling branch,
which is taken into account in the scheme graph fig. 1.18,b.

When applying MCM in the loop equations the items /- appear, r being resistance
of a common branch. So, it is worth adding the branches with ideal emf sources to the
tree branches. Then the product is /- = 0 because » = 0. This is also taken into account
in the circuit graph.

Thus, there are three loop currents, one flows along branches 1-6-5 and equals the
current of source I; =J,=4 A.
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The second loop current I;; = I5 flows along branches 3-2-5-6 and is unknown. The
third loop current Iy =1, flows along branches 4-2-5 and is unknown too. Loop
equations for unknown currents (moreover r, = 0) are:

{IH-(r3 +rs+rg)+ hnrs—Jy(re +rs) =— E,— Es + Eg,
Iy (ry +rs) + Iyprs—Jyrs=—E,— Es.
With numerals:
{ 90-Iy; + 30-Iy; = 40,
30'111 + 90‘]111 =— 100, from here 240]11 = 220, IH =0.917 A, ]III =—1.417 A.
Branch currents are as follows
]3:[1120.917/1, ]4:[111:—1.41714, 12:—111—11112—0.917+ 1.417=0.5 A,
]5 = —IH _IIII +II =—0917+1417+4=4.5 A,
]6 = 11 _IIH =4-0.917=3.083 4.
The voltage across the terminals of the current source is determined by Kirchhoff’s
voltage law for loop 1-4-2: U-Lrs—Iri=E +E,
from here U=E +E,+1i'ry + I;r;=160 + 100 + 4.50 + 0.917-40 = 496.7 V.
Power balance equation is:
UpJi— Ey-Ii + Ey- L+ Es-Is— Eg-lg= 11y + v + Iy + Isors + I 7.
Summary power of sources is:
2P;=496.7-4 -160-4 +100-0.5 + 120-4.5 — 60-3.083 = 1752 W.
Summary power of consumers is:

SPc=4%50+0.917%40 + 1.417%-60 + 4.5-30 + 3.083%-20 = 1798 W.
Average value of powers is:

_ 3P +3ZPc _1752+1798

2P, = = 1755 W.
2 2

Divergence (absolute error) is:
AP=\YP;—2XP,|=|2Pc—2P,|=1798 —1755=23 W.

AP 023100

Relative error of calculations is:  £% = s =1.31%,

Fep
it is appreciably less than allowed 3%. Hence, problem is solved correctly.

1.4. NODE POTENTIAL METHOD (NPM)
1-16 (2.27). Determine currents in problem 1.10 by NPM.

Solution. In scheme fig. 1.13 there are only 2 nodes. Assume ¢, = 0. Junction voltage

for node a takes a form: Q4 (l + ij = J+£.

n n n

With numerals, we obtain goa-(L + l) =3 +£ or ¢.,3 =060,
10 5 10
from here ¢,=20V.

Currents: Il=(p“_¢b_E=20_0_30=—1A,
n 10
=0 _20-0_,,
7 5
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Verification of the solution is realized by Kirchhoff’s current law for node a:
J=1L+1: 3=-1+4. It’s true. Problem is solved correctly.

1-17 (2.28). Calculate currents of the bridge scheme of problem 1.12 by NPM.
Solution. Consider node «2» as reference one, assume ¢, = 0.
For nodes with unknown potentials ¢, @3, @4 let’s draw a system of the junction

equations:

[ 1 1 1 1 1 E
Q| -+ —+—|-Qy—— Q3 —=—,
ronR R i ror
1 1 1 1 1 E
< Q3|+ —+—|=Qr——Qy—=——,
roory p) b r
1 1 1 1 1
Q4| —+—+— —(pl'——(p3 —=0.
\ s n n " r
s
1 1 1 1 400
With numerals —+—+— —— — =,
Y 1 (0 20 6} % %10 10
< ( j 11 _ 400
?¥(10730 740 "0 %0 10
RS U R NS SR
7 30 20 40) ?"20 P40
Or @110 — @36 — @43 =2400,
— @112+ @319 — @043 =—4800,
—@1'6—@3'3+(p4'13:0.
10 -6 -3 2400 -6 -3
Determinants: A=|-12 19 -3|=886; A, =-4800 19 -3|=153600;
-6 -3 13 0 -3 13
10 2400 -3 10 -6 2400
Ay =|-12 —4800 -3/=-120000; A,=|-12 19 —4800=43200.
-6 0 13 -6 -3 0
Node potentials: 0 =ﬁ =M= 1734V,
A 886
(p3_ﬁ_ 120000__135.41/’ —ﬁ=43200—488V
A 886 A 886
Calculate the currents under Ohm’s law in branches of the bridge scheme:
10:g03—gol+E=—135.4—173.4+4OO=9-1214’ I3=ﬂ=173'4=2.89,4,
r 10 ”'3 60
=00 17347488 _ ;o5 [=—8 13545y
i 20 7y 30
[=Pa=s 48871354, 0 =P T8 6y
7"2 40 ”'5 30
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The current values being obtained, they coincide with earlier calculated values by
application of Kirchhoff’s laws.

1-18 (2.29). Calculate currents of problem 1.15 by NPM.
Solution. In the given problem there is a branch Ne2 the resistance of which is r, =0
and conductance g, = w. So, for nodes «1» and «4», which are the end points of branch
No2, junction equations are confluent ones, from them it following ¢4— @ = E,.
Assume for node «1» ¢@;=0,then ¢@,=FE,=100V.
For nodes with unknown potentials, let’s draw a system of the junction equations:

I 1 1 1 E
<P2'(—+—j— Q3 —— Qyp—=J, +—2,

3T Te 3 T
(1 1 1j 1 1 E, Es
(p3. _+_+__(p2.__(p4._—_—__‘
Te Ty T Ts Ty Te T
With numerals and after simplifications, we obtain:
1 1 1 60 100
d—t—= |- pyr—=4+—+— or 33— 32 =380,
P2 (40 20) P30 " 20 40 Pr2m @
1 1 1 1 60 120 100
=t —+— |-y —=———+—, — @3+ @36 =—320,
@3 (20 60 30) P30 720 30 60 P37 ¢

fromhere @;=15V, ¢,=136.7V.

The branch currents of scheme fig. 1.18 are calculated by Ohm’s law:
¢y — @4 _136.7-100 _ 0917 4. 1, _ 3= _15-100 1417 A,

13 =
r3 40 7y 60
— E — O — 7-15-
152% ¢ + 5=15+120=4.5A, ]6=(p2 o3 —Eg _136.7-15 60:3.085A,
s 30 7s 20
I, _P1 =94t £ =0_108+100 U uncertainty which is removed with the aid of
)
Kirchhoff’s current law for node «1», for instance: L=1s—-1,=45-4=0.5A.

The current values being obtained, they coincide with earlier calculated values by
MCM. That’s why the power balance is needless.

1-19 (2.30). Calculate currents in scheme fig. 1.19 by NPM if E, =120V, E,=807,
Js=8A4, r, =20 Ohm, r, =40 Ohm, ry =25 Ohm, ry =15 Ohm, rs = 80 Ohm. Check up
the power balance.

a b
Solution. Assume the positive directions of the Ji J; ">[ I
1 2 Map 3 J.
branch currents 1,, b, L, 1, I;, voltage across U, 5
terminals of the current source U, and voltage U,,. r U s
It is easy to see, in the scheme under study the E,
wire resistances of parts ab and cd are equal to
Zero — ry, = roq = 0, that’s why at any currents in 1 Fs Ts
jump leads ab, dc th g L ¥
jump leads ab, dc theare are not any voltages
across them - Uab = Iab'rab = Udc = Idc'rcd = Oa ¢
Puc. 1.19

16



consequently, @,= @, ®.= ¢@. and the scheme under study has but two different
potentials whose difference is termed junction voltage U,; = ¢, — @4, it being calculated
as particular case of the junction equation for node with unknown potential ¢, at ¢ ,=0:

1 1

Yaa = I I B e T w1
2.8 —+—+ — 4
nor Kt 20 40 25+15

The branch currents are calculated under Ohm’s law:
=—Uad - F| :—40—120_

I =-84,
n 20
]2:E2—Uad=80—4O=1A’ L= U _ 40 — 14
7y 40 ry+r, 25415
Verification is fulfilled using Kirchhoff’s current law
L+L+Js=1: —-8+1+8=1 —1itistrue.

Currents in the jump leads are found under Kirchhoff’s current law:
Iabzll+12=—8+1=—7A, IdC:I3—J5=1—8=—7A.
To draw the power balance, we determine voltage U, across the terminals of the
current source under Kirchhoff’s voltage law:
U)+ L(rs +ry) + Js:rs =0, from here U;=-1-(25+15)-8-80=-680 V.
The power balance equation is:
—Ei-Ii+ Byl — UdJs=1>r + L2 ry+ I (rs + 1) + Js*rs or
— 120-(— 8) + 80-1 — (— 680)-8 = 8220 + 1240 + 1%(25+15) + 8>-80
6480 W= 1280+ 40 + 40 + 5120 = 6480 W.

1.5. EQUIVALENT SIMPLIFICATIONS IN ELECTRIC CIRCUITS
1-20 (2.35). Calculate the currents of the bridge scheme of problem 1.11 (fig. 1.15) by
means of equivalent simplifications.
Solution. Let’s check up the bridge equilibrium condition:
ryr; =40-60 =2400;  r1-r4=20-30 = 600.

Because of r|-r4#r,-r; the bridge is not balanced, all its currents differing from zero.

Let’s substitute A-connection of resistances r,-r4-rs by equivalent Y-connection and
obtain the scheme fig. 1.20:

]/'a: 7'4""5 _ 3030 :90hm,
ry+1rs+r, 30+30+40

]/‘b= 7"4""2 23040212 Ohm’
ry+rs+r, 100

r.= pers 4030 =12 Ohm.

ry+1rs+r, 30+30+40
Input circuit resistance as regard to the
terminals of the emf source is
I”+(r3 +7"a)(7"1 +rc)
v, +n+r,

Vinp = +7"b=
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0+(60+9)(20+12)
60+9+20+12

=1 + 12 =43.86 Ohm.

The input current of the bridge scheme is [y =—=—-—=9.12 4.

Currents of the parallel branches of scheme fig. 1.20 are

B 91999 6034
101

11:]()'
7’3 +I"a +I"1 +I"c

n+r, 32

1221()' 2912m=289 A.

r+r,+n+r.
Voltage Uyz=1;-r.+ 11, =6.23-12+9.12-12=184.2 V.
Let’s come back to the initial scheme and calculate the currents of the A-resistances:

Li=1-5L=912-461=4514, L=5L-1,=461-623=-1.62A4.

a) 7 )
1 D>
]outhIS
s
]3 Uoutszbc
I' o 3
d ¢c2  Fig. 121

1-21 (2.36). Determine currents in scheme fig. 1.21,a with the aid of equivalent
simplifications if the input circuit voltage is U=400 V, resistances are r; =10 Ohm,
ry =60 Ohm, r; =20 Ohm, r, = 100 Ohm, load resistance at the output of the scheme is
rs =50 Ohm.

Calculate the voltage transfer factor £, and the current transfer factor £;.
Solution. Variant 1. Let’s substitute the series-parallel connection of resistances 73, 74, 7's
by equivalent one (fig. 1.21,b) r,.:

Fa= b A5 200+ 109750 53 33 o,
vy + 75 100 + 50
The input scheme resistance is:
Finp =11 + "2 Vac =10 +mz 38.24 Ohm.
vy + 7, 60 +53.33
U.
The input scheme current is: 7, = I, =ﬂ=ﬂ =10.46 A.
Vip 3824
The voltage across the scheme branching fig. 1.21,b is:
U= 112 e~ 10.46.202333 5954,
vy + 7, 113.33
the currents are ]22%2%2 4924, L 2%2%2 5.54 A.
7 60 7, 53.33



The voltage across the right part scheme branching in fig. 1.21,a is

Upe = Upp = I 275 = 55410030 _ 104 6
Ty +rs 1
the currents of parallel branches are /4 _Yse _184.6_ 1.85 4,
r, 100
Is= 1o :—ch _—184'6 =3.694
s 50
U
The voltage transfer factor is ky _Zoup 1846 _ 0.462.
Upp 400
I
The current transfer factor is k; = =ﬂ= 0.353.
1, 1046

Solution. Variant 2. It is convenient to compute a scheme with a single energy source
by method of proportional quantities. First, assume the arbitrary value of current or
voltage of the most remote part from the energy source; in our case we assume a current
Is=10 A. Then with the aid of Kirchhoff’s laws we calculate the input voltage (so
called influence) which creates at the output the current /s (so called circuit reaction)
which is equal to assumed value:

U5 = 15'7"5 =10-50 =500 V,

I4=£=ﬂ:514, ]3=]5+I4:10+5=15A,
r, 100
U= s+ Isrs= 1520+ 500 = 800 V,
U,; 800 _ _ _
L=—%=—=13334, L=L+5L=1333+15=28334,
rn 60
Uy = 111+ Uyg=28.33-10 + 800 = 1083 V.
Proportionality coefficient is determined & :_,:@ =0.369, all above-found
inp

expressions being multiplied by it to obtain sought quantities at the given input voltage
Uyy=400 V. Then [, =1;-k=28.33-0.369 =10.46 4,

L =05k=13.33-0369=4092 4, I =1-k=15-0369 =5.54 A,

1y =1;k=5-0.369 = 1.85 4, Is=15k=10-0.369 =3.69 4,

Uia = Uk =800-0.369 =295.4 V, Us= Uy, = Us'k=500-0.369 =185 V,

and this coincides with answer in variant 1.

1-22 (2.38). Determine currents in the circuit bran-
ches (fig. 1.22) having substituted the resistance
triangle 7,,-rp.~7., by an equivalent star. Numerical
data: E =50V, Ezg=30V, E-=100V,
ry=3.5Ohm, rg=2 Ohm, rc="7T Ohm,

o =6 Ohm, ry.=12 Ohm, r.,=6 Ohm.
Answers: [,=—04 A4, Iz=—44A,
Ic=48A4, 1,=21A4,1,,=-23A4,1,=2.5A.
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1-23 (2.39). Calculate currents in the scheme
fig. 1.23 by the simplification method, verify the

power balance, if: »,=r,=6 Ohm, r;=3 Ohm, rnl| | T4 I's
rs=12 Ohm, rs=4 Ohm, J=06 A. 73
Answers: [,=1A4, L=1A4, =2 A,
ILi=14, Is=3 A. Fig. 1.23

A group of below-presented problems 1-24 —1-27 is typical in courses
“Electromagnetic transient processes in electric networks”, “Electric systems and
networks”, “Relaying” at the computation of the short-circuit currents. However, these
problems are solved by the methods of TFEE. Frequently, these calculations are
performed in relative units with subsequent recalculations of all the quantities with the
aid of their basic values. E,

rl ]
1-24 (2.42). In an electric circuit fig. *@—D—D;
1.24, it is known: E;=1.1; E;=1.08;

7”320.1;7'4:0.2;7"5:1. E2 2 [2 /
Do the following:

. o K2
1. Determine the short-circuit current E
in point K1 (switches S1 and S2 are LR Y
open) as well as the other circuit currents
for the following cases, namely: E )
Q) E\=E,=1; r,=r,=03; B2 Fig. 1.24

b)E1 :E2 = 1, r 20,3; r, = 0,4,

c)E =1, E,=1,05; r=03; rn=04.
2. Determine the short-circuit current in point K2 (switches S1 and S2 are closed) as

well as the other circuit currents, if £, =1; E,=1,05; r,=0,3; r,=0,4.

Solution. 1. In the first case (short-circuit in point K1), the resistor 75 has no influence

and is not accounted for during calculation. £ K1
a) Perform an equivalent simplification — substitution 2o I

of the branches 1-2 by single one (fig. 1.25). Because of a

E,=FE, and r,=r, there occur E,=FE,=1 and Fig. 1.25

Iy = 1/27"1 =0.15.
The required short-circuit current is found under Ohm’s law:
]S = Elz/lf'u =1/0.15 = 6.667.
Currents of the branches 1 and 2:
]1 = 12 = 1/2]5 =3.333.
b) As this time the branch resistances are different while the emf’s are identical, then

En—E =1 and ry=_112 = 0304 _ 41514
n+r, 03+04

Short-circuit current and the branch currents are:
]S = EIZ/r12 =1/0.1714 = 5833,
]1 :El/l"l =1/03= 3333, [2 :Ez/l"z =1/0.4=2.5.
¢) In the last case under consideration, a simplification is performed on the ground of
the formulae of two nodes method:
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gy B/ tEy/r 1/03+105/04_ 0 s 0304

! 037" +0.47" ntr, 03+04
Short-circuit current and the branch currents are:
IS = Elz/l"]z =1.021/0.1714 = 5958,
11 :El/l"l =1/0.3= 3333, 12 :Ez/l"z =1.05/0.4 =2.625.

2. When all the sources of scheme fig. 1.24 X2
are active and there is a short-circuit in point Ex ry a I 13
K2, we again perform a preliminary equivalent
simplification on the ground of two nodes Fig. 1.26
method and obtain a scheme fig. 1.26.

E-n'+Eyry +Ey-ry' +Eg -1y’ _1/0.3+1.05/0.4+1.1/0.1+1.08/02 _
! 037" +047 +0.17" +0.27!

=0.1714.

EZZ

= 1.073;

re=l s e =037 1047 1017 4027 ) = 0.048.
The short-circuit current is: Is=1Is = Ex/(rs+rs)=1.073/(0.048 + 1) = 1.024.
Let’s calculate a potential of point a: ¢, = Isrs = 1.024-1 = 1.024.
The other circuit currents are determined by generalized Ohm’s law:
I, =(E;— @)/ri=(1-1.024)/0.3 =-0.08,
L= (E,— @,)/r;=(1.05-1.024)/0.4 = 0.065,
L= (E;—¢@)/r;= (1.1 -1.024)/0.1 = 0.76,
Iy=(Es— @)/rs=(1.08 —1.024)/0.2 = 0.28.
Verification: I, + L+ L+ 1,=-0.08 + 0.065 + 0.76 + 0.28 = 1.025 = I;.

1-25 (2.43). In a scheme fig. 1.27 it is known: E;=1.1; E;,=1.05; r;=0.1; r,=0.2;
r3=0.8; r,=0.5; rs=0.6; r¢=1.

E

r ry [4

Do the following:

1. Determine the short-circuit current in point K1 as well as the other circuit currents.

2. Determine the short-circuit current in point K2 as well as the other circuit currents.
Solution. Substitute the resistance triangle r3-r4-rs by the equivalent star r,-7-7..:

,o— nets 0.5-0.6 — 0.1579,
rs+r,+rs 0.8+0.5+0.6
]/‘b= ”'3 '7"4 _ 0805 202105,

rs+r,+rs 0.8+0.5+0.6
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y— r3rs 0.8-0.6 09526,
rs+r,+rs 0.8+0.5+0.6

We have obtained the scheme fig. 1.28, it being analogous to scheme fig. 1.24 in
problem 1-24. Its computation is developed under the same principles.

E, 5

| 8 |:|1 I b :l”b
%)
K2
E, v,
o I Fig. 1.28

_E (n+n) +Ey(r,+r,)” _1.1/(0.1+0.2105)+1.05/(0.2+0.2526 )

E
: (ri+n, ) +(ry+r, )" (0.1+0.2105)7" +(0.2+0.2526)7"

= 1.080;

rs :((r1 1) () )‘1 =((o. 1+0.2105)7" +(0.2+0.2526)™" )‘l =0.1842.
1. A short-circuit current in point K1 and the branch currents are:
Isi=Es/(rs+r,)=1.080/(0.1842 + 0.1579) = 3.157,
I, = (E, - Is-r)/(ry + 1) = (1.1 = 3.157-0.1579)/(0.1 + 0.2105) = 1.937,
L= (E,—Isr,)/(r, + 1)) =(1.05-3.157-0.1579)/(0.2 + 0.2526) = 1.218.
Let’s calculate the potentials of points b and c:
op=FE;—I;'r;=1.1-1.937-0.1 =0.9063,
o.=FE,— Lr,=1.05-1.218-0.2 =0.8064.
The other currents of scheme fig. 1.27 are determined under Ohm’s law and
Kirchhoff’s current law: Iz = (¢, — ¢.)/r; = (0.9063 — 0.8064)/0.8 = 0.1249,
ILy=1—-5=1937-0.1249 = 1.812,
Is=05L+15=1218+0.1249 = 1.343.
2. A short-circuit current in point K2 and the branch currents are:
I =FEs/(rs+r,+rs)=1.080/(0.1842 + 0.1579 + 1) = 0.8047,
Iy =(E,— Sy (r,t7e)/(r1 + 1) = (1.1 — 0.8047-(0.1579 + 1))/(0.1 + 0.2105) = 0.5418,
L= (E,— Iy (r,+ 1))/ (ry + 1) = (1.05 - 0.8047-(0.1579 + 1))/(0.2 + 0.2526) = 0.2612.
Let’s calculate the potentials of points b and c:
o, =E;—I;'r;=1.1-0.5418-0.1 = 1.046,
o.=E,— Lr,=1.05-0.2612-0.2 = 0.9978.
The other currents in scheme fig. 1.27 are determined under Ohm’s law and
Kirchhoff’s current law: 15 = (¢, — @.)/r; = (1.046 — 0.9978)/0.8 = 0.0603,
I,=1—1;=0.5418 — 0.0603 = 0.4815,
Is=15L+1,=0.2612+0.0603 =0.3215.
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1-26 (2.44). In a scheme fig. 1.29 it is known: E; =1.1; E;=1.05; r;=0.1; r,=0.2;
=0(0.8; 4, = 1. Determine a short-

c1rcu1t current in point a as well as

the other circuit currents.

Solution. Substitute a resistance

star ri-r3-r4 by an equivalent

triangle 7,p-7pet e

Fa =13+ g+ 31
n
Fig. 1.29
—08+1+ 28 g
0.1
=4t 01108+ 2108 og
Ty
nr 0.1-1

Foa =11+ 1y + = OHHWZIZZS

3

It is possible to imagine two sources instead of a single ideal source E,. As a result,

we have an equivalent scheme fig. 1.30. Now, substitute the branches 2 and bc by single
one. We obtain fig. 1.31:

-1 -1
g =Bt tEyery ! 11/098+1.05/02 oo

ne ! 0.987" +0.27"

C

rase =l T =(0.987 +0.271 = 0.1661.
The currents are calculated by Ohm’s law:
Ly=Ep/(rape + 7)) = 1.058/(0.1661 + 9.8) = 0.1062,
I, =E\/r,=1.1/1.225 = 0.8980.

E, Fig.130

A short-circuit currentis:  Is=1,=1,+ 1;; =0.1062 + 0.8980 = 1.0042.
Determine the currents of schemes fig. 1.30 and 1.29:
L= (Ey — Lyry)/r, = (1.05 - 0.1062-9.8)/0.2 = 0.0462,
L, = (E, — Ly 7)1 = (1.1 —0.1062-9.8)/0.98 = 0.0604,
I, =1 +1;,=0.8980 + 0.0604 = 0.9584.

1-27 (2.45). In an electric circuit fig. 1.32, it is necessary to calculate a short-circuit
current in points K1, K2, K3 as well as the other branch currents. Numerical data are:
E,=1.1; E,= 105 E;=0.8;E,=0.7;r=0.057,=0.1;r3=2;r,=2.5;r5s=0.2;
76=02;1r=04; rg=0.6; r9=0.1; ro= 0.5, ri = 1.
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Figure 1.32. See file “Album”
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Fig. 1.33

Solution. Similarly to problem 1-24, let’s simplify the scheme fig. 1.32 and obtain
scheme fig. 1.33:
- substitute parallel resistors 75 by a single one 73 = Yars = 0.1;
- group of three identical branches E;-r; is presented by an equivalent one E;-r,:
oy = 7"]/3 = 00167,
- the same is done with groups E,-r,, E3-r; and Ey-ry:
g4 = 1/21"3 = 1, ris = 7’4/3 = 08333, e = 1/27"2 =0.05.
1. Let’s deal with the simplifications in scheme fig. 1.33 with the short-circuit in
point K1. The branches r;—(7191716) are substituted by single one Es-ry;:
_Ni(no+ne)_1-(0.54+05) _ 0.3548:
np+no+hne 1+0.5+0.05

B, (rg+ng)  1.05/0.55
(ro+ng) " +r7 0557 +17
The resistance stars rg-r,-(rgtr1s) and rg-r-(rgtrys) are replaced by the equivalent
triangles Vy7-r9-rp0 U r8-11-722, respectively:

r3

Es =0.6774.

Fi7=re+ (rs + 1) +M= 02+06+1 +w= 2.6,

7y 0.4

Fro=rot 81 202+ 044920465

1y +Hhy 0.6+1
ra0 =17+ (rs + r1a) +M: 04+1.6 +M: 5.2,
7s 0.2
rig = rs + (g + rys) + 0 LB TI1S/ (15 ¥0s) 09 4 0.6+ 0.8333 + -2 (0:670.8333) 2.35,
74 0.4
ra=rg+r 0 =02 +04+ 22 0% _g6ssg,
Ky +1s 0.6+ 0.8333
rrp = ra (g + g 48 TT1S) g 44y 4333 4 04°(0.6408333) o

Te 0.2
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Similar to the way used in problem 1-26 (fig. 1.29), we obtain scheme fig. 1.34,
which we keep on simplifying into scheme fig. 1.35.

Es oy I, L 24 725 E6€
r
= Jis Fig. 1.35
E4

Ho+7ry; 0.65+0.6558

-1 -1 -1
_Ey g +Ey oy +Es (3 tn) 0

L 1 ] 1
P tryn t(rs+1)

_0.8/5.2+0.7/4.7+0.6774/(0.3548 +0.1) _
527"+ 477" +0.45487!

=( -1, -l -1 )—1=( -1 -1 —1)—1=
Fos =\l + 13 +(13 +1y) 527 +4.7 +0.4548 0.3840.
Calculate the currents under the schemes fig. 1.33-1.35:
115: El/(l"lz + 7”13): 11/(00167 + 01) = 9426,
117 =E5/r;7=0.8/2.6 = 0.3077,
118 = E4/l/'18 =0.7/235= 02979,
Ly =—E¢/(ryy + 1ry5) =—0.6883/(0.3264 + 0.3840) = — 0.9689,

0.6883;

Lo=Le— 21— (09689 2638  _ 466,
Ho + 7y 0.65+0.6558

by=Le—"19 — 09689 99 _ (4g3.
Ho + 75y 0.65 + 0.6558

L =— (E5+ Iy14)/ry0=— (0.8 —0.9689-0.3264)/5.2 = — 0.0930,
Ly =— (E4 + La1aa)/r2p =—(0.7-0.9689-0.3264)/4.7 = — 0.0816,
Iy =— (Es+ Lyrya)/(r3 +19) =—(0.6774 — 0.9689-0.3264)/(0.3548 + 0.1) =—0.7941,
Qy = — harya—1919=0.9689-0.3264 + 0.7941-0.1 = 0.3957,

26



]11 = (pa/rll =0.3957/1 = 03957,
Lio=— (E» — @)/ (10 + 116) = — (1.05 — 0.3957)/(0.5 + 0.05) = — 1.190,
L, =-"21,=0.5-1.190 = 0.595,
Iy =1y—1,7=-0.093 - 0.3077 = - 0.4007,
114 = ]22 _118 =—-0.0816—-0.2979 =— 03795,
Is=— (Es + Iy (rs + ra))lrs = — (0.8 — 0.4007-(0.6 + 1))/0.2 = — 0.7944,
I;=1s—I3=—-0.7944 + 0.4007 = — 0.3937,
Ly =— (Ea+ L (rg + 1is))lrs = — (0.7 — 0.3795-(0.6 + 0.8333))/0,2 = — 0.7803,
Li3=1,—-14,=-0.7803 + 0.3795 = - 0,4008,
I, =15/3=9.426/3 =3.142,
Is=1,5/2=9.426/2 =4.713,
;=132 =-0.4007/2 =—0.2004,
1y=1,4/3=-0.3795/3 =-0,1265,
]]{3 = 2]5 _]6 —]12 =2-4.713 +0.7944 + 0.7803 = 11.0.
Verification: Iy = Iys + 117 + I1gs — [, = 9.426 + 0.3077 + 0.2979 + 0.9689 = 11.

Circuit calculation with the short-circuits in points K2 and K3 is fulfilled in the
way considered above, that’s why let’s only show the necessary schemes and
calculation results.

2. While calculating the scheme with short-circuit in point K2 of fig. 1.33, the
schemes fig. 1.36 and 1.37 are used. For these schemes, we have the following:

ryy = 26, g = 065, o = 52, rig = 235, r = 06558, rpy = 470,
ry3=0.3548, Es=0.6774;

-1 -1 -1
_Eyng +Eyryy +Es (3t 1)

Es = (0.6883,

I R |
P trpn t(rs+rn)

1 .
ras :(”2_01 +r (s + ”9)_1) = 03840, ryy=—19""21 = 03264,
No + 11

-1 -1 -1
_Ey-n; +Eyng +E -(nptns)

E; = 1.0695,

0 |
n7 trhg t(n;+ns3)

(-, 1 -1y
r26—<r17 +ng +(n,+1n3) ) =0.1066.

E Is 713 719
S

ry
Ey  »
17
17

r3

Es
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The schemes fig. 1.33, 1.36, 1.37 give the possibility to calculate the currents:
124: E7/(I"26 + V24) = 2470, 125 =— E6/l"25 =— 17924,
]20 == E_v,/l"zo == 01538, ]22 == E4/7"22 = — 01489, ]9 =— E5/(I"23 + 7’9) == 14894,

119 2124' "1 = 12405, 121 2124' ’/19 = 12295,

Ng * 11 Ng * 131
Iis = (Ey — Larad)/ (ria + ri3) = 2.5175,
]17 = (E3 —124'1"24)/7"17 = - 0,0024, [18 = (E4 —124'1"24)/7"18 = — 00452,
Oy =—19'I"9: 01489, 111 = gDa/l"ll = 01489,
110 =— (Ez — gDa)/(I"lo + I"16) =— 16384, 12 =— 1/2]10 = 08192,
Ig :120 —117 = — 01514, 114 = 122 _118 = — 01037,

Fig. 1.37
]7 = (E3 + [8'(r8+ 1’14))/7"7 = 13944, 16 = 17 + Ig = 1243,
]13 = (E4 +]14'(I"8+ 1’15))/1"7 = 13784, ]12 :113 +114 = 12747,
I, =153=0.8392, I5=15/2=1.2788,
13 = ]8/2 = — 00757, ]4 = 114/3 = — 00346,
[S2 = 17 + 113 —[9 =4.2622.

3. While calculating the scheme with short-circuit in point K3 of fig. 1.33, the
schemes fig. 1.38-1.41 are used. For these schemes, we have the following:
E,

9

ry ry3

ryy = 26, g = 065, o = 52, rig = 235, rp = 06558, rpy = 4.70.
Ey-rg +Ey-rig + By -(rp+713)”

o * 1”
roy =—2 2L = 03264, E;= — —
Ng + 1y n7 trng t(ny+nsz)

a0, - s
26 =(r171 +V181 +(ny +n3) 1) =0.1066,
_E3 g +Eyry +E7 (1 +156)

. |
Fo t 1 +(1hy +1)

=1.0695,

E = 1.0214,
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_( 1, Yy
127 =\l + 13y +(Fhy +15) ) =0.3684,

-1
. -1
Fo= 28 0N E10) 6056, 1y = (s} + (g +15)7) "= 03190,

] _
ny (g +19)

E;

26 124

o>

Vo

Fig. 1.41

The schemes fig. 1.33, 1.38-1.41 give the possibility to calculate the currents:
11(): Eg/(l”zg + 7"10)2 08493, 116 =E2/I"16 = 21,

[O% :Il()'l"l(): 04247, 111 = %/”11 = 04247, ]9 = Il()+]11 = 1274,
Op = Qg +]9'I"9: 05521, 124 = (E7 — (pb)/(r26 + 1’24) = 11949,
120 =— (E3 — ng)/l"zo =— 00477, 122 =— (E4 — (pb)/l"zz =— 00315,
Ly = hy—2—=0.6001, I = Ly — 19— =0.5948,

Mg + 1721 Ng + 72
(Pd = (pb + ]24‘7'24: 09421, 115 = (El — (pd)/(l"lz + 7’13) = 1353,
117 = (E3 — ng)/l"n = — 00547, ]18 = (E4 — (Pd)/l”lg = — 0,1030,
Ig 2120 —117 = 0007, 114 2122 _118 = 00715,

]7 = (E3 + [g'(l"g"‘ 7"14) — (pb)/l”7 = 06478, [6 = ]7 + ]8 = 06548,
]13 = (E4 + 114'(I”g+ 1’15) — (Db)/l"7 = 06260, 112 = ]13 + ]14 = 06975,
[1 2115/3 = 0451, ]5 = 115/2 = 06765,

;=132 =0.0035, I,=1,4/3=0.0238,

]2 :]16/2 = 105, 153 = 116 +110 =21.8493.
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1.6. EQUIVALENT GENERATOR METHOD

1-28 (2.46). Determine current /, in the scheme fig. 1.18,a (problem 1-15) by the
equivalent generator method.

Solution. Firstly, we disjoin branch with resistance 74 and obtain the no-load condition
of the equivalent generator as regards to the terminals «3» and «4», it being shown in
fig. 1.42,a. In fig. 1.42,b the passive part of the remaining scheme is shown, which is
suitable for calculation of the inner resistance of the equivalent generator.

Under Kirchhoff’s voltage law for the bottom loop of the scheme fig. 1.42,a, we
have: U,=—E,—Es+ I, -rs.
Current /5, may be calculated by the mesh current method
Is, -(rs +r3+re) — Jyrs=Es+ E, — Eg,

from here I, =120+100_60+4'40= 3.556 A,

30+40+20
and »=—100—-120+ 3.556:30 =—113.3 V.
In accordance with the scheme fig. 1.42,b, the input resistance concerning terminals
«3» and «4» is

34inp — Tequ r+rg+rs  40+20+30
U, -1133_

2= =—1.417 4,
Vogu T 14 20+ 60

=20 Ohm.

Required current is /, =

which coincides with the above-obtained result.

30



1-29 (2.50). In scheme fig. 1.43, determine the current through resistance r,, if:
E1 =72 I/, E2: 14 V, ry=re=— 10 Ohm, 7"2:25 Ohm, rs :7'5:40 Ohm, 7"4:20 Ohm.
Answers: U,=50V, R;,,=25Ohm, I,=1A.

1-30. Determine the current I, in the bridge diagonal (fig. 1.44), if E=40V,
r1 =80 Ohm, r, =100 Ohm, ry=r¢= 60 Ohm, rs=49,5 Ohm, rs=20 Ohm.
Answers: U,=20V, R;,,=50.5 Ohm, 1,=0.2 A.

1.7. THE SUPERPOSITION METHOD
1-31 (2.51). Determine the branch currents in the
scheme fig. 1.45,if E; =16V,

J=1A4, ri=rn=ry=rys=rs=6 Ohm.
Solution. 1. Assume the positive directions of the
branch currents.

2. Imagine that in the circuit there is only one
acting source of emf E;, (fig. 1.46), determine the
branch currents:

E, 16

I =1'= = =1A4.
r1+r5+—r2-(r4+r3) 6+6+M
Ty +1y+ 1 6+6+6
Current /' is determined under the current disper-
sionrule: Ly =1—%B 112 06674
Ty +13+1 18

Current ;' is determined under Kirchhoff’s

current law
IL'=L=I'-L"=1-0.667=0.333 A.

3. Secondly, imagine that in the circuit there is
only one acting source of current J (fig. 1.47),
determine the branch currents.

To find currents in scheme fig. 1.47, we transform the resistance triangle r,-r3-74
into the equivalent star.Take into account the triangle resistances are identical:

o _. _  nhry _36_ [ L ey S
Vy3 =14 =134 " N " N " 13 2 Ohm. l |

As a result of transformation, there is a scheme

fig. 1.48, from where we find the currents /," and /5'":

Lr=g— At g 20 g5y
Fog Vs + 1oy + 1 2+6+2+6
L'"=J-1"=1-0.5=0.5 A. w Fig. 1.48

From scheme fig. 1.47 according to Kirchhoff’s
voltage law for a loop 7-7,-r5, we determine the current /,"":

n n
rsls"—nl

7’1'11” + }"2'12” — 7"5'15" = O, from here 12” = =0.

)
Under Kirchhoff’s current law we determine the remaining currents:
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[4” :12” +]5” =0.5 A, ]3” :]1”—]2” =0.5 A.

4) In accordance with the superposition principle, we
determine full currents in the circuit branches
L=1'+1"=1+0,5=154, L=-L'-1"=0,67A,

L=L+1L"=0.333+0.5=0.833 4,
L=1—-1/=0333-05=-0.167 A,
[5 = 15' —15” =1-0.5=0.5A4.

1-32 (2.52). Using the conditions of problem 1.13 (fig. 1.16),
determine the currents by the superposition method.

Solution. 1) Determine the currents from the source E; action
(fig. 1.49):
E 120
"= L = =4 4,
341+, 5+15+20
L'=1=1" 22 =4 20 >

vy 13ty 20+5+15
12' :13’—11' =2-4=-2A4.

2) Determine the currents from the source E, action (fig. 1.50). Since r; = r,, the
schemes in fig. 1.49 and fig. 1.50 are identical, and because of E,=0.5E;, the
component currents of scheme fig. 1.50 are two times less than corresponding currents
of scheme fig. 1.49:

L"=05I'=24, [,'"=05L'=-14,
13” = 14” = 0.513' =1A.

3) Determine the currents from the current source J

action (fig. 1.51):

Fig. 1.50

nn
ry+
L= n+r _4 5+20/2 _94,
- nr 15+5+20/2
n+rn
L' =1""-J=2-4=-2A.
As ri=ry, then I\ =0L"" =05L""=—1A.
4) In accordance with the superposition principle, the full currents are:
L=L'tL"+['=4-1-1=2A4, L=L'+L"+L"=2+1-2=1A4,
L=0L'+0L"+0L"=-2+2-1=-1A4, L=L'*1L"+1"=2+1+2=5A4.

32



2. NONLINEAR ELECTRIC AND MAGNETIC D-C CIRCUITS
2.1. NONLINEAR ELECTRIC CIRCUITS
2-1 (9.1). In fig. 2.1,a there is a volt-ampere characteristic of an incandescent lamp, in
fig. 2.1,b — that of a stabilitron, in fig. 2.1,c — that of a tunnel diode. For working points
A, B, C, determine both static and differential resistances of the elements.
Solution. Let’s draw the secant (sec) (from the coordinate origin) and tangent (tang)
lines through the given points. For fig. 2.1,a, we have:

Fsid =ﬂ=i=30 Ohm, Va4 —d—U|A= m£=£=4550hm,
4 0.1 dl Al

VB Zﬁzﬂz 83.3 Ohm, 798 :d_U|B :ﬂ: 250 Ohm;
Ip 0.24 dl 0.16

Fsic =U—C =ﬂ= 156.3 Ohm, 2% =d—U c =ﬂ= 385 Ohm.
I 032 dl 0.13

For fig. 2.1,b, we have:

Vs :E: 6.25 Ohm, Va4 :E: 0.25 Ohm;
0.4 0.4
-5 +5

rgg =——= o0 Ohm, rag =—— = o0 Ohm;

R =7

-10 0

ryc =———=25 Ohm, Vaoc =——=0 Ohm.

04 0.4
For fig. 2.1,c, we have:

Fog = 0'043 =13.3 Ohm, Faqd = 0'043 =13.3 Ohm > 0;
3-10° 3-10°

Fys =L3= 150 Ohm, rdeAUz 0-50=0 +=-96.2 Ohm <0,
2-107 Al (0-5.2)-107

Fsic =L3= 267 Ohm, Vac = 0.3 7= 100 Ohm > 0.
0.3-10~ 3-10°

Note, in the negative-going part of the volt-ampere characteristic, differential
resistance is negative. Static resistance is always positive.

rAu ¢, D arg mab °
50 | N |
40 tang ) 0.4 #A 4 \tang sec /
an ‘ ;
oA 102
30 AUp / 3|®A4 2 —
—10 B — li Alp ¢
201 [ 570 3V oBY /
R/ —1sec—-0.2 - /
10 ‘ 2 AIB ,/’ 1 ///
Al I ®C -0.4 1 Y
- N T \ i / li
0 01 02 03 4 Fig. 2.1 0 02 04 06 08 V
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2-2 (9.2). VAC of a nonlinear resistor is set by the formula
I=0.1-U+0.015-U°, where U/[V], I[A].
Determine static and differential resistance at voltage U=1 V.

Answers: R, S 8.7 Ohm; j—l]] =0.1+0.045-U?,

dU _ 1 _ 1
dl  0.1+0.045U% 0.145

Raip=

=6.9 Ohm.

2-3 (9.3). Calculate the circuit current of fig. 2.2, check up the power balance, if
U=100V, r,=20 Ohm,
volt-ampere characteristics of nonlinear elements are set by the tables:

Table 2.1 Table 2.2
u,V| 0 15 20 | 23 30 Us, V| 0 5 15 40 80
1, A 0 0.5 1 2 4 L, A 0 1 2 3 4

Solution. Let’s employ the diagram method of calculation of a nonlinear electric circuit,
using the equation system generated beforehand:
) Ui(l,)
under Kirchhoff’s voltage law U, + U,+ Us = U,
moreover their currents are the same [, =1, = 3= 1, as
the resistances are connected in series; U, U,

: o r
correlations between currents and voltages of the circuit I :
parts with nonlinear resistances are given in the tables: U Us()

U =fi(l,) —table 1,  U;=f(;) —table 2, U, j
however, for linear resistance in accordance with Ohm’s v ] P
law, we have analytical dependence U, = I,-r;. o <t—— _I_

The diagram constructions corresponding to above- Fig.2.2

mentioned equation system are shown in fig. 2.3 and are presented in the Cartesian
coordinate system /(U).

Rewrite the initial equation which was written under Kirchhoff’s voltage law, leaving
the voltages across nonlinear elements in the left side of the equation and carrying the
linear correlation U, = I-r, into the right side of the equation:

U+Us=U-1Ir,. AN
Construct auxiliary dependences 4 Uiy ~Us(ls)
(fig. 2.3) /‘
(Ui+ Us)(I) and (U-1r)(l), 3 _— |
intersection point A gives the | /=254 LT (U+Us)(1)
problem solution: pd y A |
[=254, U=25V, U=25V. 2 i (U-I-r,)(I)
Verification of the power balance: / /
- the source power 1 :
P =U-1=100-2.5=250 W, /:VU1=U3=25 V
- summary power of resistances y | u .
ZPc=Upl+ Ul + 171 = 0 20 0 60 80 ¥
=25.2.5425-2.5 +2.5%.20 = 250 W. Fig. 2.3

Power balance P; = 2P is true,
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the problem has been solved correctly. I I3 I,
o D>

2-4 (9.4). Calculate the currents in the scheme b I
fig. 2.4 by the diagram method as well as the U "

) ) 3
source voltage; verify the power balance; if

I3=5A4, ry;=14 Ohm, Us(1y) U

volt-ampere characteristics of the nonlinear © .
resistors are given in tables 2.3 and 2.4. Fig.2.4
Table 2.3 Table 2.4
U, V| 10|20 |30 |40 |50 70 Uy, V| 10 | 20 | 40 | 60 | 80

LA | 2|3 ]2 ] 1| 2]48 L,A | 125] 2 2.5 3 3.3

Solution. For case of parallel connection, let’s rewrite the initial equations under
Kirchhoff’s current law, adding the coupling equations between currents and voltages:
Iy=hL+5hL I=hL+1,
Il :fl(Ul): [2 :fz(Uz), U3:I3'7"3, moreover U:U1: U2:U3.
The first of the above-written equations is solved by presenting it firstly in the

following form 1, =1;—- g,
3
the left part of which is the current of the nonlinear element 7, = f;(U) set in table 2.3,
and the right part presents the linear dependence on voltage U: [j5— v 5— %
13

All above-mentioned dependences are presented in fig. 2.5,a together with the
solution of the first of the presented equations.

AMI a) AMI b)
~~\~(5-U/14)(U) / L(U)

/LW 3 =274

2 i
<tf----t----\--- _ 2 X / EU_ 75 V
=164 R 1 '

1 : i
U—47.5‘ V.v U -
- >
0 20 40 60 Vv 0 20 40 60 14
Fig. 2.5
Since the diagram method possesses appreciable inaccuracy, let’s verify the result by
equality I, =1;;— g

3
1 47.5

1.6 = (5 ~=7)=(5-3393)=1.607, where ;=3.393 4.

Results differ in the 4" digit, which means the sufficient accuracy of the solution.
In fig. 2.5,b the determination of current /, is presented.
The generator current is I=L+15;=27+5=7.7A.
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The generator power is Ps=UI=47577.7=3658 W.
Summary power of consumers is
SPc=Ulb+ LY ry+ UL =47.52.7+ 339314 + 47.5:-1.6 = 365.4 W.
Ps = 2P —is fulfilled.

2-5 (9.5). Calculate the currents, verify the power balance in the scheme fig. 2.6, if
U=380V, r,=10 Ohm, volt-ampere characteristics of the nonlinear resistors being set
in tables 2.5 and 2.6:

Table 2.5 o%g Lo
U,V | 20 [ 35 [ 46 | 50 | 53 | 54 I

I,bA | 2 1 4 [ 6] 8 [10]12 Ui)
Table 2.6 v Uss 2
Uy, V |0|5]20|40 |60 |90 Us(lz)
L3, A 0[2|4]|52] 6 |6.5 o

A Fig. 2.6
Solution. In coordinate system U(l) ru ’13 8

characteristics of  the elements
connected in parallel /h(U;) and

U,=Lr, as well as an auxiliary 60
characteristic (I, + I;)(Us;) = (I,)(Ux), (L+1)( Uza/
because [, = (I, +1;). 40

Under Kirchhoff’s voltage law U =30V :

(fig. 2.7), we construct volt-ampere 80 i |
| U=50 1

UtUn=U or Up=U-"U,. A= (o)
We  draw  another  auxiliary ,q L /1
characteristic V1,=7754
U-U=U-fi, I

having assumed a number of values of -
the current /,. The calculation results are 0 5 Fio 2.7 10 A
tabulated in table 2.7. 18 <
Table 2.7
1, A 0 2 4 6 8 10 12
U,V 0 20 35 46 50 53 54
U-U=80-U, V| 80 60 45 34 30 27 26

Point A4 of intersection of two auxiliary curves sets the problem solution:
L,=7754, Uyx=30V, L=34, L=4754, U, =50V.
Verification of the power balance: Pg = U-I; =80-7.75 =625 W,
3Pc = Uply + L ry + Uy Iy = 50-7.75+3%:10+30-4.75 = 620 W.

2-6 (9.8). In fig. 2.8,a, there is a scheme with three identical nonlinear elements, their
volt-ampere characteristics being set in table 2.8. EMF of the voltage sources are
E, =100V, E;,=10V, E;=20 V. Determine all the branch currents, do not take into
account the inner resistances of the sources.

Table 2.8

U,V | 0 5 20 30 50 70 | 100

+,mA| 0O 10 30 39 50 55 60
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Solution. Since the branches of scheme are connected in parallel to two nodes 4 and B,
let’s employ the method of the junction voltage, having assumed arbitrary directions of
the branch currents and the junction voltage U, (shown if figure).
For loops including voltage U,z and one of the branches, in accordance with
Kirchhoff’s voltage law the following three equations occur:
UAB+ U1=E1, UAB+ U2=E2, UAB_ U3=—E3.
From these equations we express the voltage U p:
Up=E-U, Up=E-U, Up=-E+Us.

mA| 1 b)
—80
a)
> A
1, L L L(Uyp)
E, E, E;
Uas ) U, \ \
Ul< > ( N
ri(ly) U; r3(lz)
B
UAB
Fig. 2.8 20 80 100 V
L 20

On the ground of the latter expressions it is convenient to compute the current
dependence of the separate branch on the junction voltage in the following order:

- assume an arbitrary value of the branch current and in accordance with volt-ampere
characteristic of the element we determine the voltage across the nonlinear element
corresponding to this value ;

- voltage U, corresponding to the chosen current value is calculated under the
corresponding equation in accordance with Kirchhoff’s voltage law.

Dependences [(U,p), L(U,p), I3(U,p) are shown in fig. 2.8,b.

In accordance with Kirchhoff’s current law there is an equation 7, + I, = I5, which is to
be true for the scheme under consideration at single voltage value U,p. Let’s draw the
auxiliary curve (I;+5)(U,p) and find the point F' of intersection of this curve with
dependence I5(U,p).

Point F'sets the problem solution:

Up=18V, I,=58mA, L=—15mA, [5=43 mA,
voltages across the elements are U,=82V, U,=-8V, U;=38V.

Algebraic sum of powers of the generators is:

2Pg = E-I} + E>-I, + E5-I; = 100-58+10-(—15)+20-43 = 6510 mW,
sum of the consumer powers is:
ZPC = U1'11 + Uz'[z + U3'I3 =82-58 + (—8)(—15) + 38:43 = 6510 mW.

Power balance is true.
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2-7 (9.11). In fig. 2.9,a there is a scheme with a nonlinear element (NE), its volt-ampere
characteristic being set in table 2.9.

Table 2.9
Uy, V 0 20 40 60 80 100
Iy, A 0 2.8 4 4.9 5.4 5.7

Parameters of the linear elements are as follows
ri=r,a=r;=100hm, Es=50V, J=5A.
Determine all the branch currents and verify the power balance.

Solution. Firstly, we calculate the current /4 of the nonlinear element, previously having
substituted the linear part of the scheme concerning terminals of the nonlinear element
(1-4) by the equivalent generator.

Furthermore U, = E,,, = L5,,73 + 11,,71, where the currents with subscript , (no-load or
open-circuit condition) are the currents of the scheme elements which occur after
disconnection of the branch with nonlinear element. In a new simpler scheme there is
1,,=J=15 A, and in accordance with the mesh current method
_Es+J-r, 50+5-10

vy + 13 10+10

and U,=5-10+5-10=100 V.
Inner resistance of the equivalent generator is equal to the input resistance of the
corresponding passive linear scheme concerning terminals 1-4:
7+ 10+10

For an equivalent scheme (fig. 2.9,b), on the one hand, U,(,) is the VAC of NE, on
the other hand, U, = E,y, — 14704 18 VAC of active two-pole network.
Solution of the system of two latter equations is presented in fig. 2.9,c, from where
U4:40 V, 14:414.
Let’s recur to initial scheme fig. 2.9,a and calculate the other currents:
I]ZJ—I4=5—4=1A,
" Uy,-ILin _40-1-10 _
;= = =
r3 10
15:]3 +14:3 +4:7A,
12211—13: 1-3 =—2A,

]30 = 5 AJ

=15 Ohm.

requ:r14inp:rl+

34,
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voltage across the terminals of the current source is as follows
UJ:]2 'I"2+11 ‘r =-2-10+1-10=-10 V.
Verification of the power balance:
2Pg= U;-J+ Es-Is=—10-5+50-7 = 300 W7,
SPc =17+ Liry+ s+ Uply = 1710 + 2210 + 3210 + 40-4 = 300 .

2-8 (9.16). Circuit parameters of fig. 2.10,a are as follows: ;=10 Ohm, ry=20 Ohm,
input voltage U, =24V, VAC of Zener diode is approximated with three straight
segments (see fig. 2.10,b). Given scheme is the simplest voltage stabilizer U, for the
load r,. Determine the currents and load voltage, calculate the voltage stabilization
factor.

JZ
v F
-0 L
Fig.2.10
Solution. First, calculate the differential resistance of diode in the working segment BC:
0.2

Vagir=—= 0.5 Ohm.
- 04
Here, the voltage across diode is negative and if it is less than 10 V, there is no diode

current / = 0. Then L=5L= Y , U=—-U,=— < —10 V="U,.

I"l+l"2 I"l+l"2

From here, we find minimum input voltage when scheme works as the voltage
stabilizer:
n+r . 10+20 =

Uppin=— Up 10- =15V, a) g [ _Taf @
¥y 20

The given voltage is U, =24 V> U,,,;, then
Zener diode works in the segment BC, the b)
circuit of fig.2.11,a being its equivalent
scheme while the calculation scheme is as in
fig. 2.11,b. It 1s calculated by method of two
nodes:

U, E 24 10

U= T 10705 o4y,
1 1 1 1 1 1 e

no rge o 1005 20

; _Ui=Uy _24-10.42
= _

=13584, L=—==—-"=0.5214,
n 10 ry 0



1212—[1 =—-0.837 A.
A passive stabilizer scheme for augmentations is presented in fig. 2.12, its
calculation gives

AU, 2 Taip

AU2:
n +7r2 a1y Ty
r +rdlf A[] A[z
vy Py o I:l s
:AUl' 2_dy = 7
I"ll”z +I”1rdlf +}’21"dlf
= AU;- 20-0.5 = AU-0.0465. | AU "””'ﬂl:l I:Ir2
10-20+10-0.5+20-0.5 AU,
Voltage stabilization factor is Y
Y UAU, /U, 0.0465-AU, /1042 Fig.2.12
b)
<10 wph @
a) ; _7 L —_-
M\:\ Z ! 20 ¢' \2
(\LD a * '0
w( P ‘ .
\:\) J "
O i S i 10 ':
o 1 ¢
14
4
L4
Fig.2.13 . I>
0 2 4 6 8 10 4

2.2. D-C MAGNETIC CIRCUITS

2-9 (9.19). In fig. 2.13,a there is a choke-coil with the turn number w = 500, the wire
being wound around the core made of electric steel 1512, the magnetization curve of
which is presented in table 2.10. The core mean length is / = 100 cm, steel cross-section
S=16 cm®. Air gap is absent [,=0. Calculate and construct the Weber-ampere
characteristic of the coil.

Table 2.10. Magnetization curve of steel 1512

B, T 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

H, A/em | 0.25 0.5 0.65 0.8 0.95 | 1.15 1.5 2 3
Continuation of table 2.10

B, T 1.2 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

H, A/em | 4.65 7.4 9 12 15 22 33 49 90

Solution. Weber-ampere characteristic of the coil @(1) is calculated on the ground of
the magnetization curve and geometrical size of the ferromagnetic core: having
assumed, for instance, B = 1.2 T with the corresponding value H = 4.65 A/cm, we obtain
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® =B-S=1216-10"=19.2-10"* Wb, [=—=—""—"—7"=0934.
w 500
Tabulate the calculation results (table 2.11).

Table 2.11
B, T 04 | 0.6 | 0.8 1 1.1 | 1.2 [ 1.3 ] 14 | 1.5 ] 1.6
H, A/cm 0.5 08 | 1.15| 2 3 1465 74 | 12 | 22 | 49
O,x10*Wh| 64 | 9.6 | 128 | 16 | 17.6 192 |20.8 | 224 | 24 |25.6
1, A 0.1 {016 023 | 04 | 0.6 {093 |1.48| 24 | 44 | 9.8

Weber-ampere characteristic of the coil without the air gap is presented in fig. 2.13,b,
curve 1.

2-10 (9.20). In the core of the coil studied in problem 2-9 the air gap /, = 1.2 mm long is
made. Construct the Weber-ampere characteristic of the coil with air gap.
Solution. In comparison with the previous problem, the coil current changes even with
the same flux values because in accordance with Ampere’s law the new current value is
HI+H,,
7 .
Magnetic intensity in the air gap is
BB
to 4m-107
or H,=0.8-10"B, where H,[A/cm], B/T].
For example, for induction B=12T H=4.65 A/cm,
H,=0.810%1.2=9.6-10° 4/cm,

as follows 1=

new current

Hl  H,|
4_—aa —

4.65-100 9.6-10°-1.2-107"
[ZW = +

500 500
Weber-ampere characteristic of the coil in the table form gets view of the table 2.12.
Table 2.12

I'+1" =0.93 +2.304 =3.324 4.

@, x10 Wh| 64 | 9.6 | 128 | 16 |[17.6 192|208 |224 | 24 |25.6

1, A 0.87 | 1.31 | 1.77 1 232 | 2.71 | 3.32 | 398 | 5.09 | 7.28 | 12.9

This Weber-ampere characteristic is presented in fig. 2.13,b, curve 2.
While calculating the magnetic circuits, a reluctance of the part of the magnetic
circuit is usually involved

s (]

In the example under consideration, the reluctance of the portion of the magnetic core
of length /=100 cm, cross-section S=16 cm*> at B=12T, H=4.65A/km is

R, —265-100 _ 24.22-10* 1/H,

" 124164107
and the reluctance of the air gap of length I, = 1.2 mm, cross-section S =16 cm® at
B=12T

_ L, 12:107
to S 4x-1077-16-107*

R =59.71-10* 1/H.
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Thus, at B=1.2 T the reluctance of the air gap of length 1.2 mm is greater than
R,. 59.71

reluctance of the core of length 1 m by —*~

R, 2422

2-11 (9.21). In the air gap of the electromagnet (fig. 2.14) it is )4

necessary to create a magnetic field with magnetic induction [ § A A ?
B=1.1T. Core and armature are made of electric steel 1512, - \_\ _______
the magnetization curve of which is presented in table 2.10, !
they have identical cross-section Sc=S,,=S5=20 cmz, the T'

core length is /- = 80 c¢m, the armature length is /,,, = 30 cm.

Number of turns of the coil 1s w = 800. The length of one air :

gap 1s [, = 0.4 mm. Determine: Y l,
A

- current through the coil;
- the coil inductance;
- attraction force between the core and armature; Lam
- the electromagnet force of separation. Fig.2.14
Solution. In accordance with Ampere’s law, the necessary magnetization force of the
coil is Iw=Hclc+ Hyplyy + 2-Hy L,
The coil magnetic flux is @ = B-S,.
Since S,=Sc=S, then B,=Bc=B and by the magnetization curve at B=1.1T
we find H-=H,,=3 A/m,
H,=0.8-10"B=0.8-10*1.1 = 8.8-10° A/cm,
Iw=3-80 +3-30 +2-8.8:100.4-10 ' = 1034 4,

The coil full current is [=—=—=1.29 A.
w800
The coil flux-linkage is ¥ =B.S-w=1.1.20-10 *-800 = 1.76 Wb,
the coil inductance is L Zz :ﬂ =136 H.
I 129

We calculate the attractive force of the electromagnet for a single air gap by the
method of feasible shifts (see subject «Applied mechanics»). the magnetic field energy
B,H B,H, Sl

2 2

At infinitesimal displacement of the armature, the air gap length changes at constant
values of B,, H,. The force of attraction of the armature to the core per a single air gap

dw,  B,H

in the air gap is w, = LV, =

is Fy = .S,
dl, 2
Electromagnet attractive force for two air gaps is
B2
F =|2-F| = B;H,-S,=—%-S,=0.8-10°B,-S,.
Ho

In example under consideration
F=0.810%1.1220-10 * = 1936 N ~ 198 kgF.
Let’s determine the electromagnet force of separation when there is no air gap /,= 0
and the magnetization force is Iw =1034 A.
Then at Sc=S,, =S and homogeneous material of the core
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v _ 1034
l,, +lc 80+30

By the magnetization curve, the corresponding magnetic induction is B = 1.357 T, the
electromagnet force of separation is
F=0.810%1.357%20-10 *=2946 H ~ 300 kgF.

2-12 (9.22). Left magnetic core (fig.2.15)
possesses the air gap I, = 0.11 cm, the right b, 51 D, by $
one is without the air gap. The core mean ﬂ\ P .
length is /[y, =[,=60cm, cross-section |} X \@2
$;=8,=8,=6cm’. Magnetic flux —+1= 1 w \— — !
through the left core is @, = 6.6-10* Wb.
Material of the cores is electric steel 1512, \ 4 R .
its magnetization curve being set by table
2.10.

Determine mmf of the coil and magnetic flux @,.

Answers: lw=11484, ©, = 8.88-10 * Wb.

H-=H,,= =94 A/cm.

2-13 (9.24). A core of a branched magnetic circuit fig. 2.16,a is made of the electric
steel 1512. The core sizes are [, = 60 cm, S; =6 cm’, [, =20 cm, S, = 12 cm?, I; = 40 cm,
S;=S,=8 cm’, I, =1 mm. Number of the coil turns is w = 400. It is necessary to create
a magnetic field in the air gap, its magnetic induction being B, = 1.1 7. Determine the
coil current.

a) o _‘-‘i__"_—____: b) - j
! ’ R
» #Bo—k LiSs || |l [ /

= 1 p 4
1. S : 3\7\3 ; D, _—I_
1, 1 : w i\) l S ! le Rma
@, ¢ o e—F» ¢ @, U s Iw

"""""" e Fig. 2.16 Y B I
Solution. For easier imagination, let’s draw the electric equivalent scheme (fig. 2.16,b).

Magnetic flux is &y =B,H,=1.1-810*=8.8-10 " Wb,

magnetic voltage is U,y = H3y-l3 + H,-,.

By the magnetization curve, we find: since B;=B,=1.1 T then H; =3 A/cm,

H,=0.8-10"B,=0.8-10"1.1 = 0.88-10" 4/cm,
Upaz = 3-40 + 0.88-10*0.1 = 1000 A.
The magnetic field intensity in the first branch is

the magnetic induction corresponding to that intensity is B; =1.462 T,
the magnetic flux through the first leg is @, = B,-S, = 1.462:6-10 *=8.77-10 * Wb.
The magnetic flux through the middle leg is
D, = O+ Oy=(8.77+8.8)-10 *=17.57-10 * Wb,
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@, 17.57-107"
S, 12107
corresponding magnetic intensity is H, =16.96 A/cm.

Under Ampere’s law Iw = Hy-l, +U,, 43,

from here 1216'96'20+100023.35 A.

400
2-14 (9.27). Magnetic circuit fig. 2.17,a is made of steel 1512 and has the following
sizes: [, =40cm, L=12cm, ,=30cm, S, =S;=4 cm?, S, =2 cm’. Exciting force is
Iw = 1800 4, the flux through the first leg is @, =5.8-10 * Wh. Determine the length of
the air gap /,.

=1.464 T,

its magnetic induction is B, =

a) lla Sl 137 S3 Sa
‘- -G >A-<-‘ ------- .
Dot | | 5 ey
1 e | g | ! “
T b l

wd ||

o ____________ J: Fig. 2.17

Solution. The magnetic circuit scheme corresponds to series-parallel connection of
branches (fig. 2.17,b). On the ground of Kirchhoff’s voltage law, we write down

Um23 =Iw— H]'ll.
To find H, by the magnetization curve, one should determine
@ 107
B —-E%: 1.45T,
S 4-107
and H,= 15 A/cm corresponds to it, then U,,,; = 1800 — 15-40 = 1200 4.
12
On the other hand, U,,»3 = H>-l,, from here H, =% =TOO =100 A/cm,
2

and on the ground of the magnetization curve, we obtain B,=1.66 T.
The magnetic flux is @, = B,-S,=1.66-2-10 *=3.32-10 " Wb.
On the ground of Kirchhoff’s first law
Dy =@ — D,=(5.8—3.32)-10 *=2.48-10 * Wb,

D, 248107
and induction B; =B, =—3=M= 0.62 T,
Sy 4-107
which the magnetic intensity in the third lag corresponds to
H;=0.83 A/cwm,

and that in the air gap is H, = 0.8-10*B = 0.8-10*0.62 = 4960 A/cm.
The magnetic voltage drop across the reluctance of the air gap is as follows

H,l,= Uy — Hy-[3= 1200 - 0.83-30 = 1175 4,
: : H,-
from here the air gap length is [, =—* by 1175 _ 0.237 cm.
H 4960

a

a
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2-15 (9.30). A magnetic circuit core
(fig. 2.18) i1s made of electric steel
1512, its magnetization curve being
given in table 2.10. The core sizes are
L=6L=33cm, L=11cm, [,=0.1 cm,
Sy =12 cm’, S, =24 cm’, S; =16 cm’.
Exciting forces are Iyw;=500 4,
12W2: 1000 A, 13W3 =750 A.
Determine magnetic fluxes of all
the core parts.
Solution. Assume arbitrary directions
of the magnetic fluxes and the junction voltage and generate the equations by the
method of two nodes:

We tabulate the calculation of the flux dependencies on the junction voltage (table

U,=1Lw —Hl,
U,=—Lw, + Hyyl, + H/l,
Um :]3W3 —H3'l3.

2.13).
Table 2.13
B H H, |H:l=| & U, = D, U,=—Lw, o3 | U,=
—H, 1 Iw, — + Hyl, + Lws —
- H-[ + H, 1, — Hil3
T [Alem | x10° | 4 |x10*| 4 x107* A x107* A
Alem Wb Wb Wb
04 | 0.5 3.2 16.5 4.8 484 9.6 -674.5 6.4 734
08 [ 1.15 | 6.4 38 9.6 462 19.2 -347 12.8 712
1 2 8 66 12 434 24 -178 16 684
1.1 3 8.8 99 13.2 401 26.4 —87 17.6 651
1.2 | 465 | 96 |153.5]| 144 346 28.8 11 19.2 597
1.3 74 | 104 | 244 | 15.6 256 31.2 121 20.8 506
1.4 12 11.2 | 396 | 16.8 104 33.6 252 22.4 354
1.45] 15 11.6 | 495 17.4 5 34.8 325 23.2 255
1.5 | 22 12 726 18 -226 36 442 24 24
1.6 | 49 12.8 | 1617 | 19.2 | —-1117 | 384 819 25.6 -867

Graphical calculation of the magnetic circuit taking into account Kirchhoff’s first law

@, + &3= @, at single value of U, is presented in fig. 2.19.

The intersection point A (@+D;)(U,,) = @,(U,,) sets the value of the junction voltage

U, as well as magnetic flux @,, and points B and C give fluxes @, and @;:
U,=400 4, ®,=35.610"* Wb, ®,=13.2-10" Wb, ®y=22.4-10"* Wb.

Voltages across the branch reluctances are:

Verification of the energy balance:

Uml :H1'11:]1W1 — Um= 500 —-400 =100 A,
Umz = Hz'lz + Ha'laz ]2W2 + Um= 1000 + 400 = 1400 A,
Um3 = H3'13 = ]3W3 — Um= 750 —400 =350 A4.

X Iw-@=(500-13.2 + 1000-35.6 + 750-22.4)-10 *=5.9 J,
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SU,-® = (100-13.2+1400-35.6+350-22.4)-10 *=5.9 J.
Since X Iw-®@ = XU, @, then the problem is solved correctly.

x107 Wb‘—cD

50

40 A

()]
30/ 2 \ @1+@3
\@3

20 —
Un
-

Fig.2.19 0 200 Liw; 600 Lws; 800 A

2-16 (9.31). A magnetic circuit fig. 2.20 is made of steel 1512. The core sizes are
L=hL=44cm, , =22 cm,l,= 0.4 mm, S;= S3—200m S,= 10 cm?.
Exciting forces are [jw;=400 4,

Lw,=200 4, while fluxes are @, = @,. ] l, S h, S 4 l3, 83

Find the flux @;as well as the exciting ~ “ S 44_ﬂ¢ &
force Iyws. . o] ol | 3
Methodical instructions. Using the 71‘50‘\3 C\i\j EN Nl X
method of two nodes it is recommended C\:ND W2 d ! | d P
to calculate and to construct the w, T b P O’\E\D
dependences @(U,5) and D,(U,.4p), o1 ! ad 'fcbz
their intersection point determines the - I S——
values of U, s, @, and @,, then it is

S ? Dy B Fig. 220

possible to find w; with the aid of

Kirchhoff’s voltage law (see fig. 2.21).
Uyap=1Iwi —H\-l, = Hglg, Uyup=—Lwr— Hyb, Lws = Uyup — Hy L.

Answers: @, =0, =—15,5-10" Wb, U,..3=690 A, @3=—31-10" Wb, I;wy = 2140 A.

<107 Wit @

20

\\(pl

10

0 200 400 600 | 800 A

) D,

30 Fig.221 |
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3. LINEAR A-C CIRCUITS
3.1. CALCULATION OF SIMPLE CIRCUITS

UV AL A
3-1 (3.1). In fig. 3.1 the voltage and — 400

current oscillograms are presented. -
It is necessary to write down the , M
— 20 1

expressions of their instantaneous oy . N 4
values as well as to define the ’ '\l()
1

effective values. h 2l 0 » 15 L
Solution. By oscillogram, we -5 O.'q 5 . 20 ms
determine the period T=20 ms, S '
hence, the frequency 1s / g1 u(t) .// K
f=1/T=50 Hz, and  angular |/*==" s
velocity is @ = 2nf'= 314 radls. L 400 :

Initial phases of voltage and Fig. 3.1

current in degrees, respectively, are:
w,=—1-(360/T) = 1.67-(360/20) = 30°, w;=—1,-(360/T) =—2,5-(360/20) = — 45°.

Amplitudes: U,=400V, I[,=1.5A.
Finally, u(t) = 400-sin(314t + 30°) V, i(t) = 1.5-sin(314t—45°) A.
) U_ 400 I 1.5
Effective values: U=—2=——=282V, I=—"2=——=1.061 A.
V22 V2 2

3-2 (3.2). A circuit », L with parameters » =35 Ohm, L =80 mH 1s supplied from a
source of sinusoidal voltage of frequency f= 50 Hz. The source voltage amplitude is
U,=200 V, its initial phase being y,=-20°. Compute instantaneous and effective
values of the current. Draw the circuit phasor diagram. Find active, reactive powers and
volt-amperes of the circuit. Draw the power triangle.
Solution. Let’s imagine the calculation scheme of the circuit (fig. 3.2,a).

Write down the instantaneous value of the circuit voltage:

u(t) = U,sin(ot + y,) = 200-sin(cwt — 20°) V.

Angular velocity is @ =2nf=2m50 =314 radls.

The circuit reactance is x.= oL =314-80-10 > = 25.12 Ohm.

In accordance with Kirchhoff’s voltage law for the circuit loop we have u = u,+ u; or

in phasor form U= U,+ U;. On the ground of this expression, the phasor diagram is
drawn (fig. 3.2,b).

a) b) c) d)
i 40 V 10 Ohm 125 VA
url r — A —
“ U 7 S
ur L XL Q
U,
Y \ ¢ U ¢, Yo p
Fig.3.2
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The circuit impedance triangle is presented in fig. 3.2,c. This is a right triangle, it
allowing to obtain the following:

the circuit impedance Z=\/r2 + xi =\/3>52 +25.12% =43.1 Ohm,

the phase shift between the current and voltage ¢ = arctgx—L = arctg%= 35.67°.

r
Under Ohm’s law for amplitudes, we find Im=U7’" =% =4.64 A4

The initial phase of the current sinusoid is ;= y,— @ =—20° — 35.67°=— 55.67°.
The instantaneous current value is i(t) =4.64-sin(314t — 55.67°) A.

The effective current value is 1 I 404 _ 3.28 4.

The effective voltages across different portions of the circuit are:

- across resistance U =1r=32835=115V;
- across reactance U =1x,=3282512=82417,
D U, 200
- at the circuit input (network voltage U=—Z=—"—==1414V.
put ( ge) NENA

The circuit active power is P = U-I-cosp=1%r=3.28"35=376.5 W.

The reactive power is Q= Ulsing=1%x,=3.2825.12=270.2 VAr.

The circuit volt-amperes is S= U-1=141.4-3.28 =464 VA.

The power triangle is shown in fig. 3.2,d.

Note, on the ground of any triangle of fig. 3.2 it is possible to compute the power

factor =—L="=""=0.811=co0s35.67°,

b) Url Ur2 ]

()
- U
C 100y 2 |Ue
U
Fig.3.3

3-3 (3.3). Sinusoidal current i(z) = 10-sin(wt + 15°) A of frequency f= 400 Hz flows in

circuit fig. 3.3,a. Resistances are »; = 10 Ohm, r, = 20 Ohm, capacitance is C = 10 uF.
Determine the instantaneous network voltage u(z) and the voltage across a capacitor

uc(?). Find the voltmeter and wattmeter readings. Construct a circuit phasor diagram.

1 108

Solution. Reactance is as follows Xc= = =39.81 Ohm.
oC 27-400-10
Voltage amplitude across the capacitance is
Ucp = Ly xc=10-39.81 =398.1 V.
Effective values are I=I—m=£= 7074, Uc =Uﬂ=& =281.5 V.
V2 2 V22



Effective voltages across resistances are:

U=1Ir=70710=707V, U,=1Ir=70720=1414V.

Kirchhoff’s voltage law in a phasor form at a single current / has a view
U +U,+Uc = U, 1in correspondence with it the circuit phasor diagram can be
constructed (fig. 3.3,b).

From the voltage right triangle (exterior triangle) we find

U=(In +Ir, | + U2 =1/(70.7 +141.4)" + 281.52 = 352 7,

—-281.5
rctg =
212.2

U _,

(¢]

Y arcrg rl + Ur2
The instantaneous value of the circuit voltage is
u®)= Uysin(ot+y+@) = U2 sin(or+15°+(=53°)) = 3522 -sin(ot — 38°) V.
The voltage across a capacitor lags the current by 90°, its instantaneous value being
uc(t)=398.1-sin(owt —75°) V.
The voltage across portion r,-C, supplied to a voltmeter and wattmeter, is calculated
by the voltage triangle U,-U,,-Uc:

Us=Up=+(U,, )} + U2 =\141.4% +281.52 = 315 V.
The voltmeter of scheme fig. 3.3,a measures the effective voltage U, =315 V.

The wattmeter’s reading is Py = Uy Iy -cos(U w oLy j .

In our example [ =1, that’s why
Py = Uy l-cosp,=I-(Uycosp,)=I-Uy= I-I'r, = F-ry = P, —active power, consumed by
resistance r,, and P, = 7.07°:20 = 1000 W.

3-4 (3.4). Determine the current and voltages in an electric circuit fig. 3.4,a, if: the coil
resistance is r. =4 Ohm, the coil reactance is x.= 6 Ohm, the rheostat resistance is
R =2 Ohm, the capacitance is xc = 14 Ohm, A-C network voltage is U = 50 V. Draw the
circuit phasor diagram.

Solution. The circuit current / is measured by ammeter A4:

U U 50
]: = = =5A.
Zo i+ R+ —xe ) (@27 +(6-147°
6-14

The circuit phase shiftis ¢= arctgu= arctg =—-153.13°<0.

c
Voltmeter V measures the input voltage U= 50 V.
The coil voltage is measured by voltmeter Vi:

Uo=A[(1r, Y +(Ix, P = 1-Z.= I (n, ] + (x, ) = 5442+ 62 =36 V.
The rheostat voltage: Ur=IR=52=107/,
the capacitor voltage: Uc=Ixc=514=70 V.
One can see the circuit phasor diagram in fig. 3.4.b.

The wattmeter measures the circuit active power
P = Ulcoso=L"(r. +R) =54 +2)=150 W.

4+ 72
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Pay attention, in series A-C circuit with dissimilar reactive elements (inductive and
capacitive), the voltage across the reactance may be greater than input voltage:
Uc=70V>U=50V.

b)

O ® Fig. 3.5

3-5 (3.6). Determine the instruments’ reading in scheme fig.3.5,a as well as the
instantaneous current value i; in common part of the scheme, construct a phasor
diagram, if u(t) = 200-sin(ct + 25°) V, r=50 Ohm, xc=50 Ohm.

Solution. Instruments react upon the effective values of the quantities. Effective values
of the currents in parallel branches are as follows

u_Uu, 200

L= =2.2=2283 4,
: xC \/éxc \/_ O

Uu 200
L=—=_2""-2.2=2834.
Yy V250

As the current through the resistance i; is in phase with voltage, and the current
through the capacitance 7, leads the voltage by 90°, and in accordance with Kirchhoff’s

current law there is the expression i; =i, + i3, i.e. I | =7 ) +1 3, then the current triangle at
the phasor diagram is a right one (fig. 3.5,b); from here

L=\I5+12= \/ZJ_ (2v2f =4 4.

the phase shift between current i, and voltage u at the circuit input is negative and equal

to o=— arctg§—2= — arctgl=—45°,
3
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The instantaneous current value is
i1(t) = Lesin(ot +y, — @) = 42 -sin(wt + 70°) A.
The ammeters readings are
A > 11=44, A, > L =2834, Ay —> L,=2.83 A.
The wattmeter reading is

A\

Py = UW-IW-COS(UW,IW) = U-I;-cos@ 2%4-0&?45" =400 W.

Note, in scheme fig. 3.5,a the wattmeter measures the active power of the circuit part
situated to the right from wattmeter. In accordance with Joule’s effect in this circuit
part, the power is spent in the resistance 73 only, furthermore

2
Py =12 = (2\/5) -50 =400 W, it coinciding with the wattmeter reading.

Fig. 3.6

O

3-6 (3.7). Find the instruments’ reading in scheme fig. 3.6,a, construct a phasor
diagram, if U =200 B, r, =30 Ohm, x;=40 Ohm, r,=50 Ohm.

Check up the balances of active and reactive powers.
Solution. We determine the currents of parallel branches by Ohm’s law and find
corresponding ammeters’ reading:

L=—="=""=44 S A,

=L-_Y 0 _44 o4,

Z \/rlz + X \/302 + 407
Current i, in the resistance is in phase with voltage u, current i; lags it by the angle
¢ 1 because there is an inductance in this branch, and the angle ¢, itself is determined
from the impedance triangle for this branch

1= Cli”Ctgﬁ = arctgﬂz 53.13°.
n 30

%
Furthermore cos; =~ "% =0.6, sinp,=—=—=0.8.
Everything mentioned above is taken into account when constructing the circuit

phasor diagram (fig. 3.6,b).
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In example under consideration the current skew-angular triangle [, I, I appears.
The problem of the skew-angular triangle calculation is reduced to the right triangle
calculation if to project the current phasor system onto two orthogonally related
directions: one of them being parallel to the voltage phasor (these current components
are called the active ones) and the other one being perpendicular to the voltage phasor
(these components are termed the reactive ones).

Furthermore L,=5L=4A4, 1L,.=0,

[1a= I]'COS@[ =4.06=24 A, ]1,,2 ]]‘Sl'l’lng =4.0.8=3.2 4.

From the exterior right triangle, the summary current of the parallel branches is

determined, it being measured by ammeter A:

I=(Z1, ) +(Z1, ) =(4+2.4)7 +3.2> = 7.16 4.

Then ¢= arctg&= arctg£= 26.57°,
21, 0.4
cosQ _2ly 64 0.447, sing 2l 32 0.224
7.16 7.16

The wattmeter reading is Py = U-I-cosp = U-2I,=200-6.4 = 1280 W — this is the
source active power Pg.
The summary active power of the consumers is calculated under the formula of Joule
effect:  IPc =1 + L7r, = 4230 + 4250 = 1280 .
The equality Pg= 2P is true, the active power balance being reached.
Reactive powers:
- that of generator Oc=U-Isinp=U-1,=200-3.2 = 640 VAr,
- that of consumers X0 = I%x; = 4240 = 640 VAr,
which means the fulfillment of the reactive power balance.

3.2. CALCULATION OF THE SERIES-PARALLEL CONNECTION OF
ELEMENTS BY THE PHASOR-DIAGRAM METHOD

3-7 (3.19). A circuit fig. 3.7 is supplied with
voltage U=220 V. When capacitor C is not
connected, the instruments read: 4 > =2 A;
W— P=40 W. It is required to determine the
possible minimum ammeter’s reading after the
capacitor connection as well as the capacitor
capacity.

Solution. When the capacitor is not connected,
from the instruments’ reading we determine the
impedance, resistance and reactance of the
branch r, L:

x,=VZ? = r> =y110> —10% = 109.5 Ohm.
The minimum current value in the common part of a circuit happens when there is a
circuit current resonance after the capacitor has been connected. In this case, the current
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I possesses the active component only: /=1,= U-g, where g — the circuit conductance,
it being equal to the conductance of the branch r, L, namely:
_r 10 . 4

Then 7= U-g=2202.26-10"*=0.182 4.
We determine a value of capacity from the condition that its susceptance should be
equal to the susceptance of the branch 7, L, i.e.

a)C=x—L2, from here C= xL2= 109'52
Z w-Z° 314-110

=2.88-10° F =28.8 uF.

3-8 (3.20). In the scheme (fig. 3.8,a), determine all the branch currents as well as the
voltages across all the circuit parts, make up a balance of the active and reactive powers,
draw the circuit complete phasor diagram, write down the instantaneous current values,
if u(t) = U, sin(ot +y,);

U,=6007V; y,=—90°% r =10 Ohm, r;=x,=x3=20 Ohm, x,=20 Ohm.

! n 3
U Uba
X23
o \F
@
e ||

Solution. Substitute the branched part of the initial scheme by an equivalent branch
with parameters 7,3, xp;; for that we calculate conductance and susceptance (with
account of the reactance character) of the parallel branches:

0 X 20 .

- - =0; b, = = =0.05 S (ind.);
ET22 04200 T2 04202 (ind)
g =13 20 0025 S; by=—23 20002558 (cap.);

P2+ x2 20% +202 P2 +x2 202 4202
gn=g+g=0+0.025=0.025S; by =|bs— b5 = 0.050.025=0.025 S (ind.);

Py =gt B = 2‘025 =20 Ohm;
g5 +bs;  0.025% +0.025
X3 = b 0.025 =20 Ohm (ind.).

g3 +b3;  0.025% +0.025
The equivalent scheme to calculate the current through the common portion of the
circuit is presented in fig. 3.8,b:  iy(?) = I,sin(owt +y, — @ iyp);
where 1, = Y = 600 =102 A;
\/(’”1 7o )+ (3 = x, ) \/(10 +20)* +(20-50)°
_ Xp3 — X4 20-50
Qinp = arctgm = arctg 10 £ 20 =

[¢]
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Hence, the instantancous current value is as follows
i1(1) = 102 -sin(wt — 90° + 45°) = 10~/2 -sin(ot — 45°) A,

) ) 1
the effective current value being [, =% =10 A4.

The voltage across the parallel branches 1s  upy(t) = Upgnsin(wt +y, — @ i, + ©23);
where  Upgn =LA + X33 = 10~/2-4/20% +20% =400 V;

P23 = arctgxﬁ: arctg§ =45°,
"3 20
or upa(t) = 400-sin(wt — 90° + 45°+ 45°) = 400-sin(wt) V.
Effective values of the voltage across the equivalent circuit portion and currents of
the parallel branches are

Upg = Ysan _ 400 _ »¢) 3 _Yba 2824y, 4;
V22 x, 20
L= Yba 282 5,
Jr? +x2 V20 +20?
The phase shifts for the second and the third branches are
0, = arctgx—2= arctg& =90° ;= arctg_—x3 = arctg_—zoz —45°.
7 0 3 20

The instantaneous current values of the parallel branches are
ir(1) = L2 sin(@t+ Wy — @) = 20-sin(wt — 90°) A;
i3(t) = L2 Sin(ot+Ypg — Q3) = 10+/2 -sin(owt + 45°) A;
where  Wupd = Wu— Qip— @23 =—90°+45°+45°=0.
Let’s verify the active power balance: U-I,-cos@,, = 127 + Irs,

@-mcos(— 45°) =10%10+10>20 or 3000 W= 3000 .

V2

Let’s verify the reactive power balance:
U-]l-sin(pmp = ]12'(— X4) + ]22')(?2 + ]32'(— X3).
600

= 10-sin(~45°) = 10*(=50) + (10~/2 )*-20 + 10*(=20) or —

V2
3000 VAr =—3000 VAr.

Conclusion: balances of the active and reactive powers are
true which means the problem is solved correctly, it allowing
to draw the complete phasor diagram (fig. 3.9).

Calculate the unknown voltages across different circuit
elements:

Up=15r=1010=100V; U,.=Lr;=10-20=200 V;
Uy = Ix3=1020=200 V; U = 1I-x4=10-50=1500 V.

Phasor diagram construction begins with a choice of the voltage and current scales.
Then, a voltage phasor across the parallel branches U,, is drawn arbitrarily, the current
phasors [, I35 and I; being drawn by angles @,, @3, @,; to the voltage phasor,
respectively. Doing this take into account the expression [, = I, + L.
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The other voltage phasors are drawn in correspondence with the equations under
Kirchhoff’s voltage law and with account of the order of the element location in a
scheme (see fig. 3.8,b): U, + Ups + Uy = U.

3-9 (3.21). Determine the effective values of all voltages and currents in scheme
fig. 3.10,a, do verification of the active and reactive power balance, construct the circuit
complete phasor diagram, if: U=300 V; r,=30 Ohm, x,=10 Ohm; x3=33.33 Ohm;
x4=2 Ohm; x5=20 Ohm; r¢= 10 Ohm; x,=8 Ohm; ri=4 Ohm.
Solution. In the scheme wunder
consideration there are two circuit a)
forks: the second and the third a
branches are connected in parallel © 7
. s 1
in the portion bc, they can be
substituted by an equivalent branch lU
S

X1
rs-xo3 (fig. 3.10,b); in the portion r

de there are two parallel branches — O—E

5™ and 6™ which can be substituted a p 2
by an equivalent circuit 7s¢-xs5. The b)

substitution is performed on the 4 e U >
ground of the correlations between U v X4
the conductance and susceptance of 4 e 56 I's J
the parallel branches: O—:|—0—|
r 30 J - -

g =— 2 —=— = 0.03 S; Fig. 3.10 Uy

ry +x5 307 +10

X 10
hy=—"2_= =0.01 S (ind.);
2 x2 3074202
1 1
=0; by =—=—-—-=0.03 S (ind.);

& Sy, 3333 (ind.)
gn=21tg;=0.03+0=0.03S; by; =by+b3;=0.01 +0.03=0.04 S (ind.);
=82 = DB o

73 + b23 0.03° +0.04
X3 = 2[’23 —= 20'04 =16 Ohm (ind.).

g5 +by; 0.0374+0.04

1 1 1 1
=0; =—=—=0.18; bs=—=—=10.05 Cm (cap.); bs=0;

& 810 T x, 20 feap)i - be
&s6 :g5+g6 =0+0.1=0.1 S, b56 = b5 + b6 =0.05+0=0.05S8 (cap),
Fse= 2g56 = 0.1 ;=38 Ohm; xs¢= 2b56 = 20'05 ;=4 Ohm (cap.).

gs56 + b5 0.1 +0.05 g56 +bsg 0.1 +0.05

The circuit input impedance found by the equivalent scheme (fig. 3.10,b) is

Zinp Z\/(FB + 756 +”1)2 +(x1 T Xp3 — Xy _x56)2 =

—J(12+8+4) +(8+16—-2—4) =30 Ohm;
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Iy trsetn 124844

COSQ iy = 0.8;
o 30
Sy _ Xt Xp3 — Xy — Xsg =8+16—2—4 0.6,
Zinp 30
The current of the common circuit partis 1, =1, :L:%: 10 4,
inp

the voltages across the forks are Upe=I1-+/r53 + X33 = 104122 +16* =200 V,

Uge=I1-A[r + x3 = 10/8% + 42 = 404/5 V,

currents through the other branches are

n=—Tee - 200 50 4, 15=%=—40‘/§=2\/§ A,
Jri2+x2 307 +10° xs 20
Use 200 _ o jo=lae 40N5 _ 5
x;  33.33 Ye 10
Let’s check up the power balance. The active power balance for scheme fig. 3.10,a is
described by an equation U-I,-cos@ i, = I + LAy + ]62-r6,

300-100.8 = 10%4+ (210 ) 30+ (445 30
or 3000 W=3000 W —it’s true.
The circuit reactive power balance is as follows
U-1,-sin@ ;,, = 112-x1 + 122-x2 + ]32x3 — 142-x4 — 152-x5,

300-10-0.6 = 108 +(25/10f 10 + 623333 - 10%2 — (25 -20
or 1800 VAr =800+ 400 + 1200 — 200 — 400 VAr —it’s true.

Since both power balances are true the problem is solved correctly, it allowing to
draw a phasor diagram.

As in scheme fig. 3.10,a there are two forks, initially the phasor diagram is drawn for
the series equivalent circuit fig. 3.10,b and its construction begins from the arbitrary
choice of the direction of the current phasor /; of the series circuit (horizontally, to the
right) (fig. 3.11).

Let’s write down an equation under Kirchhoff’s voltage law in a phasor form
observing the principle: the voltage drops across the scheme elements strictly follow the
elements location and each voltage phasor is supplied with a subscript corresponding to
the scheme points:

Uab + T1ra3+ Tixgs + Uca+ Tiorsg + Tixsg + l_]ef=l_/= Uqf-

At the same time U g»=11-x;=10-8 = 80 V/ and this voltage phasor leads the current

11 by 90°;
I1-r;3=10-12=120V, I1-x3=10-16 =160 V,
Ucdzll'X4=10'2=20 I/, I]'V56=10'8=80 I/,
]1'X56 =10-4=40 I/, 11‘1"1 = Uef: 10:4=40 V.

In fig. 3.11, the voltage drop phasors fl-rB, I X3, 71-r56, 71-x56 are shown by dash
arrows, because these voltages are absent in the initial scheme.
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Then, pass on to the construction of the current phasors /, and /5. Current /5 is
perpendicular to the voltage U,,, while I2=1-13.

Current /s is set in parallel to phasor U,, while current Is=I11—1¢ is set in
correspondence with Kirchhoff’s current law.

Then, the voltage drop phasors Upn=1I2-x, and Unme=12-r, are set as regard to the

current /.
One may see a complete view of the phasor diagram in fig. 3.11. In this diagram, the

voltage phasor U g is also shown.

3-10 (3.25). In scheme fig. 3.12, it is known:
U=300V; ri=16 Ohm; x;=24 Ohm,;
r,=16.67 Ohm; r;=5 Ohm; x3=15 Ohm.
Determine the instrument readings.
Solution. 1. Substitute an equivalent impedance connection r,; and x,3 for parallel
connection of the branches 2 and 3:

o :i:%: 0.06S; b,=0;, Z Z\/r32 +x32 :\/52 +15%=4/250=5410 Ohm;

Fig. 3.12

g= D=2 =002, b= =1 _g06s;

72 250 72 250
2= 2+ 23 =0.06+0.02=0.08S; b= |by—bs| = |0—0.06| = 0.06 S (cap.)
Yos = g2 + b3 =70.082 +0.06> = 0.1S;  Zys =YL= 10 Ohm:;

23
: b _

123 _g_223__0 Of =8 Ohm; X3 —%20—0262 6 Ohm (cap.)

Y;; 0.1 Y5 0

2. Input circuit impedance and its power factor are:
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Z=\(n + 1y P +(x, = x5 ) =(16 +8)* + (24 — 6) = 30 Ohm;

The voltage across the terminals of the parallel branches is
U23 = Zg3'[1: 10-10=100 V.
The readings of the second and the third ammeters are

=Y 10 g Un 19 56 4
r, 16.67 Zy 510

3. Wattmeter is to measure the circuit active power. Its reading is
P=U--cos¢p=300-10-0.8 = 2400 W.
Resistors active power

Py =i + re? + ryly = 16:10° + 16.67-6° + 5-(2/10 = 2400 W
is equal to the source active power, it means the active power balance is true.

3-11 (3.22). In scheme fig. 3.13,a it is known: u(t)= IOOx/E-sin(a)t-i-SO") V;
ri=5 Ohm; xc,=8 Ohm; r,=3 Ohm; xc=10 Ohm; x;=4 Ohm.
Determine the currents as well as the circuit power factor, construct the circuit
complete phasor diagram. Problem is to be solved by the method of proportional
quantities. In addition, you should answer the questions: what should be the meaning of
X to reach the current resonance? What should be the meaning of x¢; to reach the
voltage resonance?

Fig. 3.13
Solution. 1. Let’s sketch a phasor diagram (fig. 3.13,b). It is necessary to start the
construction with the circuit portion which is the furthest from the source (that is the
third branch). As there is a series impedance connection, initially we draw the current
phasor /5. Then the diagram is constructed in the backward direction: from the scheme
end to the source bearing in mind Kirchhoff’s laws and rules of the diagram
construction.
2. The calculations are performed in the same order as the phasor diagram is
constructed.

Let =14, i.e. i3(t)=\/§-sin(a)t)A. Then

Xc2
The current phasor projections onto axes x and y are as follows:
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Li=L=14, L,=0;, ¢@3;= arctgx—L = arctg% =53.1°,
)
bLy=1Icos(p;+90°)=0.5(-0.8)=—-04 4, L,=Isin(p;+90°)=0.50.6=0.34.
Determine the first current by its projections:
]1x212x+l3x=_0-4+1=0-614: Ily=I2y+I3y:O'3Aa

L=\1% + 1%, =0.6> +0.3* = 0.671 4.

. I]y 03 °
The first current phase is  y;; = arctg——= arctg——= 26.6°.

1x
Determine the calculated value of the input voltage by its projections:

Uicr =xc11,=8-0.671 =536V, U,=r-[,=50.671=3357,
Ux: UxCl'COS(9OO - l//il) + Url'cos(l//il) + U}"Z =

= 5.36-c05(90° — 26.6°) + 3.35-c05(26.6°) + 3 =8.40 ¥,
Uy: UxCl‘Sil’l(l//il — 900) + Url-sin(l//,-l) + Ux =

= 5.36-5in(26.6° — 90°) + 3.35-5in(26.6°) + 4 =0.707 V,
Uste=A|U2 + U2 =\/8.40% +0.707% =843 7,

U, 0.707
WYucale = arcth— = arctg =

X
3. The recalculation coefficients are:

4.8°.

k=—"—=—"=11.86; Ay =Wy — Wy = 30°— 4.8°=252°.

4. The obtained answers are (1) = 7.96~2 -sin(ot + 51.8°) A4;
i»(1)=5.93/2 -sin(wt + 168.4°) 4;

i5(1)= 11.86~/2 -sin(ot + 25.2°) A.
5. The current resonance condition is: b, = bs.

szL; b3: 2xL 5 Zi S, )CCZZL:L=§=6.25 Ohm.
Xco ry + Xy 25 b2 b3 4
6. The voltage resonance condition is x¢; = X3,
however Z; =%=L= 7.46 Ohm,
I, 0671

X23 = Zz3'Sil’Z(§03— l//il) = 7.46-sin(53,1°— 2660) = 3.33 Ohm.
Thus, the voltage resonance is observed
at condition of x¢;=3.33 Ohm.

3-12 (3.24). Determine the instruments’
reading by method of phasor diagrams in
scheme fig. 3.14, if:
U=200V; x1=8 Ohm; x,=10 Ohm,;
r3=5 Ohm; x3=15 Ohm; r;=6 Ohm.
Construct a circuit phasor diagram.
Answers: A, —>10A4; V— 224V,
Ay—> 224 4; A3 — 14,14 4; W— 1000 W.
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3.3. COMPLEX-NOTATION (SYMBOLIC) METHOD
3-13 (3.29). Solve the problem 3.2 by complex-notation method.
Solution. Initial data are presented by complex numbers:
the complex circuit voltage amplitude is U, = U,-e’"=200-¢ **" V;
the complex circuit »-L impedance is
Z=r+joL =35+ ;2150-80-10 > =35+ ;25.12 =43.1-¢ > Ohm.
Calculate the complex current amplitude by Ohm’s law

; U, _ 200777
TZ 431059

m

=4.64-¢ %7 4.

The current instantaneous value 1s
i(t) = Im[lm -ef“’fJ: Im[4.64 .o~ 55:67 .eja)tj|:

= Im[4.64 @/ (175567 )}z 4.64-sin(wt — 55.67°) A.
The complex power at the circuit input is
" 200-¢7/%0 4,647

g ==m “Lm

2 2

=464-¢ 7> =377 +j270.5 BA = P+ 0.

3-14 (3.30). In scheme fig. 3.15, calculate the effective and instantaneous O_Dj_
values of the voltage across the capacitor, if lU r C

U=3807V; r=1kOhm; C=2 uF.
Solution. Let’s combine the input voltage phasor with the real axis. Then
U=U=380V.
The complex circuit impedance is

Fig. 3.15

. . 1 . 1 . —j57.87°
Z=r—jxc=r—j—— =1000—j———— = 1000 — ;1592 = 1880-¢ "’ Ohm.
¢ oC 314-2.107°
Under Ohm’s law, we determine the circuit current complex
. 380 =0.202-¢”"%" 4.

- Z 1880 . ¢~ /5787
Complex voltage across the capacitance is
Uc=I(—xc) = 0.202-¢”"%". (- j1592) = 321.8-¢ 7> 1.
The instantaneous value of the voltage across the capacitance is
uc(t) = ImN2U . - e/ | = 455 1-sin(et — 32.13°) V.

3-15 (3.31). In scheme fig. 3.16, determine the ammeter reading, if

u(t) = 300-sin(wt —32.13°) V; ri1=12 Ohm; ry=x;,=16 Ohm; x;,=20 Ohm,;

X =32 Ohm; r3=x;3=100 Ohm; xc=12.5 Ohm.
Solution. Let’s determine the complex impedances of the parallel branches:
Z,=r +jx; =12 +;16 Ohm,; L =1+ j(xpp—Xcn) = 16 —j12 Ohm;
Z3 =r3= 100 Ohm, Z4:—jXC1:—j12.5 Ohm, Z5 :jXL3 :]100 Ohm.
The complex circuit admittance is
1 1 1 1 1 1 1 1 1
+ +—t + =
Z, Z, Zy Z4 12+jl16 16-,12 100 ;12,5 ;100
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=0.08 +,0.06 = 0.1-¢***"S.

The complex input voltage corresponding ® ®

to its sinusoid is as follows U= 300, e PV r
\/5 1 Xr2

We determine the current through the r3|::| X3

common circuit part by Ohm’s law u
k00 o 0o Xr1 r Xcl
[=Y.U=0.1.e"* 300 0 91 216559 4. ’ —
V2 y Xc2
Finally, ammeter reads 21.21 A. o ¢ ®

Fig.3.16
3-16 (3.32). In condition of the problem 3.12, &

determine the instrument reading with the aid of the complex-notation method.
Solution. Let’s combine an input voltage phasor with the real axis, it means
Uu=uU=200V.
Determine the complex branch impedances
lerl—jx1=6—j8 Ohm, ZZZjXZ:jl() Ohm, Z3:I"3 ].X'3 5 ]15 Ohm.
The complex circuit impedance is as follows

z-z+%2% g g MO0 640
The source current is  [; =g—&= 8—j6= 10-e 7% 4.
Z 16+ j12

The currents through the parallel branches are

L=1- 23 _ g2 —j20=22.36-¢ 7% 4;
AR VA 5—J5

L=1- Zy  _ eSO =—2+/14=14.14-¢""" 4.
ARIA! 5-Jj5

The voltage across the parallel branches is measured by a voltmeter and is supplied to
a wattmeter, it being
Up=15-2Z,=2236-¢ 710 = 223.6-¢/** =200 + 100 V.
The wattmeter reading is
Py =Re[Uy-1;]=Re[223,6-¢”°°.10-¢”°] = 1000 W.
Hence, the instrument readings are:
Ay —>104; A, —>2236A4; A3 —>14.144; V—>223.6V, W— 1000 W.

3-17 (3.33). In scheme fig. 3.17,a it is known: E, = E, = 100 V, furthermore, E, leads E,
by 90°; J =5 A, furthermore, the current of this source is in opposite phase to E»;
r=xc=10 Ohm; x; =20 Ohm.

It is necessary to determine the currents in all the branches as well as the wattmeter
reading, work out the reactive power balance and construct the topographic diagram for
loop 1-2-3-1.

Solution. Let’s combine the phasor £, with the real axis, then the source complexes are
as follows:

E, =100 V; E,=100-¢”" =100 V; J=5¢7"=—/5 4.
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Since there are two nodes in the scheme, then a rational method to determine the

currents is method of two nodes: U, = LYy —Ep)p—J ,

Y +Y,+7Y;
where the branch complex admittances are Y, =l =%= 0.18;
r
r=——t - L L s oyl - L _jors
Jjx; —jxc  j20—;10 ;10 - jxco —Jjlo
Then glz:100-0,1—]100-(—]0,1)+]5 —i50 V.

01— 0,1+ jO,1

Fig. 3.17

Determine the currents by Ohm’s law: [, = £-Un_ 1001_0‘] >0
r
I,=(Ey+ Up)-Xo= (100 +;50)-(-0.1) = 15 4;
I3=U»Y;=j5040.1=-5 4.

One may verify the correctness of the current determination by Kirchhoff’s current
law fornode 1: =7, + 1, +I3+J=0 or —-10+,;5+15-5—-;5=0.

The wattmeter reading is: Py = Re[U,4(—1;)]

Under Kirchhoff’s voltage law we find

Uiy=—Ey + I»(xc) =100 + 15-(-10) =250 V.

Then Py =Re[-;250-(—10—,5)]=-1250 W.

The reactive power balance:
the source reactive power is
Og=Im[E,-I{+ E>»- I3+ (- Up»)-J 1 =Im[100-(10 + j5) + j100-15 — j15:/5] = 2000 VAr;
the consumer reactive power is
Oc=L"(x;, —xc) + I (- xc) = 15°-10 — 5%-10 = 2000 VAr.

So, the reactive power balance Qg = QO is true.

While drawing the topographic diagram, assume @, =0, then

Q1= L(—jxg) =Un=j50V, @3=¢@—E=-100+;50V; @,=¢@3+1-r=0.

In fig. 3.17,b there is the required diagram.

Note, the current calculation may be fulfilled by the mesh current method having
solved the following equation system Iy (r — jxc) — Ly (—jxc) — J-(—jxc) = Ey;

{—ZI'(—jxc) + L (jx1 — 2jxc) + J-(—xc) = En.

=10 —j5 4;
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3-18 (3.34). In scheme fig. 3.18 it is known: E; =380 V, E, =100 ¥, J=10-¢/*" 4,
ry =10 Ohm, x,=14.29 Ohm,
ry =6 Ohm, x, = 3.3 Ohm.

Calculate the currents by the method of &~ -----
two nodes, make the checking calculation by E "
the mesh current method, work out the !
power Dbalance, construct the circuit @
topographic diagram combined with the ” I

=~

current phasor diagram.

Solution. 1. The complex branch impe- Q X
dances are: T 1)
lel/’] —jx1=10—j14.29 Ohm, ]1

Zz ZjX2=j3.3 Ohm, Zg =r;= 6 Ohm.
2. The current calculation by the method of two nodes is:
_ E1zl_l - EzZz_l +J _
Zl—l +Zz_1 +Z3_1
_380-(10—,14.29)"" = j100-(j3.3)"' +7.07 + j7.07 _
(10— j14.29) " +(j33) " +67!
= 83.60-¢/'*=-80.89 +j21.09 V.
g =E1= Y 8080892 J2L0_ o 45 e 1614+ 2096 4;
Z, 10— j14.29
_E,+U,, _j100-280.89 + ;21.09
Z, Jj3.3
U, —80.89+ ;21.09
L= =
A 6
3. The equation system for the loop currents is:
(Z, + Z3)-h+ Zy-In= E, — Z3J; (10 —j14.29+6)-I; + 6-1;; = 380 — 6-(7.07 +j7.07);
Zyh + (L, + 23)In=—-E,—Z3J. | 6L+ (j3.3 + 6)-Iy=—100—6-(7.07 +7.07).

The solution of the system is: [; =26.45-¢7*% A; Iy =— 44.13-¢"3% 4.
The branch currents determined through the loop currents are as follows:
L=5=2645¢"Y 4; L=-Iy=44.13-¢/77 4;
L=0+Ij+J=16.14+;20.96 —36.70 — j24.51 + 7.07 +j7.07 =—13.49 + j3.52 A.
4. The complex source power is:
So=Er I+ Ey I+ U J'=
=380-(16.14 +;20.96) +j100-(36.70 + ;j24.51) + (—80.89 +;21.09)-(7.07 — j7.07) =
=8162 —j3573 VA.

Yab

=44.13-¢/*7=36.70 + j24.51 4;

S

=13.93.¢/1%=_13.48 +j3.52 A.

The active and reactive power of consumers are:
Pe=1r + Ir; = 26.4510 + 13.93%.6 = 8160 W;
Oc = I\*(=x)) + L x, = —26.45°14.29 + 44.13%3.3 = -3571 VAr.

Since Pc~Re(Sg) and Oc~Im(Sg), it means the power balance is true.

5. Let’s calculate the potential complexes of the different circuit points. Assume
@, =0, then 0.,=U,;=-80.89+;21.09 V.
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The other potentials are
Q.=@,+E,=-80.82+7121,09 V;
Q.=@.,—E; =-460.89+;21.09 V;
©a=—1I-(~xi) =378.0-e" ¥4 V.

One may see the diagram in
fig. 3.19.

3.4. CIRCUITS WITH MUTUAL INDUCTANCE

3-19 (3.47). Mark similar terminals in scheme fig. 3.20,a.

Solution. Let’s mark the upper terminal of the first coil possessing w; number of turns
by the sign *, the bottom terminal being left without a sign. Further, we choose the
arbitrary direction of the first coil current #; (in the figure it is directed inside the
terminal with sign *).

With the aid of @11 @21 @22 @12
the right hand rule - A
(or the right-hand
screw rule), we
find the direction
of the magnetic
flux @;; of self-
induction of the
first coil. At the Fig. 3.20
same time we show the direction of the magnetic flux of mutual inductance @,
(subscript «1» — field by the current #;, subscript «2» — action upon the second coil).

In order to find the similar terminal (*) of the second coil, we choose the arbitrary
direction of the second coil current. For instance, the current i, enters into the bottom
terminal, then we find the directions of fluxes @,, and @;;.

In scheme fig. 3.20,a it happens the magnetic fluxes of self-induction and mutual
induction are subtracted (flow in opposite direction) in each coil. So, the currents i, and
i, are directed differently as regards the similar terminals, the terminal (*) of the second
coil being situated overhead.

Note, the position of similar terminals does not depend on the chosen directions of
the currents while marking, furthermore, their position is specified only by the magnetic
core construction and the winding path.

At further investigation of the scheme including windings w; and w,, the scheme
fig. 3.20,a 1s replaced by the scheme fig. 3.20,b.

a)




3-20 (3.48). In fig. 3.21,a there are inductively coupled coils which are connected in a
node with similar terminals, while in fig. 3.21,b the same coils are connected in a node
with unsimilar terminals. Determine the voltmeter reading in both cases, if:
x1 =20 Ohm, x, = 10 Ohm, the coil coupling coefficient is k= 0.5, capacitive reactance
is x3 =10 Ohm, emf e(?) = 100~/2 sin(wt) V.
Solution. Perform the calculations in complex form. The source complex emf in both
schemes is E = E-¢’" =100 V.

The voltmeter impedance is infinite, that’s why the voltmeter current in both schemes
is i =0, while the current complexes are

n=r-—% - 190 __ ;o4
Jx; —jx;  j20— 410

Voltage Uy, = I;-jx);, induced in the second coil by the alternating current [, has the
same direction as the current /; as regard to the similar terminals, which is reflected in
both schemes fig. 3.21,a and 3.21,b. The mutual inductive reactance is as follows

Xu= k- \[x1x, = 0.54/20-10 = 5+/2 Ohm.

One can calculate a voltage across the voltmeter terminals with the aid of Kirchhoff’s
voltage law. In scheme fig. 3.21,a Uy — L-(—jx3) — Uy =0, from here
Uy = (=j10)-(—j10) + (= j10)-j5+/2 =—100 + 10-7.07 =—29.3 V,
while the voltmeter reading is U, =293 V.
In the scheme fig. 3.21,b Uy—L(—jx3) + Uy =0, from here
Uy =(=j10)-(-j10) — (= j10):j5+/2 == 100 — 10-7.07 =— 170.7 V,
while the voltmeter reading is U, =170.7 V.
Note, this problem illustrates the practical way to clue the similar terminals of the
transformer windings. It is sufficient just to compare but the voltmeter reading for two
cases of the transformer secondary winding connection and to conclude.

b)

Fig.3.22

L
3-21 (3.49). The scheme parameters fig.3.22,a are r, =10 Ohm, x,=20 Ohm,
ry =40 Ohm, x, =30 Ohm, x);=20 Ohm, the supply voltage is U=220 V. Find the
instrument readings. Construct the circuit phasor diagram. Write down a power balance
equation. Determine the active power transmitted through the magnetic field from one
branch into another.

Solution. Assume U = 220 V. The complex branch impedances are
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Z=r+jx;=10+,20 Ohm, Z,=r,+ jx;=40+;30 Ohm, Zy = jx)=j20 Ohm.
Let’s employ the Kirchhoff’s equation system to calculate the currents:
I=L+L, LiZi—-LZy=U ©LiL—-LZy=U.

Solving the equation system of two latter equations, we obtain:

L-U-% +ZM2 _ 220740+ 30+ /20) = 12.6:¢ 7%= 11.09 - j5.99 4;
Z,Z,—-Zy (10+,20)(40+ j30)—(;20)
L=y Z1tZy . 220:(10+ 20+ )20)  _ ¢y, P_g 09053 4:

" Z,Z,-Zy (10+20)(40+ j30)—(j20)°
[=11.09—5.99 + 8.09 —j0.53 = 19.18 — j6.52 = 20.26-¢ 7"*""" 4.
Verify the power balance. The source power is
Sg=Pg+j0c=U1"=220-(19.18 +j6.52) = 4220 + j1434 VA.
Total active power of the consumers is
SPc =11 + Ly =12.6%10 + 811740 = 4219 W,
total reactive power is
30c = I'x + L'xy — 2-I-Lyxyrcos (Wi — W) =
=12.6720 + 8.11%30 — 2-12.6-8.11-20-cos(— 28.36° + 3.74°) = 1433 VAr.

Since both power balances are true, the problem is solved correctly.

Note, the component of the reactive power — — 2-I1-Ir-x)rcos(y; — wyp) =—3716 VAr
denotes the reactive power demand to create the magnetic flux necessary for the active
power transmission, while a sign «minus» of this power points to the mutual weakening
(demagnetization) of the self-induction fluxes by the mutual induction fluxes (see
fig. 3.20).

The wattmeter reading is Py= Re(U-15) = Re[220-(8.09 +0.53)] = 1780 W.

The wattmeter measures the active power delivered to the second branch by the

«electric manner»: Py, = Re(U- 1 ; )=1780 W.
The active power consumed by the second branch is determined in accordance with

Joule’s law Py =1L"r,=8.11740 = 2631 W.
Difference of these powers is delivered into the first branch through the magnetic
field P>y1 = Pojyp— Prc = 1780 — 2631 = - 851 W.

A sign «minusy in the result obtained indicates that in reality there is an active power
transmission from the first branch into the second one (P,_,, = +851 W) to cover the
power shortage (consumption greater than delivering).

Note, there is another way to calculate this active power transmitted:

Py =—1-Lyxyrsin(yy — wp) =—12.6-8.11-20-sin(-28.36° + 3.74°) = +851 W.

To construct a phasor diagram, initially we draw the current phasors (complexes) [

and I, (fig. 3.22,b). Then the voltage drops are calculated
Lr=12.6-10=126V, [;:x,=12.620=252V, Lxy=8.1120=162.27,
Lr,=8.11:40=324.4V, Lx,=8.11:30=2433V, [;-xy=12.620=252 V.

Starting from the coordinate origin, we perform the operations of the phasor addition

in accordance with the initial Kirchhoff’s equation system:
{ll"”l + Lijxy — Lyxy= U,
Lyry+ Lyjxy — Ljxy=U.
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The phasor diagram is presented in fig. 3.22,b.

3-22 (3.50). When switch P is open,
the voltmeter reading in scheme
fig.3.23 is 150 V. The scheme
parameters are U =300 V,

r1 =12 Ohm, x;; = 10 Ohm,

X1c =26 Ohm, r, =4 Ohm,

X, =20 Ohm, r=12 Ohm, Fig. 3.23
Find the scheme currents when the switch is closed, construct a circuit phasor
diagram.

Solution. Determine x,, from no-load condition of the single-phase transformer /,,=0
when the switch is open.

T e C LAZL LT
U,, = I,, -x); — the voltmeter reading, from here x 2%2%2 10 Ohm.

lo
Let’s check up a relationship resulting from the mutual induction phenomenon

XS XX, 0 10< V1020 — it’s true.
When the switch is closed, then in accordance with Kirchhoff’s voltage law for the
primary and secondary loops of the transformer, we have
I+Zi—bLZy=U, L2, - 112y =0,
where the complex impedance of the primary loop is
Zl =n +jle —jx1C= 12 —]16 Ohm,
that of the secondary loop is  Z, =r,+r+jx; =16 + ;20 Ohm,

mutual impedance is Zy =jxy=j10 Ohm,
the complex voltage is U=3007V.
Solving the equation system, we find:
I= Q'Z22 = 300-(16+j20) =12.55-¢7*%°=7.582 + j10 4;
Z\Zy-Zy (12-j16)(16+ j20)—(j10)’
p=—YZu 300-/19 = 4.9:e”'=_0.128 + j4.9 A,

2,Zy~Ziy (12 j16)(16+ j20)~(j10)°
Let’s check up the power balance on the ground of the current calculations.
S¢=P;+jOc=U1;=300-(7.582—;10) = 2275 — 3000 VA.
Total active power of the consumers is
SPc=1%r + L (ry+r) =12.55%10 + 4.9%16 = 2274 W ~ P
Total reactive power of the consumers is
S0c=1(x1,— x10) + LPxy = 2:-Im(Lyjxy- 1)) =
=12.55%(10 - 26) + 4.9%-20 — 2-Im(4.9-¢”°'".10-¢”°""-12.55.¢ 7°*¥") =
=—2040 — 2-Im(615-¢/"**°") =— 2040 — 960 = — 3000 VAr = Qg.
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Note, a transformer has no “electric” way to transmit energy from the primary coil
into the secondary one, that’s why the active power transmission is executed but
through the magnetic field, the following equality being kept

Pioy=—Re(Lyjxy-17) = L (ry + 7).
Let’s make sure:
Pi,=—Re(@.9-¢”7"10-¢”".12.55.¢ 7%’ ) = —_Re(615-¢/**%") = 3843 W »
~4.9%16=3842 W.
The voltmeter reading at the closed switch is
Uy=05Lr=49-12=58.8 V.
To construct a phasor diagram, we calculate the voltage drops:

I = 12,5512 = 150.6 V: Iixi, = 12,5510 = 125.5 V;
Iixic=12.5526=3263 V: Loxy =4.910=49 V;
L, =4.9-4=196V; Lx,=4.920=98 V:
Lry=4912=588 1; Ixy = 12.5510=125.5 V.

We start constructing a phasor diagram with the current phasors /; and [, on the
complex plane in accordance with the calculated complexes (fig. 3.24).
The voltage drop phasors are performed in accordance with Kirchhoff’s voltage law
for loops Lir + Lijxi, — byxy + L (%10 = U,
Lyry + Lery + Dyjxy — Lijxy = 0.

E_l | 113 Fig.3.25
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3-23 (3.51). Analyze the state of the circuit with an autotransformer (fig. 3.25,a), find
the active power transmitted through the magnetic field, construct a circuit phasor
diagram, if x; =40 Ohm, x, =80 Ohm, x, =50 Ohm, r;=40 Ohm, x3;=20 Ohm,
E=220V.
Solution. When the similar terminals have been marked with the aid of the magnetic
fluxes @, and @,,, the electric circuit scheme for calculation acquires the form in
fig. 3.25,b, its state is defined by Kirchhoff’s equation system

L=5L+15;

Lyjxy + Lyjxy + L (5x3) + L33 = E;

Lojxy + Lijxy — Iy (—jx3) — L3 = 0.

The circuit phasor diagram will be constructed in accordance with this equation
system.

To avoid solving of the equation system given above, we eliminate the mutual
inductance and in this way we obtain the equivalent scheme fig. 3.26,a and the
complex equivalent scheme corresponding to it shown in fig. 3.26,b.

The elimination is carried out in accordance with the following rule: if the inductively
coupled elements x; and x, converge in node » with their unsimilar terminals then the
positive calculated reactances +x,, = +wM are added to the inductive elements x; and
x, whereas the negative calculated inductive reactance —x;, = —wM is introduced into the
circuit part which is common for both inductive elements x; and x, (in the problem
under consideration this is branch Ne3) .

Assume the circuit complex emf fig. 3.26,b to be equal to

E=EVE=2207.

Fig. 3.26

The complex branch impedances are

Z, = jx1 +jxp =740 + 750 =790 Om,

2> = jx; +jx), =780 +j50 =130 Om,

Zs = r3— jx3 — jxy =40 — 20 — j50 = 40 — j70 = 80.62-¢ 7***" Om.
The input circuit impedance is

Linp =2, +%2190 +j13.0 . 8()_626,—j.60.25
Zr+ 25 7130+ 40 — j70

the fork impedance being
Zy Z; _j130'80,62e_j60'25
Zy+Z; - 7130+ 40— j70

= 132.4-¢""%" Ohm,

=145.3-¢ 7*°% Ohm.

Loy =
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Input currentis [, =——= 229 = 1.662-¢ 7% 4,
Zip 132.4¢110%
the fork voltage being Upy=1I,-Zy; = 1.662-¢ 7" 145.3.¢ 7*° = 241.5.¢ 7" 7,

the currents of the parallel branches being

Uy _241.5¢ 7%
Z, J130

Uy 241.5¢7737%
13 = =

23 82.6277%0%
To make sure the currents of the initial scheme fig 3.25,a are calculated correctly,
let’s check up the power balance:
- the generator power is
Sg=E-17=220-1.662-¢"""*" =359 + j69.1 VA = P; + jQ.
- the consumer active power is
3Pc=I"ry =3%40 =360 W ~ P,
- the consumer reactive power is
30c=17x) + L'xy + 2-I - Lyxyrcos (Wi — W) — I7x3 =
=1.662%-40 + 1.858%-80 + 2-1.662-1.858-50-cos(~10.89° + 127.45°) — 3%.20 =
=110.5+276.2 —138.1 — 180 = 68.6 VAr ~ Qg.
The active power transmitted from the first branch into the second one is
Py =Re(lyjxy- H) = Li-Lxyrsin(yy — yp) =
=1.662-1.858-50-sin(— 10.89° + 127.45°) = 138.1 W.
Pay attention, no active powers are consumed in the first and the second branches of
the scheme with an autotransformer, P,-= P,-=0, as there is no resistance in the
autotransformer windings (7, = r, = 0), correspondingly, there is no heat loss either.
The voltage across the portion ab of scheme fig. 3.25,b is
Uy = L1jx; + Dejxy = 1.662-¢ 7'¥°.40-¢° + 1.858-¢ 7'774%°.50.¢/ = 86.76-¢>%" 7,
and that across the portion bd
Ui = Lyjxy + Ljxys = L+ (r3— jx3) = 3-¢/2*-(40 - j20) = 134.2-¢ 77 V.
The power delivered to the first coil (portion ab) is
Sy = Usp - I1=86.76-¢”%"1.662-¢/"%" = 138.1 + j41.5 VA= Py, + jQrinp-
Since there is no heat loss at this portion, then the total active power delivered Py, 1s
to be transmitted into the second branch
Py =Py — 171 =138.1-0=138.1 1,
this fact is checkrd in the following way:
Soinp = Upa - I5=134.2- 777.1.858-¢*7%'= — 138.1 +j207.5 VA = Payp +jOinp.
As P,-= L*r, = 0, then the active power transmitted from the second branch into the
first one 1s as follows P,_,; =Py, — Pyc =—138.1-0=—138.1 ¥;
however, the sum is equal to zero: P;,, + P, ,; =138.1-138.1=0.
To construct a phasor diagram, one need find the voltage drops:

L= = 1.858-¢ 717747 4,

=3.0-¢/% 4.
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I1:x1 =1.662-40 = 66.5 V;
I)x),=1.858:50 =929 V;
Ir-x; =1.858-80 =150.6 V;
11:x),,=1.662-50 = 83.1 V;
]3 X3 = 3.20=60 V
Lr;=340=19.6 V,
the currents being
presented in an algebraic
form
1, =1.63—;0.31 4;
L=-1.13-j147 4,
L,=2.76+1.16 A.
On the complex plane
(fig. 3.27), we construct

the current phasors in accordance with Kirchhoff’s current law, this equation is taken
from the initial equation system; then we draw the voltage drop phasors in accordance
with the initial equations under Kirchhoff’s voltage law.

3-24 (3.52). In scheme fig. 3.28,a, calculate the currents, if U=100V, R,=5 Ohm,
Rz—x1—15 Ohm R3 xM—IO Ohm Xy = 25 Ohm.

Solution. Let’s solve the problem by the mesh current method, having eliminated first
the inductively coupled elements (fig. 3.50,b). The equation system is:

{lr(R1 +jxi —jxptjxy + Rs) — I (Rs + jxy) = U,
—l]'(R3 +jXM) + ZH'(R:J, +jXM—jXM +j)C2 + RZ) = O
—Ir(10 +/10) + Iyr(25 +425) = 0.

X] _x2
Zu
Ry
R; I
L Fig. 3.28
(o

The system solution results are as follows:

L =A/A=6.43-¢7% 4;

Ii=AdA=2.57e7* A.

The branch currents are determined through the loop currents by the superposition

principle: [, =1L = 6,43-¢ 7’ 4;

L=I=257e’" 4;
L=1—-1;=387e"" 4.
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3-25 (3.53). In scheme fig. 3.29,a, determine the currents, construct a phasor diagram,
find the active power transmitted from the first coil into the second one as well as the
voltmeter reading. Determine the circuit input impedance with the help of Ohm’s law
and by means of mutual inductance elimination. Numerical data are: U= 100V,
xc=x1=20 Ohm, x,=10 Ohm, r=10 Ohm, xyn: = xyp3 =10 Ohm, xp13 =5 Ohm.
Solution. Determine the similar terminals of the coils and construct a scheme for
calculation (fig. 3.29,b). Let’s solve the problem by Kirchhoff’s equation method. As
the infinite impedance of the voltmeter Z,= oo, there is no current through the third coil
I; = 0. Thus, the current /5 has no influence and is not taken into account while solving
the equations. The equation system has a view:

I=1+1; 3.1)
L (=jxctjx) + Lyxyn = U, (3.2)
Lijxyns + b (r + jxy) = U, (3.3)
Lijxns + Lyjxans = Uy (3.4)
Solve the equations (3.2) and (3.3) concerning /; and /:
{11.0 + 10 = 100; L =100/10 =10 4;
L10 + L(10 +10) = 100; [, =100+ 100+ J10) _ 5

- j10
From (3.1) it follows that /=10 + (= j10) = 14,14-¢ 7" 4.
To construct a phasor diagram (fig. 3.30,a), let’s find the voltage drops across all the

elements:

Uc= 1i-(wjx¢) = 10-(—j20) = — ;200 V; U=Lr=-j10-10=-,100 V;
Uxi = Lijx; = 10520 =200 V; Un= Lyjx, =—j10410=100 V;
Uxinz= Lyjxyn, = —j10:10 = 100 V; Uxior = Lijxanz = 10-10 =100 V.

Active power consumed by the first branch is as follows
P, =Re(U-I;) = Re(100-10)= 1000 7.
The power loss in the first branch is absent: AP, =r-1 2=0.
The active power transmitted from the first branch into the second one through the
magnetic field is as follows P, =P;— AP, =1000—-0= 1000 W.
The voltage across the voltmeter in accordance with (3.4) is
Uy=—-105—(=10)j10 =—j50 — 100 = 111.8-¢”**°" 1.
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The voltmeter readingis V— Uy=111.8 V.

The input impedance found by Ohm’s law is Z S — 7.07-¢’*" Ohm
L 1414.¢77%
a) b)
T Fig. 3.30
Uxn Y Uxc

After the elimination of the mutual inductance, we obtain a scheme fig. 3.30,b. Here
ZM :ijlz :]10 Ohm.
The circuit input impedance is
ZZZMJr(—]:xC +J:x1 _ZM)(r+j.3CZ —Zy)_
—JXet X~ Ly Fr+jx,—Zy

+M=j10+5—j5=7.07-ej45° Ohm. L] \
10— /10 & 1\

One may see the answer is the same as at the
calculation by Ohm’s law.

=710

3-26 (3.54). In scheme fig. 3.31, it is required to
establish an equation system using Kirchhoff’s laws
method. Calculate the currents by means of the
mutual inductance elimination. Determine the
currents by the mesh current method. Determine the Fio 331
power transmitted from the fist coil into the second 18- 2

one through the magnetic field. Numerical data are as follows: U= 220V, r; =6 Ohm,
x1 =10 Ohm, r, =12 Ohm, x, = 18 Ohm, r;= 18 Ohm, x3 =20 Ohm, x,;=8 Ohm.

\
o




Solution. 1. Let’s establish a computation scheme (fig. 3.32,a). The equation system to
find the currents by Kirchhoff’s laws is:
L-bL-5L=0;
ri-LitjxvLitjxy Lty Dtjxs-bhtjxrl = U,
— 1yl —jxy Lo — jxy 1y + 13— jxs [ = 0.
2. Eliminate the mutual inductance (fig. 3.32,b) and compute the circuit obtained.
Zi=r +jx; +jxy =6+ 18 = 18.97-¢/""%" Ohm,
Zo=ry+ jxy +jxy = 12 + j26 = 28.64-¢’°% Ohm,
Zs=r3— jx3—jxy = 18 —j28 =33.29-¢ ”*"*" Ohm.
Z,-Zy 28.64-¢/%% .3329.07/°73
Zy+Z, 12+ j26+18— ;28

The circuit input impedance and currents are 4
Zip="21 + Zo3 =6+ j18 +31.04 + j6.47 = 37.04 + j24.47 = 44.39-¢”*>" Ohm.

Z3= =31.70-¢/""* = 31.04 + j6.47 Ohm.

f=Z - 20 496075 4,
© Zip 4439073
o _J11.8 -
L :ll'@= 4.96.¢ 735 31.7-e — 5.49.0 7869 A,
2 28.64- /652
e J118 o
l3=ll'@= 4.96-¢ 7" 3.7-e = 4.72.6735% 4.
Z3 33.29.¢7/%73

3. The equation system by the mesh current method is as follows:
{(7’1 + X1 F 1ot jxy +j2x0) -y — (2 + jxo +jxag) L = U
— (ry + jxy T jxa) L H(ra+ jxa +r3—jxs)-Iy = 0;
(18 + j44)-I — (12 + j26)-I;; = 220;
{— (12 +j26) -4, +(30 —j2)-Iy = 0.
Its solution is [;=4.96-e 7" 4, ;=472 4.
The branch currents are: [, =/[;= 4.96-¢ 7% 4, L=1Iy= 4.72-¢7% 4,
L=5—I1=496¢77" —472.% =549. 7 4.
4. The active power transmitted from the first coil into the second one by a magnetic
field is as follows:
Py =xp-11- b sin(y; — yip) = 8-4.96-5.49-sin(-33.5° + 86.9°) = 1749 W.

3-27 (3.56). Mark similar terminals of the coils

fig. 3.33. —

Answer: There are three pairs of similar wy |

terminals, namely: —

upper terminal of the 1% coil and bottom one of  O— o O
the 2" \) (\)
uPperd terminal of the 2™ coil and bottom one of W2 g | (\) w3
the 3"; P -
upperc1 terminal of the 1* coil and bottom one of o] O
the 3™,
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4. THREE-PHASE CIRCUITS
4.1. CALCULATION OF THE SYMMETRICAL THREE-PHASE CIRCUITS
4-1 (4.1). A symmetrical three-phase network of voltage U =380 V' supplies with
energy a balanced load whose phases are connected in star (fig. 4.1,a), its phase
impedance being » =12 Ohm, x =16 Ohm.
Find the instrument readings, construct of a phasor diagram.

a) v,

Solution. When one talks about the voltage of a three-phase circuit, it means on default
the line-to-line network voltage. When line-to-neutral or simply phase voltage is given,
it is expressly stated.
In conditions of the present problem, the network voltage is U= 380 V, moreover,
because of the symmetry: U,z = Upc=Ucy=U=380V.
Phase voltages are /3 times less than line voltages:
U= U= Uc=U/N3 =380/+/3 =220 .
Assume the generator phases are Y-connected, then the generator phase voltages are
E,=Eg=FEc=U,,=220V.
In a symmetrical system Y-V, the junction voltage is absent Uy =0 and the circuit
state calculation is made by the equivalent scheme for but a single phase (fig. 4.1,b).
Assume £, =220 V, the current in the equivalent scheme is
_E,-Uy_ 220 _ 117315 4,
Z, 12+ j16
furthermore, the consumer phase voltage is U 4o, = E4— Uy = E4= Us.

L

Write down the results of computation of the working condition of other phases (B
and C) on the ground of the idea of the symmetrical three-phase system of the direct
sequential order of phases

Ey=Upp=Us=Ese”? =220.¢7"

Ec= QCO1 =Uc= EA-eﬂzoo =220-¢/?"" Vv
similarly for currents Ig=Lre?? =117 4,
I ZIA_ejIZO" = 11.6/5687° 4
The circuit phasor diagram is presented in fig. 4.2; the potential of the generator
neutral point is zero @ = 0 (fig. 4.1,b); the generator windings are Y-connected.

0 =E(=220V; @z=2207"""V; @c=220""V; Q=20+ Uv=0;
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Uiwo=04—Qo=E = QAOIZSQA—Qq:QA:ZZO v

similarly U =@5—@0=220-¢7"" V; Uc=0c—@o=220-¢"*"V;
the phase currents are to be oriented concerning their phase voltages (they are shifted by

the angle ¢ = arctgﬁz arctg%z 53.13°). +1
r

Line voltages are:
Up=04— @5 =Ur~3-¢”"= 380" Uis=Upm
Vi .. . - @+30%
Upc=Uipe™??" =380-e 7 V; U, f
Ucs=Uge™ =380-¢" V. Ic -

Voltages and currents of the wattmeters [0)
coils are: ¢-30
Un=Up= 380-¢”” Vi 4_( (
Iy =1,= ll-e_j53'1301f1; QWZ\
U=~ Usc=380-¢" V;
Iym=1c=1 1.7 4.

The instrument readings:
- ammeter A measures the line current Iz, C 1, Usc=-Un B

its reading being Iz =11 4; Puc. 4.2 -
- voltmeter ¥, measures the line voltage o

UAB =380 V,
- voltmeter }; measures the phase voltage of the consumer U, =220 V;
- the wattmeters readings are:

*

Pyi=Re[Upi- Ly ] =Re[Uyp I 41 = Uyp-Lycos(p + 30°)=
=380-11-cos(53.13°+30°) = 500 W;

Pwy=Re[Upr Iy ] =Re[Ucsp L] = Ucplc-cos(p —30°) =
=380-11-cos(53.13° - 30°)= 3846 W.
Let’s pay attention to the sum of these two wattmeters readings:
Py + Pyr=U-I-cos(p + 30°) + U-I-cos(p — 30°) =
= U-I-cos30°-cosp — U-I-sin30°-sin¢p + U-I-cos30°-cosp + U-1-sin30°-sinp =

= 2-U-I-cos30°-cosqp = 2-U-1-?-cosgo =\/§-U-1-cosgo = P — active power of the

balanced consumer. In the given example, it is
V3 -U-I-cosp=+/3-380-11-cos(53.13°) = 4346 = 500 + 3846 W.

4-2 (4.2). Analyze the symmetrical mode of the star-connection (fig.4.3), if
r =40 Ohm, x =80 Ohm, a network voltage U =380 V.
Construct a circuit phasor diagram.
Answers: [-=246A4; Uz=2207; Upc=3807;
Py1=—56 Bm; Pyy=780 W, Py + Pyp=3-F-r=726W.
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Cco ®
Fig. 4.3

4-3 (4.3). The phases of the consumer
of the problem 4.2 are A-connected
(fig. 4.4). Analyze the scheme
working mode. Find the ratio between
the line currents /, of scheme fig. 4.4
and the line currents 7y of fig. 4.3.
Solution. At A-connection of the
consumer, its line voltages are equal to
the phase voltages. Assume U,z =U =
=380 V. Then

U= U,z =380 V; Uy =380-¢7'%" y;

Y

(1)

Phase currents are determined by Ohm’s law:

Sl 380y s prman .
—ax Z 40 _ j80 9
Iy, = QgY = lax-ef‘moo: 4.25.¢ 7363 A;

Q_

L.=

Z

CZ = [,-¢"" = 4250784 4,

Line currents are found under Kirchhoff’s current law:
L= L~ L. =3 Lee 7" =736 4;
Iy = Iy~ L =3 Lpre ™ = L 7P =736 T 4;
Le=1.—1, =\/§lcz,efi3o° -7, 12 = 7 36015344 4
A phasor diagram of the voltages and currents of the A-connection is constructed in
such a way as to present the correlation between the line currents and the phase currents
in a convenient manner. For that, the phase voltage phasors of A-connection are shown
originating from one and the same point (fig. 4.5,a), the phase currents are to be
oriented concerning these voltages, the line currents are determined in accordance with

Kirchhoff’s current law. On the ground of the correlations between the currents
presented in the phasor diagram, it is possible to obtain the above-written correlations

for the line current calculation.

Fig. 4.4

Ucz=380-¢/"2 V.

Note, the traditional way of the phasor diagram construction is allowable (the phasor
diagram can be made in the form of the complex potential diagram) (fig. 4.2), the
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triangle phase currents being oriented concerning the network line voltages, which are
equal to the triangle phase voltages as it is shown in fig. 4.5,b. However, such
construction demands to transport the phase currents with the opposite sign while
constructing the line currents.

On the ground of the calculations, we write down the ammeters readings:
- line current 7, =7.36 A 1s measured by ammeter A4;;

- phase current of the A-connection is measured by the ammeter 4,, its reading being
1.=4.25A.

a) I+1

Uis

At the star-connection of the same impedances, the line currents are Iy = 2.46 A
(problem 4.2). Thus, when reconnecting the impedances from the star into delta at the

: : : 1 6 :
same line voltage, a line current increases by —==——= 3 times.

The wattmeters readings in scheme fig. 4.4 are:

*

Py1=Re[U,c-1 ;] =Re[-380-¢/*".7.36.e 7>**=— 168 W

Pyr=Re[Usc-15]=Re[380-¢ 7'*".7.36.¢*°1 = 2334 W.
The sum of the readings of two wattmeters Py, + Py, =2167 W is equal to the active
power of the three-phase consumer: P = 3-I7,, = 3-4.2540 = 2167 W.

4-4 (4.4). Find the instrument readings in scheme fig. 4.6,a, if

r=76 Ohm, x=44 Ohm, U=3807V.
Solution. Compose an equivalent scheme of the three-phase circuit under consideration
but for a single phase (4) (fig. 4.6,b) and determine its parameters:

- a phase voltage of the source U,=—==—=2201V,
- a phase impedance of the star, equivalent to the triangle ry=§=7?6 Ohm.
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The further calculation is performed in complex form, the source voltage being
assumed U,=220 V1"

- a phase current of the 1% consumer Y-connected is 7,4 _Ua 220 J5 A;
jx  j44
- a line current of the A-connection is L= Uua_ 22706. 3 38073 =543 4.
Ty

The equivalent scheme fig. 4.6,b does not 4o—>e >
allow to calculate the phase current of the Iy bha I,
symmetrical triangle, it being V3 times less
than a line current and being not in phase with
it (see solution of the problem 4.3): BO
Iabzlﬂ.em":ﬂ &P = 5.5 4 Y1,

V3o 3

L= Lye " =5e7" 4 co *
Lo=Lye’™" =56/ 4.

The generator line current is Z4

L=+ by=—j5+53 =107 4,
The current of the wattmeter current coil is Fig. 4.7
Ip=1Is=Lre 2 =107 4.

Voltage across the wattmeter potential coil is
Up=Usc=3Usre =380 7" 7.
The wattmeter reading is
Py=Re[Uy- Iy 1 =Re[380-¢ 7**-10-¢/"] =— 1900 W.
The ammeters readings are:
A > Lu=54, Ay— Ly=5V3 4, A3— Ic4=5 A.
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Note, for scheme fig. 4.6,a another equivalent scheme (fig. 4.7) is possible, where
star-connection of the 1% consumer is replaced by the equivalent A-connection,
furthermore, Z,=3-Zy=3:j44 =132 Ohm.

Working mode of each triangle is calculated separately: at the phase voltage
U,=220V the line voltage is U,z = QA\/geﬂoo: 380-¢% V.

U,z _380-¢"

=5¢""4
r 76 ’

Currents are [, =

i30
L= Iab\/ge_ﬁoo =5 \/g A, 1= Y s = 380-¢’ :i e 7" A,
o oz, 132 B
L= laxﬁeﬂ3002 5.7 = —j54
And so on as in the text above.

4-5 (4.5). A source of the line voltage U= 660V (fig.4.8,a) supplies some loads
through the reactors xo =25 Ohm, namely: a Y-connected motor each phase of which
possesses the impedance r=x=50 Ohm; three-phase oil-filled capacitor used to
improve the installation power factor, its phases being A-connected and possessing the
reactance xc= 300 Ohm.

Determine the voltage across the motor terminals and its power. Find out the voltage
loss.

a) X0

xe/3

Fig. 4.8

Solution. Calculate the three-phase system by the equivalent single-phase diagram (fig.
4.8b).

Assume U, = U, =380 V, then
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U 4 _ 380 380
IRy e (50+ j50)(~j100) 25100
r+ jx— jxy 50+ 50— 7100
the motor phase voltage is

Uy = 1 5P ) 3 687,06 9140%. 100 = 368.7.¢ 740
r+ jx — jxy

=3.687-¢ 7% 4,

L

JXo

A line voltage across the motor terminals (fig. 4.8,a) is
Uiz =~3 -Uyg =3 368.7=638.6 V.
The voltage loss is AU= U — Uyip =660 —638.6 =214V, which equals in a

percentage term from the network voltage

AU% _av -100=M 100 = 3.24%.
660

U4z
Note, according to the Regulations for Operation of Consumer Electrical Installations
(IIT9), a voltage loss must not exceed 5%. So, a scheme comprising reactors to confine
the short-currents at the consumer terminals complies with I1T3 referring the allowable
voltage loss.
. U 7. o J14.04
A motor currentis [, = _Al_ =368 /e .
r+ jx 50+ ;50
The active power of the motor is
P=\3-Uygi-Lircos(o) =3 I,/ r=3-5215%50 = 4079 W.

=5215.e 7% 4,

4-6 (4.6). Voltage of the symmetrical three-phase network is U =380 V' (fig. 4.9). The
parameters of the circuit under study are Z, = 1.5 Ohm, Z, =1 +j2 Ohm, Z3 = — j6 Ohm,
Z4=21+j12 Ohm. Determine the line and the phase currents of the consumers. Find
out the line and phase voltages of each consumer.

Z
A
IlA
U VA
BO [ ]
Z
Co L

Answers: [, =324 A4; 1;,=1123A4;, ,,=1945A4; I,,=25.93 A4;
Uph3 =194.5 V, Ualbl =337 V, Ua2b2 = Uph4 =272 V.

4-7 (4.7). The electric energy is delivered by two transmission lines 721 and 712 to the
plant substation from two three-phase sources located in the different geographical
points (fig. 4.10).
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Voltages at the line input are equal to each other and are 6.3 &V, they are in phase in
the no-load condition (they have one and the same initial phase).
Phase resistance and reactance of the first U=6.3kV U=63kV

and the second lines are, respectively: @ @

r1=0.5 Ohm, x,=0.3 Ohm, r,=0.4 Ohm,

x,= 0.6 Ohm. LTI TL2Z "
Nominal voltage at the substation bus- ™' Y

bars is U,=6 kV, installed power of the Bgs-bar s U, =6 ,]fV

motors is P,=4000 kW at cosp,=0.8 T

(p,>0), reactive power of the static r=0 g? r=0

capacitors is Q,= 2500 kVAr. x=0 x=0
Determine the voltage across the p

substation bus-bars, the line currents, active cosngo Capacitors 0

and reactive powers of the sources as well as .

their volt-amperes. Fig. 4.10

Solution. Let’s draw an equivalent scheme
of the three-phase system for a single phase (fig. 4.11). Phase emf are calculated
through the given line voltages at the beginnings of the transmission lines U, = Us:

As these voltages are in
phase to each other at the
parallel work of sources then
they have identical initial
phases at the corresponding
phases. Assume ;= y,,=0,
then the emf complexes are
E=E,=FE =36387V. Fig. 4.11

Complex impedances of the
lines per phase are Z;=r+jx; =0.5 +0.3 Ohm, Z,=r,+jx,=0.4+;0.6 Ohm.

The parameters of the different taps may be calculated by their nominal data.

For tap 3, we have P,= \/g U, -1, -cos,, from here

I,= L ___4000 =481 4;
J3U,cosp, ~/3-6-0.8
phase impedance at the Y-connected load is Z; = Uy _ 6000 _ 7.2 Ohm;
31, 3481
1ts resistance is ry= Zs-cos@,=7.2-0.8 =5.76 Ohm;
its reactance is X3=Zy-sing,= Zy- 1 —cos* ¢, =7.2:0.6 = 4.32 Ohm;
its complex impedance is Zy =13+ jx3=5.76 + j4.32 = 7.2-¢”**" Ohm.

For capacitors, we have 0,=314, x4 =\/§ -U,-14,, from here

_ 2500 u 00 _ 144 Ohm; 2= jxs=—j14.4 Ohm.

Ly =2 =240.6 4; xg=——1 =
Y36 VB, 32406
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Calculate the scheme fig. 4.11 by method of two nodes.

1 1

+
0.5+ j0.3 0.4+ j0.6
1 1 1 1

+ + +
0.5+ 0.3 0.4+ 0.6 —jl4d 576+ j4.32
=3530—;72.8 =3531-¢ 7% 1;

=223.1 +j11.77 =223.4-¢"" 4;

E,-U,, _3638-3530+,72.8
- Z, 0.5+ ;0.3
_E,-U,, 3638-3530+ ;72.8
2 Z, 04+ ,06
=% 39307728 _ 3065 7302.2 = 490.4-¢ 780" 4;
Z;z 576+ j4.32
]4:Q12 _3530-,72.8
T Zy — j14.4
The line voltage at the substation bus-bars is
Ui =3 Ui =+/3-3531 =6115 B=6.115 «B.
The currents in lines are [;,=223.4A4; I,=180.3A4.
The complex powers of the sources (at the line input) are

I~
I

=166.8 — j65.5 = 180.3-¢ 7>  4;

=5+ /245 =245.1-"" 4.

S, =3-E; 11 3-3638-(223.1 —j11.78)-10 > = 2435 — j128.5 kVA,

Sy= 3By, = 3:3638-(166.8 + 65.5)-10 > = 1685 + j747.5 kVA,

from here P, =2435 kW, 0,=-128.5 kVAr, S1= 2438 kVA;
P,=1685 kW, 0,=747.5 kVAr, S,=1843 kVA.

4.2. UNBALANCED THREE-PHASE CIRCUITS

b A
a) "\EA A ]A r ) 4 EA:QA

»»TH:F

- U
0

'Q
i _’.____ -
—|\
i
(oo
&~

83



4-8 (4.13). Determine the currents of the four-wire circuit (fig. 4.12,a) as well as the
voltages across the phases of the unbalanced consumer supplied from the symmetrical

three-phase network of voltage U=380 V, if r= oL ~ 1 44 Ohm.

oC

Find out the active and reactive powers of the unbalanced consumer, construct a
phasor diagram.
Solution. On default, one may assume the phases of the symmetrical generator are Y-
connected with the neutral point O brought out (in fig. 4.12,a it is shown by dash lines).
Since the neutral conductor impedance is zero Zy=0, then the potentials are
©o=@n=0and Uy=9@o-00=0.

In this case the phase voltages of the unbalanced consumer are equal to the phase emf
of the symmetrical generator U,=E,— Uy =E,, similarly Uz=Ep, Uc=Ec.

The phase emf is E=£=@= 220 V.
V3 43
Having assumed E,=220V, we obtain Ez=220-¢ 7"V, Ec.=220-¢"*"V.
U
Under Ohm’s law, the currents are [, =—4 =% =54;
Zy
-j120 120
ZBZQB :220'3 / :5'8—j210°A; lczl_]c 2220'ej =5-ej21°°A,
Zg  44.¢7% Zc  44.¢77%

furthermore, in accordance with Kirchhoff’s current law we have
Iv=L+ I+ Ic=51+e? "+ %) =501 - 3)=-3.64 4.
The consumer active power 1s

P=P,+Pg+Pc= 21% = [ r=5%44=1100 W.

The reactive power is determlned as the algebraic sum of the powers of the consumer
three phases:
1
0=0,+0z+0c= Zsz = Iy oL - I — =5%44 — 5244 =0.
©
The circuit phasor dlagram is presented in fig. 4.12,b.

4-9 (4.14). Solve the problem 4.8 for the open neutral conductor.
Solution. Let’s perform a scheme of installation for calculation (fig. 4.13,a).
Compute the junction voltage (voltage of the neutral displacement)

Er s Ec
Uy=S—5F—=C=220(1 + e "7 +e”7) =160 V.
+—+
Zy Zp Zc
The consumer phase voltages are

U,=E,— Uy =220+ 160=1380 V, U,=380V;

Ug=Eg— Uy =220-¢ 7"+ 160=50—;190 ¥, Uz=196.5V;

Uc=Ec— Uy =220-¢/*"+160=50+,190 ¥,  Uc=196.5V.
The consumer phase currents are equal to the line currents:
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1,=24=>%9_g a4, 1,=8.64 4;

- Z, 44 !

=300 45 iaa, Iy=447 4;
Zp Jj44

=L S0 M0 144, Ic=4.47 4.
Zc —j44

Calculations are checked in accordance with Kirchhoff’s current law:
I, + 1z +1-=0,1.e. it’s true.

3
The consumer active power is P =ZPq =172r=28.64%44=73285W.
1

3
The reactive power is 0=X0,=150L-Ic" % =4.47°44 —4.47°44 =0,
1 (0
44
“TN\La o4 ], r Uil E4

4-10 (4.15). Compute the currents of the unbalanced triangle (fig. 4.14,a), construct a
phasor diagram, if U=380V, r=xc= 100 Ohm, x, = 1002 Ohm.

85



Defind the wattmeters readings, compare them with the active power of the
unbalanced three-phase consumer.
Solution. When an impedance triangle is connected to a three-phase generator, the
generator line voltages are equal to the load phase voltages. Assume
(_]AB =380 V= QA)(, then
Upy=Upc=1380¢ 7"V, Ucz= Ucs=380-¢'*" V.
We find the triangle phase currents by Ohm’s law:

_—j120 o
Iaxz—QAX _380_ 3.8 4; gby=Q3Y=380 C  — 19427 4;
Z4x 100 Zgy  1004/2¢7%

We find the line currents by Kirchhoff’s current law
Li=1,—1,=38-38¢%"=38+33+1.9=7.1+,1.9=735¢"4;
Is=1Iy—L.=—23+j134-38=-6.13+,1.34=-6.28¢77" 4;
Ie=1.—1L,=-33-j1.9+233-/1.34=-097—;3.24 =— 338" 4.

A phasor diagram for the impedance triangle is presented in fig. 4.14,b.

The wattmeters readings are

*

Pyi=Re[Uss I ,]=Re[380-(7.1 —j1.9)] = 2698 I,

Pyr=Re[Ucs I ] =Re[-380-¢ 7*”" (= 3.38-¢ 77 =— 1250 W.

The active power of the unbalanced load is
P =P+ Pgy+ Pcy= 1, =3.8100 = 1444 W

Sum of readings of two wattmeters in the scheme is

Py + Pyr=2698 — 1250 = 1448 W= P.

Thus, the considered scheme of two wattmeters connection is a scheme to measure
the active power in a three-phase three-wire system, the difference in the fourth digit of
answer is the result of the number rounding up.

4-11 (4.16). The scheme given in problem 4.10 is supplied from the symmetrical source,
the phases of which are A-connected. Assuming the source to be ideal (fig. 4.15,a), a
phase emf to be equal to E,x=380 V, determine the generator phase currents.

Solution. Since the inner impedance of the phases of the three-phase source is equal to
zero, then, at any load current, the line voltages are as follows:
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Usp=Ewx=380 V, Usc= Esy=380-¢ "™V, Ucy=Ec;= 380" 1
which coincides with the line voltages in the scheme given in problem 4.10, the solution
of which gave the line currents

Li=71+j194; Iz=-6.13+;1344; [-=-0.97—-;324A.
To compute the generator phase currents, let’s establish Kirchhoff’s equation system.
By Kirchhoff’s current law for nodes:
A) Lip—Ica=Li;  B) Igc— Liz= I
The equation by Kirchhoff’s voltage law for a loop consisting of the generator phases
is written taking into account that the inner impedance of a generator phase Z can be of
any value, however, it is one and the same for each phase, it means that the generator is
symmetrical . We obtain =~ Iyp-Z + Igc-Z + IcyZ = Eqx + Egy + Ecy.
For a symmetrical generator, there is an identity E,x+ Epy+Ecz=0, that’s why
Z-(Lyp + Ipc + Icy)= 0 at any inner impedance Z.
Thus, to compute the source phase currents, it is necessary to solve an equation
system Lip—Ica= Ly;
Ipc— Lig= Ip;
Lig + Ipc + Ics=0;
from here taking into account [, + Iz + I-= 0, we have:

1,-1 Ip—-1 Io—1
] _=4 =B . ] =B £C : I —_=C +£4 )
£4B 3 iBC 3 £CA 3
For an example under consideration, we have:
ZAB=7'1”1'9+36'13_11'34=4.41 +0.19 4, Lis= 441 4;
ZBC:—6.13+]1.343+ 0.97+,3.24 1714+ /1.53 4, Ipe=23 A:
[CA2_0'97_J3'234_7'1_]1'9=—2.69 JLTLA, I =3.19 4.

Note, the source phase currents differ from the load phase currents which are in
accordance with problem 4.10: [,,=3.84; [;,,=274; 1.=38A4.
A phasor diagram of the source currents is presented in fig. 4.15,b.

Fig. 4.16

4-12 (4.17). The three-phase system A-A (fig. 4.16) is applied for the energy supply of
the lighting in dangerous mediums (coal dust and slack or methane in mines, flour-
milling dust, woodworking shops, paint-and-lacquer industry, etc.).
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The generator is symmetrical, its phase emf being E,x= Ezy=Ec; =127 V, inner
phase impedance being x =9 Ohm. The load is unbalanced, furthermore, r,= 20 Ohm,
ry=30 Ohm, r;= 50 Ohm. Analyze the circuit state.

Solution. Let’s transform the active three-pole network into an equivalent star-

: E 127 x_ 9
connection (fig. 4.17): E ,=Ez=E=—4X="""=733V, xy=2=>=3 Ohm.
(fig ) 4= Lp c 5B B =373
Do the same with the load. The impedances of the equivalent star are

n+r,+r 20+30+50
=2 2930 _ o, o nn 005,
n+r+r 100 n+r+r 100

Assume E,=73.3 V,then Ez=73.3-¢7?" V, Ec=733-¢"" V.
The junction voltage is

E, Ep Ec 733 733-¢7/120 7337120
—+ —+ : + +
_rytjxy  rgtjxy  re+jxy 10+ ;3 6+ ;3 15+/3 _
1 1 1 1 1 1
+ + + +
ry+jxy rg+jxy ro+ jxy 10+/3 6+;3 15+ 3
=—17.05-¢”"" =—-8—-j15.05 V. Ef xy 4 7
The line currents are @m&m
_ : U
_E,-Uy _733+8+15.05_ E, & ABL

I B
Ty 10+ 3 0.< 9 NG S T8 5 & °
=7.87—0.857 4; i
Ep-Uy @ ‘~RAC e :lrc
lBZ—.Z
rg + jxy U

. ~N
_—36.65—63.48+8+ j15.05 _ Fig. 4.17
6+ /3
=—7.047 —j4.545 4,
lCZEC —Uy _—36.65+/63.48+8+ /15.05 0.829 + j5.397 A.

re + jxy 15+ ;3
The load line voltage is
Up=1Lyrg—Igrpg=(7.87—70.857)-10 — (— 7.047 — j4.545)-6 =

=121 +,18.7=122.4-¢"7" V.
The phase currents of the lighting load are (fig. 4.16)
“Uup 121H 187 _ ¢ s +70.935 = 6.122-¢”*7" 4;
"

Lo=1p—1,=6.05+;0.935—7.87+;0.857 =—1.82 +/1.792 = 2.554.¢/* 4,
Do =Ly + I3 =6.05 + j0.935 — 7.047 — j4.545 = — 0.997 — j3.61 = 3.745.¢ /'®** 4.

The line voltages are

UBC:]bc'r2: 112.4 V, UCA:Iw'I"3: 127.7 V.

The active power of the lighting load and generator is

P=Pu+Pyc+ Pey=ILy i+ L r+ L r=

!ab
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=6.1227-10 + 3.745>30 + 2.554°.50 = 1122 W= 1.122 kW.
The phase currents of the source (see problem 4.11)

Lm%: 4.972 +1.229 = 5.122-¢/* 4;

Ly —Lc _ ;g3 —j3.314=-3.91.¢""7 4;

Ie—-1,4

=_2.9+,2.085=—-3.572-¢ """ 4.

Iez=

The reactive power of the generator (and of the whole circuit) is
O0=0ux+QOpr+ Qcz= Lt x+ Igy x+ ICZZ'X =
=9.(5.122> + 3.91> + 3.572%) = 488.5 VAr = 0.4885 kVAr.
The source volt-amperes are

S=P? +0? =41.1227 + 0.4885> = 1.224 kVA.

The source power factor is cos@ _p_Ll22_ 0.917
S 1.224
C
r
RN
Fig. 4.18

4.13 (4.18). A three-phase circuit (fig. 4.18) is connected to a symmetrical generator of
voltage U= 660 V. The circuit parameters are

r=owlL _ 1 10 Ohm, r;=wL=5 Ohm.
oC

Compute the line and phase currents of all the circuit parts.
Solution. Let’s modify the scheme by means of the method of equivalent
simplifications. Initially, substitute the equivalent impedance triangle for the non-
balanced star without a neutral conductor:
10- 510

—Jj10

Zab =ij+r+r']aiL =710+ 10+

e

=10 Ohm,

Lyt =r—]J ! + wC)_ 10 —;10 +—10'(_]10) =—j10 Ohm,
J : J ; J
Q] JjoL j10
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+

j—j1o 10 +%{;ﬂo) — 110 Ohm.

oC
Z =joL —j
Seat =J / oC r
Henceforward, two impedance triangles are connected in parallel (fig. 4.19,a).
a) b)
ao % ao
l ]ab
Zabl
C anl
b U el
L Ica
cO T Flg 4.19 cCO

These two triangles may be replaced by the equivalent one with the following phase
impedances

7z .(_ -lj
S __abl ]a)C 10— 10)
ab — -
- 1 10— 710
7 i J J
Lab1 —J oC
this parallel lossless loop, its input impedance being infinite (open circuit as regards to
the rest of the scheme);
Zbc:Zbd -(].a)L+r):—].10(]1.0+10): 10— /10 Ohm:
Ly +joL+r —jl10+ j10+10
7 Zeg v _10-10
= Z.a+r 10+10
As a result, we have an equivalent
scheme of the load connected to the
terminals a-b-c, it being presented in
fig. 4.19,b.
Imagine, the coils of the
symmetrical three-phase source are

Y-connected with emf

= oo, consequently, there is the current resonance in

=5 Ohm.

We obtain the transformed scheme fig. 4.20. For this scheme
E, Eg E- 380 380-¢/120 380.¢/'1%
+ + + +
U :r1+gm joL, +Z,. ja)L1=5+5 j5+10—- /10 jS
Un
1 1 1 1 1 1
+ + + —+ —
n+Z, JjoL+Z, joL 545 j5+10- ;10 5
The generator line currents are

=200+/225 V.
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E,-Uy _380-200-,225

/- =18 —,22.5 4;
7’1+an >+3
_Ep-Uy _=190-/330-200-7225_ 4 .oos .
joL, +Zp, Jj3+10=/10
fo=e=Uy 190+ 330-200=J225 _», | gy
JoL, J3

The line voltages across the consumer terminals on the ground of the scheme fig.
4.20 are:
Up=14Zcy— IpZpe = (18 —j22.5)-5 — (- 39 —j55.5)-(10 —j10) = 1035 +j52.5 V;
Upe =1p-Zpe = (— 39 —j55.5)-(10 —j10) =— 945 — j165 V;
Uw=—14Zy=—(18—22.5)-5=-90+;112.5 V.

Further, recur to the initial scheme fig. 4.18 and work out the phase currents of the
U, 1035+ ;52,5

triangle Ly = : =-15.25+,103.5 4;
_ ]L - Jj10
oC
Lo =—Zbe ZIBZION_ 555 39 4,
r+ jolL 10+ /10
L, =Lea Z0+J1IZ 5——9+111 25 4.
r 10
The line currents of the triangle are [, =1, — 1., =3.75 +j92.25 4;
Ib_lbc ——5025 ]645A
! lca 1p =46.5 ]27 75 A.
The currents of the Y-connected consumer are computed under Kirchhoff’s current
law: L,=1—1,=1425—-;114.75 4,

Ly =Ig—1,=11.25+j9 4;
I.,=1-—1.=-56.5+;105.75 A.

4.3. SPECIAL CASES OF UNBALANCED LOAD IN THREE-PHASE CIRCUITS

a) E

b) E=Uy

v N U7
@EBB IBIZI” ~ A~

¢ —u |7
EBECC ICI:lr S
N U 7

C

Fig. 4.21
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4-14 (4.20). For a symmetrical three-phase system “star-star without a neutral
conductor” (fig. 4.21,a), compute the working modes for the following cases:
- symmetrical mode;
- the line conductor 4 is broken;
- the short-circuit in phase A4.
The scheme parameters are: U =380V, r=x =20 Ohm.
Solution. In fig. 4.21,b, a phasor diagram of the symmetrical mode of the system Y-Y
is presented. Furthermore, the voltage of the neutral displacement is absent Uy = 0.
The generator phase emf and the consumer phase voltages
U 380

Ei=Ui :ﬁzﬁz 220 V; Ep=Uz=220-e7"V, Ec=Uc=220"""V;
as well as the currents [, = Ug_ 220 _ 7.78-¢ 7% 4;
Z 20+ 520

L=Le?=778e7"4; Ic=1re""=778¢"4
form the phasor symmetric systems.

When the line conductor 4 breaks, it is allowable to suppose that the additional
impedance of the break Z, =oo is connected in series with the phase impedance
Z=r+jx=20+,20 Ohm, the 1impedance of the branch A4 being equal to
Z,=2y,+Z=o. The junction voltage (it is termed a voltage of the neutral
displacement) 1s as follows

E, Ez E 1
AT (Eg+Ec)
U_ZA Z Z_Z — =4 _ 220_ 110 V.
_N - - - - - .
1 o1 1 1 1 2 2 2
Z, Z Z VA
When calculating we take into account, that at the break of the wire 4 its conductance
1 E
is zero LI 0 and the ratio Ey_La_ = 0; so, in the symmetrical system there is an
Ly © Zy
identity

E,+Ep+E-=0, fromhere Ez+ E-=—E,.
The voltage across the impedance Z, U,=E,—Uy=15E,=330V
is the voltage between the break points of the wire 4, but there is no current

Voltages and currents of the fault-free phases are
Ugp —Jj190

Up=Ez— Uy =220-¢ 7"+ 110 = 190 V; [==B= = 6.72-¢7% 4
e 7 @z 20+ ,20

j © . U j190 i45°
Uc= Ec— Uy =220-¢/* +110 =190 V; [o==C= =6.72-¢/*" 4.
o= / 77 204,20

Note, when the line conductor breaks a three-phase circuit turns into a single-phase
one, that’s why the currents of the fault-free phases may be determined in a simpler
Upc _Ep—Ec

way: Iy=—1Ic=
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A phasor diagram of the given system Y-Y without the neutral conductor when the
line conductor A4 is broken is presented in fig. 4.22,a.

a) I b)

E,

Comparing the voltages across fault-free phases at the break of the line conductor 4
(Ug=Uc=190V) and at the symmetrical condition when all the voltages are
U=Up=Ucs=220V, one may note the voltage decrease by 13.7%, which is
inadmissible for the lighting supply.

When there is a short-circuit of phase 4 the scheme is calculated like the branched

circuit with performance of the limit passage Z, — 0:

L+l+l ZA%OL
Zy Z Z Z 4

Voltages and currents of the fault-free phases are |
Us=Ez—Uy =Ezg— E,=— Uy =—1380-¢”"=380-¢ 7" 1;

/ _Ug _380-¢/"

Iy = =13.44.¢7" 4;

Z 20+ 520
Uc=Ec—Uy =Ec—E = Ucs=380-¢’"" V;
. j150 e
[o=Ye 380 e T 3440000y
Z 20+ 20

A current of the short-circuited phase is
[ =ZaEatUn O e Bl = 233075 223367 4.
Z, Ay 0
The expression for the current /4 follows the condition of the three-wire system
Li+Iz+1c=0.
A circuit phasor diagram at the short-circuit in phase 4 is presented in fig. 4.22,b.
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4-15 (4.21). For the symmetric system “star-star with a neutral conductor” (Zy = 0) (fig.
4.23,a), make calculations for three cases:

- symmetrical mode;

- the line conductor B is broken;

- short-circuited phase B, if: U=220V, Z=r =20 Ohm.

a) E 7 b) A A

EEBA4A I E~U,
l N

U
7 Ui

Ez B Iy 2\

Solution. There is a phasor diagram for symmetrical mode of scheme in fig. 4.23.b,
furthermore, this time there is Uy= 0 because of the zero impedance Zy .

Then, the phase voltages of the generator and load are equal to each other and are NE)

times less than the line voltages: U, = E=—==—==127V.

When there is a break of the line conductor B, it is possible to suppose the break
impedance Z, = is added in series to impedance Z in phase B, then the branch
impedance has become Zz = Z+ Z,, = .

Under Kirchhoff’s voltage law for loops ““a branch — neutral conductor” when there is
a break of the line conductor B, we have:

_E,-Uy _E, _127

1 =6.354 — the same value as in the symmetrical mode,
Z Z 20
—En-Uy _Ey_Es_,,
Zp Ly ©
E--U E . /120 o ) .
[(==C =N-_=C_ [27-¢ =6.35-¢/'*" 4 — the same value as in the symmetrical
Z Z 20
mode.

The neutral conductor current is
Iv=L+I+1:=635+0+6.35¢""=—635¢7"7"=6.35¢""" 4.
Note, Iy=—Iz,m. Because of this case, it is said the neutral conductor takes the
current of the fault phase upon itself. A circuit phasor diagram at the break of the line
conductor B is presented in fig. 4.24.
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At the short-circuited phase B in a A
four-wire system, the current of the short-
circuited loop Ep-Zpz-Zy rises beyond all
bounds. This is a malfunction. To protect A
against such a malfunction, a fuse is used
in the line conductor B (as well as in the Ly
rest line conductors), it cuts out the
faulted phase (it fuses), whereupon the
scheme passes into he mode with broken
phase B (fig. 4.23).

%Z(_fc Fig. 424 Es=Us

4-16 (4.22). Compute a working mode of the balanced triangle (fig.4.25,a) at
U=660V, xc= 100 Ohm for the following four cases, namely:

- symmetrical mode;

- the line conductor C is broken;

- the phase CZ is broken;

- the phase CZ is short-circuited.

Solution. Assume U,z = U=660 V.
If the load phases are A-connected, the load line voltages and phase voltages are the
same. In the symmetrical mode, we have
Uix=Uip=660V, Usy=Upc=660-¢”* V, Ucz=Ucs=660-e"" V.
The phase currents of triangle are

]ax = QAX = 660 :]66 = 6.6'€j900A'
) Z —j100 ’
lbzgfzzbfeﬂw566€ﬂmA;;ngféfoaum=66dmmA

The line currents of triangle are
L=l L. =31, e =114 4
L=Le=114e74; I[-=1¢""=114¢""=-114 4.
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A phasor diagram of the balanced triangle is presented in fig. 4.25,b.

At the broken line conductor C, all the currents and the voltages of the load are
forced by but the line voltage U ;.
Uy 660

Z —j100
The current /- = 0, because the conductor C is broken; so, the currents
Uwp_ 1

SaX—_ 33 4,
27 2

The current /,, = =j6.6 A — has previous value.

!by = lcz =

U
voltages across the phases are  Upy=Ucz = 1,,-Z = _=AB =330 7.

2
A

a) Uip=Ux b) A

Upy=Ucz

Fig. 4.26
The line currents are [, =1, —1..=1.5-1,=j9.9 4;
Iy=1Iy—Ly=—15L,=—j9.9 A.

A phasor diagram of the impedance triangle at the break of the line conductor C is
presented in fig. 4.26,a.

At the break of the phase CZ, its current is /.. =0, while the phase currents
1x=j6.6 4, I),= 6.6-¢ " 4 are the same as in the symmetrical mode.

The line current /=1, —1..=1,,=j6.6 A, next line current [z=1,,—1,,=1 1.4-¢7% 4 is
the same as in the symmetrical mode, at last the line current /o =—1,, = 6.6-¢’°" 4.

A circuit phasor diagram at the break of the phase CZ is presented in fig. 4.26,b.

At the short-circuited phase CZ in loop «4 — short-circuited phase CZ — B — sourcey,
there are no impedances, the current rising beyond all the bounds, a malfunction
occurring; it is necessary to disconnect the wires 4 or C from the network.

E,

4-17 (4.25). While connecting the secondary windings of E
Lp
60°

the mains transformer, the start and the finish the

winding BY were determined incorrectly. As a result, 0-@—0
after the coils are Y-connected (fig.4.27,a), a phasor £
system of emf takes a form fig. 4.27,b. ¢

E
4.4. METHOD OF SYMMETRIC COMPONENTS a@io P
Ep
B

E
c =

Fig. 4.27
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Find the symmetric components of the above-presented non-symmetric system, if
E =Ep=Ec=220V.
Solution. Assume E, =220 V (fig. 4.27,b), then
Ep=220-¢"" V, Ec=220-¢’"V.
Zero sequence component is

EO—— (E;+Ep+Ec)=— (220 +220-¢" + 220-¢/12) = ? 27 =146.7-¢/ 7
Posmve sequence component is

E =— (E +a-Eg+ a*Ec), where a=e’"*", from here

E, —@ (1 + /12770 4 o 71207, /120°) =%= 73.33 V.
Negatlve sequence component is

E, =% (E,+ d*Eg+ a-Ec) —@ (1 +e 7120/ + /2. /120°) = 146.7.¢ 7 V.

Let’s verify the result of the phasor decomposition onto the symmetric components:
E,=Ey+ E1 + E,=146.7-¢"°" +73.33 + 146.7-¢ 7 =220 V;
Ep=Ey+d*E + a E>,=146.7-¢"” + 73.33.¢ 7" + 146.7- e—f(’o" J120° =220/ 1,
Ec=Ey+a-E +d*E,=146.7-¢"" + 73.33.¢/" + 146.7-¢ 7. 712" = 220.¢/"*" .

4-18 (4.26). As the load at the end of the three- @) b) A
phase three-wire line is unbalanced (fig. 4.28,a),
the line voltage phasors form a right triangle
(fig. 4.28,b), its legs being U,z = Upc =360V,
furthermore, the sinusoid of the line voltage U 3

leads the voltage sinusoid Upc by % .

Determine the symmetric components of the
non-symmetric system of the line voltages. Find the unbalance factor.
Solution. Assume U z= U,z =360 V, then on the ground of fig. 4.28,b
Upc=Ugpe " =360 " V.
Since the line voltage phasors form a closed loop, then
Uip+ Upct Ueu= 0, and Ucy=— (Uss+ Usc) = — (360 + 360-¢ ") =
=—360-(1 —j) = 3602 ¢/ V.
There is no zero sequence component in the line voltages, because

UO:%(L_]AB + Upct Ucy) :§‘0 =0.

N0 o ~0

The positive sequence component is
1 1 120° 00° 1200 1350
Ur=3 (Ui + a-Usct a*Ucy) =3 360+ e/12°.360-¢ 77+ ¢ 712°.360+/2 /%) =

=388 + 104 = 402-¢’" V.
The negative sequence component is

2—— (QAB +a - Upc+ a-Ucy) —% (1+e7120. 70 1 120 /2 &/135°) =
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=_-28—;104=108-¢ 7' V.

The unbalance factor is :% =4— =0.269 or k=26.9%.
1
Note, according to the Regulations for Operation of Consumer Electrical
Installations, the unbalance factor must not exceed 4%.

4-19 (4.27). Y-connected three-phase induction motor is supplied from the voltage
system described in problem 4.18, each phase of the motor has the following
impedance: at the positive phase sequence Z,=8 +j6 Ohm, at the negative phase
sequence it is Z,=4.5 +j1 Ohm. Find the motor phase currents.

Solution. Suppose, the motor is connected to a non-symmetric generator, its winding
being Y-connected (fig. 4.29,a).

2) SEA I /
SEB I 4
SEC Ic Y4

Fig. 4.29
Let’s compute the symmetric components of the phase emf of the non-symmetric
generator with the aid of the above-found symmetric components of the line voltages U,
and U, and their correlations presented in the phasor diagrams fig. 4.29.b and 4.29,c:
1
g Ui o 402:70 e iy

V3 V3

—j105
g, =2 o _108-¢ ’

V3 V3
EMF of the non-symmetric generator are expressed through their symmetric
components as follows: E,=FE,+ E,= 232:¢75° + 62,47 =268.7-¢ 7y,
Ep=a"E\+a-E,=232-¢e7 + 624" =169.6. 7 1,
Ec=a-E +a"Ey=232-¢"""" + 62.4.¢ 7" = 268.7-¢/%" 1.
As a result of the transformation performed with the source emf (it is presented as a
series connection of two symmetric systems — positive phase sequence and negative
one), a scheme becomes symmetric one with respect to the symmetric components and
then it is analyzed by the superposition method.
Computation of the positive and negative phase sequence current is:

o) o i o
[=E1=P2C T _g3p ey [E2 02T gy

eP=624.77 V.

The motor phase currents are determined with account of the phenomenon that in the
three-phase three-wire system there are no currents of zero sequence (1,= 0):
Li=L+15=232e""" +13.54.¢ 77" =35.10.¢ 7** 4,
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L=a"Li+ab=232¢"""" +13.54.¢/2% = 1222.¢/" 4,
Ie=al,+a*L=232-¢"%" +13.54.¢ 7Y =27.99.¢/" 4.

4-20 (4.28). The motor described in problem ‘@Z@é‘
4.19 i1s connected to the symmetric threc?- —y,

phase system of voltage U =380 V. There is Ep ! I ! 7

a break of the line conductor C in the supply W
circuit. : — U |

Carry out the same calculation as in e Ic A
problem 4.19 for a new working condition of :
the motor. U
Solution. There occurs a longitudinal A circuit unknown ,
symmetry breaking in a previously until now Fig. 4.30

symmetrical three-phase circuit, which can be interpreted as a series additional
connection of a consumer with unknown voltages U,, U, Uc and currents 1, I, Ic. A
scheme for calculation of the new working condition of the motor is presented in fig.
4.30.

Note, in the phases of till unknown connection there can be both passive and active
circuit elements.

Carry out a formal decomposition of the non-symmetric systems of voltages and
currents onto the symmetric components.

Up="% Uy + Up+ U, ="+ I+ I),
Ui="%(Us+aUs+a* U, L="(+alz+ a*lo), (4.1)
Up="%(Uy+a”Us+ a-Up), L="41+ a Iz + a-lo).

Fistly, determine the symmetric components of the given emf system of the
generator: under the conditions of the problem, the system remains symmetric and
includes only positive phase sequence components even at the violation of the
symmetric working condition of the scheme. Symmetric emf system does not contain
the components of zero and negative sequences, i.€.

E,= Ey=0; Ee%:%:zzo V.

With respect to the symmetric components, the whole scheme becomes a symmetric
and it can be calculated using the equivalent schemes for a single phase with reference
to each system.

An equivalent scheme of the positive phase sequence is presented in fig. 4.31,a, that
one of the negative sequence is in fig. 4.31,b, and that one of the zero sequence is in
fig. 4.31,c.

a) b) c)

I —— L —— 1=0——

Uo
Z, 2 Z

A circuit break for three-
wire scheme
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In accordance with Kirchhoff’s laws for equivalent schemes, we obtain 3 equations to
find 6 unknown symmetric components of voltage and current:
LZi+U=E; bLZL+U,=0;, [L=0. (4.2)
We develop the missing equations, knowing the characteristics of the non-
symmetrical circuit section in accordance with fig. 4.32 when the line conductor C
breaks:

Uy=0; Upg=0; Uc#0;

A——> i
Li#0; Iz #0; Io=0. i 1y U,=0 |
Three underlined equations are determinate. Let’s >
rewrite them, having replaced U,, U, Ic by their i Is U.=0 ;
symmetric components (unknown yet): B >
U=Uy+ Uit Uh,=0; C——p—1 [
Up=Up+a>U+al,=0; (4.3) EIC=O Upg# 0 '
Ic= I+ al,+a"5L=0. : -~
From the system (4.1) considering that U,=0, ] ST
Uz=0, we obt;n @b : Fig. 4.32
Us ! Ue, U =1a2-UC, Us ! a-Ue, from here Y, (4.4)
- 3 — 3 — /7 3 = U,
Take into account /p=0. On the ground of (4.3), we obtain
al,+a*L=0, fromhere bL=-da*l 4.5).
The other equations (4.2) are presented in the form
U=E -1,-Z,, Uy=-1-7Z,, from here taking into account (4.4), we have
Uy _Ei=hz_ a, however, taking into account (4.5) itis Li-hz_ a
U, -1,Z, 0211 Z,
As o’ =1,then E,—I1;-Z,= I,-Z,, from here
I = £, = 220 = 15.4'87‘].29'25014,
Zi+Z, 8+4+j6+45+ 1
L=’ = 7201540792 = 15465075 4
1h=0.

The motor phase currents are:
L=L+5L=154¢7"% +154.¢”"7 =26.6.¢/7" 4,
Li=d* L+ ab=154¢7"%" +154.e/7 =26.6.¢ 7% 4,
Ie=al+a*L=154¢""7"+154.e 7% =0,

4-20 (4.29). Two phases of a generator are closed through an
ammeter (fig. 4.33). its impedance to currents of positive sequence
is Z; =j8 Ohm, that one of negative sequence is Z, =j2 Ohm, the
phase emfis £ =100 V. Determine the instrument readings.
Answer: as there is no neutral conductor U,=0, [,=0; the
equation system | U, +1[-Z,=E,

U+ 1,,4,=0,
U+ a-Us=aU+a"Us,
l] + l2= Oa
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from the system U,=U,=20V, [,=—L=—/10A.
The instrument readings are: Vi— U,=40V, V,—> Up=60V, V3—> Uz=207V,
A— Iz=173 A.

4-21 (4.31). To limit the starting currents of a motor M
(nominal line voltage is U= 380 V, impedance of the
positive sequence is Z; = 1 +;22 Ohm, that one of the B
negative sequence 1s £, =1+;8 Ohm), three
impedances (reactors) Z=;20 Ohm are connected in
series to it, they should be short-circuited after the )

Fig. 4.34
motor start-up.

Because of the switch malfunction, one of the impedances remains active after the
motor tsart-up (fig. 4.34). Determine the ratio of the current components /,//; (negative
and positive sequences).

Answer: as there is no neutral conductor /,=0;
the equation system is (U +1-2,= UI3,
U+ 0 24,=0,
(@ Ur+aly+ Up=0,

a-U+a* U+ Uy=0,
L+ L)Z=U+ U, + U,
from the system U= U,= Uy=31.32-¢ *>" ),
=857 4, L=389-¢""4;, L/j=—=— Z (453677510

3-Z,+Z

4-22 (4.34). A generator with the following impedance to the different sequences
Zc1 =J8 Ohm, Zs; =j2 Ohm, Zgo =j0.5 Ohm, the coils of which are connected in a star
with the neutral earthed through the impedance Z,; =1 +;j2 Ohm, generates the phase
voltages U,, =220 V forming the symmetric three-phase system; the generator supplies
a synchronous motor through a line with impedances Z; =Z,=1+;2 Ohm,
Zi =1+ j4 Ohm, the coils of the motor are Y-connected and possesses the impedance

Zin =12 Ohm, Zyp=j4 Ohm, Zyn=j1 Ohm, (AN
its neutral being earthed through the M@_‘j
I : l

impedance Z,, = 2 +j1 Ohm (fig. 4.35). MB—

Determine the line currents in a 1
symmetrical mode, the currents of the |!
conductors B and C when the conductor 4 is 1! .
broken as well as the voltage in the point of || Generator '
break. :
Solution. In the symmetric mode, the neutral I::I Break place

ZgG i

has no influence upon the circuit, that’s why

the calculation can be performed using a

single-phase diagram. The generator coil, line

and the motor coil are connected in series in Fig. 4.35

one phase and only the positive sequence

impedances are taken into account. Thus, total phase impedance is as follows
Zn=Zo1+Zn+ 2 =j8+1+,2+j12=1+,22 Ohm.

Zowr
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The line current is found by Ohm’s law:

Zy, 17 +227

When the line conductor 4 brakes, the circuit becomes non-symmetric. We imitate
the spot of break by means of the involving the sources with voltages Uy, U, U, the
currents I, I, I flowing through them (fig. 4.36). Above-mentioned voltages and
currents form the non-symmetric phasor systems on the complex plane and can be
decomposed into symmetric components. As a result, in accordance with the
superposition principle, one non-symmetrical three-phase circuit fig. 4.42 splits into

three symmetrical ones of the — r-—{--z--<---
positive, negative and zero 7 U, :l_c’
Z
1
| I

IAZIBZICZ =9.99 4.

m
sequences (fig. 4.37,a,b,c); on
the ground of Kirchhoff’s voltage g/ YY) D—@
L Ip

law, there are three equations for

them: . .
Ui+ 120 = Us, m@*@w& _____
1 4C

Zo=Zoot+ Znt Lot 3Zgr + 3Zgu

U+ 12, =0, . Generator !
Uot 1yZo=0, ST !
where Zy=Zo1+ Zn+ Zn, |:| Z i ;
Lr=Zert Znt Zino, 86

Fig. 4.36

Three missing equations are
generated in accordance with the condition in the particular non-symmetrical place (the
break place): Us=a"U,+aU,+ Uy=0,

Uc=aU+a U+ U=0,
Li=L+L+1,=0.

Solving the system with the aid of matrices, we obtain the required symmetric

components; then we find all the quantities which are necessary to find in the problem.

Fig. 437 3Zs6 3Zou

The text of MathCAD-program is presented below.
ORIGIN=1  j:=~/—1 - imaginary unit a:= e/ 1204
The initial data Uph:=220 ZG1:=j-8 2G2:=j-2 Z2G0:=-0.5
ZIM1:=j12 ZM2:=j4 ZMO:=j-1 ZL1:=14-2 ZL2:=1+-2 ZLO:= 144
ZgG:=14-2 ZgM:=2+j1
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The calculation of the impedances of the schemes of different sequences
Z1:=ZG1+ZL1+ZM1  Z1=1+22  722:=ZG2+ZL2+ZM2 72 =148
70:= ZGO+ZLO0+ZM0+3ZgG+3ZgM 70 =104-14.5

The equation system and its solution

1 0 0 Z1 0 O Uph'|
0O 1 0 0 Z2 0 0
0O 0 1 0 0 Z0 0 1
K= 5 L= X=K L
a a 1 O 0 0 0
a a> 1 0 0 0 0
0 0 0 1 1 1| 0

Required symmetric components
U=x, Uh=X U=X; L =Xy L=Xs IL=Xs

45.24] [—10.4]
45.24 ~10.4
SO arg(X)_|-10.4
7.98 deg —-84.7

5.1 86.7
2,56 | [ 114.2 |

IB:=a"X,+aXs+X, |IB|=13.68  arg(IB) =166.7
IC=aX,+ad"Xs+X, |IC|=1087  arg(IC)=20.9
UAd =X, + X+ X; \UA |=135.7 arg(UA) =—10.4

4-23 (4.35). The phase 4 is earthed at the end of the line (fig. 4.38). A generator phase
emf is £ =20 kV, the impedances of the different sequences are as follows: generator
ZGI =]9 Ohm, ZGZ =]1 Ohm, ZGO 2]05 Ohm, line le = Z[z =_]1 Ohm, Z]() 2]2 Ohm, load
Z11 =j10 Ohm, Z;, =j2 Ohm; impedance of the generator neutral grounding conductor
Zy =j0.5 Ohm. Determine:

1) all the phase currents of the
generator and load;

2) voltages of the generator and load
terminals concerning the ground.
Solution. In the problem under study,
there is a so-called transversal non-
symmetry. A place of non-symmetry is
imitated by the involving of the sources with voltages U,, U,, U,, the currents 1, Iz, I¢
flowing through them (fig. 4.39). Above-mentioned voltages and currents form the
phasor non-symmetric systems on the complex plane and can be decomposed into the
symmetric components. As a result, in accordance with the superposition principle, a
single non-symmetrical three-phase circuit fig. 4.39 splits into three symmetrical ones
of the positive, negative and zero sequences (fig.4.40,a,b,c). Let’s simplify the
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schemes fig. 4.40a, b, c, they being reduced to schemes fig. 4.41a, b, c. The parameters
of the new schemes fig. 4.41 are determined under the formulae:

lelu (Za +Z“); ZzZZLz (Za +le); Zo=Zcot Zint 3Zy;
Zipn+Zci+Zp

LZin+Zcr+Zn
E(Zoy+Zn)"

(in accordance with the method of two nodes).

Ly = — -
(Ze1+2Zp) 1+ZLl :

SRR S >}

EZ;

AG al

=

Iy,
[ cL

chi
c)

Uy U,
I

b) 11>

Fig. 440
b) c)
I 1
2 22 0 ZO
U2 UO
Fig. 4.41

On the ground of Kirchhoff’s voltage law for the schemes fig. 4.41, we have three
equations: U, +1;-Zi=E,, U+5L24,=0, U+IlyZy=0.
Three missing equations are generated in accordance with the condition in the
particular non-symmetrical place (the break place): Iz =a*-[,+ a-L, + I[,=0,
Ie=ali+da L+ 1=0,
U=U+U+Uy=0.
Solving the system, we obtain the required symmetric components; then we find all
the quantities necessary to calculate in the problem.
The text of MathCAD-program is presented below.

ORIGIN:=1  j:=+/—1 - imaginary unit a:= e/ 120"
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The user function to present the output result  f(x );=( x| x| a’;ig (x )j
eg
The initial data E=20 ZGl:=;9 ZG2:=j ZG0:=;-0.5

ZL1:=j10 ZL2:=j2 ZIl:=j ZI=j ZI0:=j2 ZN:=j-0.5
Calculation of the impedances of the schemes of different sequences
Zl::ZLl-(ZG1+le) Z1=5 ZzzzZLZ-(ZG2+Zl2)

ZL1+ ZGl + ZI1 ZL2 +ZG2 + ZI2
Z0:= ZGO0+ZI0+3ZN Z0=4j

gl E(ZG1+ Zi)™!
C(zG1+zi) T+ zi !
The equation system and its solution

72=j

E1=10

1 00 Z1 0 O E1l]

010 0 Z2 0 0

001 0 0 Z0 0 |
K= L= X=K -L

1 11 0 0 0 0

000 a° a 1 0

000 a a* 1| 0 |

The required symmetric components are
Ul=X, U2:=X, U0=X; I1=X, 12:=X5 10:=X;
ul=s U2=-1 U0=-4 Il=—-j R=—j [0=—j

The symmetric components of the generator and load currents on the ground of fig.
4.40 are

m=2L = 0.5) m2=Y2 o= 0.5/ ILO:=0
ZL1 ZL2
= EZUL = 1.5 1Ga=——Y2 1G2=-0.5j
ZG1+ZI ZG2+ZI2
1GO: —vo IGO=—j

" 3.ZN+ZI0+ZJ10
The generator and load currents as well as those in the short-circuit place (kA4) are

laL:= IL1+IL2+IL0 lalL =0
IbL:= a*-IL1+a-IL2+IL0 IbL =—0.866
IcL:= a-IL1+a*- IL2+ILO IcL = 0.866
IAG:= IG1+IG2+IGO I1AG=-3j
IBG:= a*IG1+a-IG2+IGO IBG =-0.866
ICG:= a-IG1+a*-IG2+IGO ICG =0.866
1A= I1+12+]0 14=-3j
IB:= a*-I1+a-12+10 IB=0
IC:= a-+a*-12+10 IC=0
The load voltages (in the short-circuit place) and those across the generator terminals
(kV) are Ua:= U1+U2+U0 Ua=0
Ub:= a*Ul+a-U2+U0 f(Ub) = (-6-5.196; 7.937 -139.107)
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Uc:= a-Ul+a>U2+U0 f(Uc)= (-6 +5.196/ 7.937 139.107)

UGl:=Ul+1G1-ZI1 UGl =6.5

UG2:= U2+ 1G2-ZI2 UG2=-0.5

UGO0:= U0+ 1G0-ZI0 UGO=-2

UA:= UG1+UG2+UG0 UA=4

UB:= a*-UG1+a-UG2+UGO f(UB)=(-5-6.062j 7.858 —129.515)

UC:= a-UG1+d> UG2+UGO AUC) =(-5+6.062j 7.858 129.515)
4-24 (4.36). There occurs a single phase-to- 4

ground short-circuit through the impedance
Z=4.650hm on the generator bus-bars
supplying the Y-connected load (fig. 4.42). The
generator impedances (in Ohm) are: Zr =/10,
Zrn=jl, Zrny=j10; the load impedance is the
same for all sequences: Z; =;j100 Ohm. The
impedance of the generator neutral grounding
conducotr is Zy=2 Ohm. The generator phase
emf is £ =20 kV. Determine all the generator

phase currents.
Solution. In the problem
under study, there is a
transversal non-symmetry.
A non-symmetry location
is imitated by involving of
the sources with voltages
Uy, U, Uc, the currents 1,
I3, I¢ flowing through them
(fig. 4.43). The above-
mentioned voltages and i Y ]BY e
currents form the phasor non-symmetric systems and can be decomposed into the
symmetric components. As a result, in accordance with the superposition principle, a
single non-symmetrical three-phase circuit fig. 4.43 splits into three symmetrical ones
of the positive, negative and zero sequences (fig.4.44,a,b,c). Let’s simplify the
schemes fig. 4.44,a, b, c, they being reduced to the schemes fig.4.41,a,b,c. The
parameters of schemes fig. 4.41 are determined under the formulae:

L

z=2LrLa; 72126 z-7.437,; E=—2E0
Z;+Zg Z,+Zg Loy *+Z

On the ground of Kirchhoff’s voltage law for schemes fig. 4.41, we have three

Fig. 4.43

-1
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equations: U+ 1-Zi=E, Uy+t5L24,=0, UstlyZy=0.

Three missing equations are generated in accordance with the condition in the
particular non-symmetrical place (the break place): Ly=ad*L+alL+1,=0,

le=ali+a L+1)=0,
Ui=LZ or U +Ut U= (L + L+ 1y)Z

Solving the system, we obtain the required symmetric components; then we find all
the quantities necessary in the problem .

The text of MathCAD-program is presented below.

ORIGIN:=1  j:==+/-1 —imaginary unit a:= e’ 120
x|x|“@“ﬂj
deg
The mitial data ~ E:=220 ZGl:=;10 ZG2:=j 2G0:=-10
ZL:=j-100 Z:=4.65 ZN:=2
The calculation of the impedances of the schemes of different sequences is

The user function to present the output result f(x):=(

71.= 2L 261 Z1=9.091;j 7= 2L 262 72=0.99;
ZL + ZG1 ZL + ZG?2
720:=ZGO+3ZN  f{Z0) = (6+10; 11.662 69.036)
Fl=—22L  pi= 200
ZGl+ ZL
The equation system and its solution are
‘1 0 0 Z1 0 0] [E1]
010 0 Z2 0 0
001 0 0 Z0 0 »
K= L= X=K'L
111 -2 -Z -Z 0
000 a* a 1 0
000 a a 1 0 |

The required symmetric comi)onents are
Ul=X, U2:=X, U0:=X; 11 =X, IR:=X; 10 =X,

[160.931] [ —16.338 ]
6.996 —135.188
|)—)(|: 82.398 arg?X): —-166.151
7.066 deg —45.188
7.066 —45.188
7.066 —45.188
The symmetric components of the geﬂerator currents on the grou_nd of fig. 4.44 are

1G1:=11 Jrﬂ 1G2:=12 +U—2 1G0:=10
ZL ZL

The generator currents (k4) are
IAG:= IG1+IG2+IGO fUAG) = (14.437 - 16.532j 21.949 -48.87)
IBG:= a*-IG1+a-IG2+IG0 f(IBG) = (-1.129+1.097; 1.574 135.842)
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ICG:= a-IG1+a*1G2+IGO fUCG)=(1.631 +0.398; 1.679 13.71)

4-25 (4.37). The symmetrical three-phase generator supplies induction and synchronous
motors (fig. 4.45). The generator phase emf is £=220 V, the impedances of the
different sequences are: a generator Zg; =j0.6 Ohm, Zg, =j0.1 Ohm, Zgo =j0.05 Ohm;
an induction motor Zy, =3 + 0.4 Ohm, Zyp, =0.05 + 0.1 Ohm; a synchronous motor
Zs =4 +j0.5 Ohm, Zs; =0.1+;0.2 Ohm, Zsy=0.1 +;0.1 Ohm; the impedance of the
generator and synchronous motor neutral earthing is — Zyg = Zys = 0.1 Ohm. Determine:
the currents of the double-phase-to-ground metallic short-circuit of the line conductors
B and C, net short-circuit current, the voltage on the healthy phase 4. Additionally,
using the simplified system applied in the subject “Electromagnetic transients”
determine the symmetric components of currents and voltages involved in the short-
circuit place and compare their values with those obtained by the methods of TFEE.

A ® ®

- ’

O E Zg
Zy
N\
C B @ KD
Fig. 4.45
a) b)
Za Ui
Lo
E Zyn I Zs: Zyn L
Fig. 4.46

Solution. In the same way as it was while solving problem 4.24 (fig. 4.43), the system
of sources with voltages Uy, U, Uc is introduced into the point of fault and the currents
1y, I, I flow through them. Considering each sequence separately we obtain the single-
phase schemes for calculation (fig. 4.46). Let’s simplify these schemes to those fig.
4.41. Here

Zi=(Ze ' Y2t Za) s L=(Zey v 2w tZe )

7 (Zoo+3Zng) (Zso+3ZNs) . g E-Zg ' .
ZGo+3Znc +Zso+3Zys Zo 2y Zg
On the ground of Kirchhoff’s voltage law for schemes fig. 4.41, we have three
equations: U+ L-Z=E;, W+ 5L24=0, UtlyZ=0.
Three missing equations are generated in accordance with the condition in the
particular non-symmetrical place (the break place): U= U+ aU,+ Uy=0,
Uc=aU+a U+ Up=0,
Li=5L+L+1=0.
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Solving the system, we obtain the required symmetric components; then we find all
the quantities necessary in the problem.

According to the methods applied in the subject “Electromagnetic transients”, first of
all a current of the three-phase short-circuit should be determined; a three-phase short-
circuit is symmetrical and only the scheme of the positive phase sequence is required

for its calculation. So, fig. 4.41,a turns into fig. 4.47,a. Evidently, IKG)::ZAZ%. A
LG1 4
symmetric component of the positive sequence of the short-circuit current /; is found in
accordance with a rule of N. Shchedrin, which states that the three-phase short-circuit
point is removed by the additional impedance Z,, which does not depend on the
parameters of the positive sequence scheme and for each kind of the short-circuit is
determined by the resultant impedances of the negative sequence scheme and zero
sequence scheme concerning the scheme point under consideration, it means the scheme
fig. 4.47,a turns into the scheme fig. 4.47.,b. In case of the two-phase-to-ground short-

circuit it is ZlA’l=%. We obtain a scheme fig. 4.47,c, from which we find all
Ly4y
necessary symmetric components:
__ E _ Zo Z) 11
Li=———7; L=—1Ir s o=—1Ir s U=U=U=1Z2Z;.
Z\+Z,4 AYA) AYAY
As it is seen from the calculation results (see text of MathCAD-program), they

entirely coincide with the values obtained by the methods of TFEE.

Fig. 4.47 e [ ]

0
Z
The text of MathCAD-program is presented below.
ORIGIN:=1  ji=+4/—1 —imaginary unit q'= ) 120deg
The user function to present the output result f(x):=(x | x| a’f(x) j
eg

The initial data are  E:=220 ZGl:=j0.6 ZG2:=j-0.1  ZG0:=,-0.05
IM1:=3+j4  ZM2:=0.05+;-0.1 ZMO:=0.05 +-0.05
ZS1:=4+;:0.5 Z52:=0.1+,02  ZS0:=0.1 +,-0.1

ZNG:=0.1 ZNS:=0.1

The calculation of the impedances of the schemes of different sequences is
Z1=(ZG1'+zZM1'+zs17") f(Z1) = (0.171+0.518; 0.546 71.764)
72:=(ZG2 “+zMm2'+z852 ") f(Z2) = (0.012+0.042/ 0.044 74.745)

20:= (ZG0+3-ZNG)-(Z80%3-2ZNS) 1 19210.0357 0.175 11.404)
ZG0+3-ZNG + ZS0+3- ZNS
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E-7ZG1™!

El= ] 0 1
Gl +ZM1 + 751

fE1) = (189.971- 62.592j 200.017 —18.236)

The equation system and its solution are

1 0 0 Z1 0 O] [ E1]

0 1 0 0 Z2 0 0

0 0 1 0 0 Z0 0 »
K=| L= X=K'L

a a 1 0 0 0 0

a a> 1 0 0 0 0

(0 0 0 1 1 1| 0 |

The required symmetric components are
Ul=X, U2:=X, UV0=X; Il:=X4 12:=X5 10:=X;

f(U1)=(11.895—-5.821j 13.243 -26.074)
f(U2)=(11.895—-5.821j 13.243 -26.074)
f(UO) = (11.895—-5.821j 13.243 -26.074)
Jd1)=(3.311 - 342.617; 342.633 —89.446)
f(12) = (56.686 +296.616; 301.984 79.181)
Jd0) = (—59.997 +46.001; 75.602 142.522)

The required currents and voltages are

IB := a*-I1+a-12+10 fIB) = (— 643.587+115.226; 653.821 169.85)
IC := a-11+a*-2+10 JAC) = (463.597+22.777] 464.156 2.813)
IN :=3-10 f(IN) = (— 179.99+138.003; 226.806 142.522)
UA:= U1+U2+U0 f(UA) = (35.685 —17.462j 39.729 -26.074)
The calculations by the simplified system applied in the subject “Electromagnetic
transients” £ _ 366.667;] E__ 366.667;)
ZG1 Z1
Z2-70
A= ZA) = (0.017+0.035; 0.039 63.372
72+ 70 NZ4a) = ( J )
El
= 11)=(3.311 -342.617] 342.633 —89.446
71+ 7A fay = j )
2:=-11 20 f(12) = (56.686+296.616] 301.984 79.181)
Z2+70
10 :=—11- 2 f0) = (- 59.997+46.001; 75.602 142.522)
Z2+70
Ul:=11-ZA f(U1) = (11.895-5.821 13.243 -26.074)
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5. PASSIVE FOUR-TERMINAL NETWORKS
5.1. EQUATIONS OF THE PASSIVE FOUR-TERMINAL NETWORKS WITH

COEFFICIENTS

5-1 (5.1). Calculate ABCD—cocfficients of the equivalent /-scheme of the four-terminal
network (fig. 5.1,a), if »=10 Ohm, xc=10 Ohm, x; =20 Ohm. With the aid of the
principal equations of the 4-terminal network, determine the input impedance Z; at the

load ZZZ ry = 20 Ohm.

1 I
a)_ 2 b) U,
o> H .
r Xc '

2
U xr < U,
L=, ,
v Ly 2 v L, Gixe)
Fig. 5.1

Solution. Way 1. A scheme loaded with arbitrary impedance Z, is considered, when
voltage U, and current [, differ from zero. The obtained scheme is described by
Kirchhoff’s equation system. By the substitution method, it is possible to get rid of the
intermediate currents and voltages, the equation system being reduced to a view:
U=4UL+BL, L=CU+D-L.

At the arbitrary load, there are three unknown currents in the scheme fig. 5.1,a: [y, b,
I;. Under Kirchhoff’s current law L=1+D,
under Kirchhoff’s voltage law Uy —1;:jx; =0,

Li-(r—jxc) + Uy=U,.

) U
From these equations, we have: [;=L +=—2=C-U,+ D-L,,

JXL
from here Q=_—=.L=_10)05 S, D=1;
Jjx;  j20
_ r—JjXc D
U =Uy1+— )+ L(r—jxc) =AU+ B,
JXL
fromhere A=1+""2C-1 100 g5 _jo5-05y2 .7,
JXr j20

B=r—jxc=10—-j10=102 ¢ 7* Ohm.

Way 2. Coefficients are calculated by Kirchhoff’s equations for no-load and short-
circuit conditions of the 4-terminal network, the principal equations taking a form:
no-load condition { U, =4'U,,; short-circuit condition { U,s=BLs;

L, =C Uy, Lis=D bs.

By scheme fig. 5.1,a, we obtain:

L,= Yo CU;  Up=Liy(r—jxc) + Usy= Uspr(1 + = jxc) =A4-U,;

JXL JXL
Lis=bLs=D bs; Lis-(r —jx¢) = Uis = B-hhs= Ls(r — jx¢).

The results of the coefficient calculation coincide with those obtained in the previous
calculations.
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Way 3. The coefficient calculation is performed by the impedances of the no-load
and short-circuit conditions of the 4-terminal network (fig. 5.1,a):

Zio=r—jxc+jx;=10—j10+,20 =10 +;10 =102 -¢/* Ohm;
Zis=r—jxc=10-710 = 10~2 -¢ " Ohm;
Zso = jx; =20 =20-¢’°" Ohm;
Jxr -(r—jxc)=2Oej90 10+/2e77%
JxX; +r— jxc 10\/56]45

From the principal equations at the no-load and short-circuit conditions, we have

Z,=A/IC, Z,=DIC, Zis=B/D, Zy=B/A.

Having chosen any three relationships and taking into account the coefficient

property A-D — B-C = 1, firstly, we obtain one of the coefficients and then other three

j45
ones through the first one. For example, 4= Zio 102e .
Ly —Zas J20-20

Complex number staying in the denominator may be written in the exponential form

ZZS: =20 Ohm.

intwo ways: 1) j20-20=20~2-¢/"%;  2)j20-20=20+2 ¢ 7
Respectively, we obtain 2 values of the coefficient 4:
A4, :Le*j'45°. A4, = 1 J 135

V2 N
In the general case coefficient 4 is a complex number and in exponential form it has
aview 4 =a-e’”.

: 1 . : :
The absolute value of the coefficient a 23 1s determined unambiguously. However,

for the argument o there are two values:
negative one o = a; =—45°, and positive one a = a, =+135°.
The single value of a is selected on the ground of the circuit phasor diagram
(fig. 5.1,b) for the no-load condition of the 4-terminal network, when
Qlo zé'l_]2o = a'eja'QZO-

) . ) 1 s
In accordance with the phasor diagram, we obtain a <0, then 4=—e"’ s,

V2
e 7420 =102 -e7*° Ohm;

o e’ e . =7 C=20-079_; =
Z. \/_ 2 10d30 j0.05 S; D=2,,C=20-¢/" (-j0,05) = 1.
The input impedance at the given load Z, is as follows:
U, _AU,+Bl, AZ,+B _(0.5-,0.5)-20+10— ;10 20— ,20

Z ==l=22 T 22 =20 Ohm.
I, CU,+DI, CZ,+D — j0.05-20+1 1-j

5-2 (5.2). Determine ABCD-coefficients of the non-symmetrical 4-terminal network, 7-
connected (fig. 5.2), if x; =40 Ohm, r,=10 Ohm, ro=x,=40 Ohm.
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With the aid of the principal equations of the 4-terminal
network in form A, determine the input current /;5 at the
short-circuited output terminals, if U; = 100 V.

Answer: A=-j; B=-500hm;
C=0.025-,0.025S; D=1.25-;0.25; Ls=2.55A4.

5-3 (5.3). Find the matrix [H] elements of the non-
symmetrical 4-terminal network, I7/-connected (fig. 5.3), if:
ri1=10 Ohm, r,=20 Ohm, x,=20 Ohm, x;3=40 Ohm. With
the aid of the principal equations of a 4-terminal
network in form /HJ, determine an input voltage at
the open output terminals, if U,, =100 V.
Answer: H;, =7.69 +j1.54 Ohm;

ﬂlz = —ﬁzl =0.231 —]015,
Hy, =—0,0231—0,00962 S; U, =50+/2 V.

5-4 (5.4). To work out an equivalent [/-scheme of the
transmission line (fig. 5.4) and determine 1its input
impedance, the following no-load and short-circuit tests are
carried out: U,,=30kV, I,,=6A4, P,,=27 kW, ¢,<0;
U]S=4.5 kV,I]S:3OA,P15=69kW, D1s > 0. O
Determine the line input impedance Z,, at the load Fig. 5.4

R,=1000 Ohm, C;= 10 uF.

Answer: A =D=0.9885¢"""; B=148.3-¢""*" Ohm; C=10.198-10>.¢"*'7"" s;
Zii= Zon=10%e Y Ohm; Zoy=148.3-¢”*" Ohm;  Z,,, = 986-¢ 7" Ohm.

5-5 (5.5). The principal equations of A-type of the 4-terminal network are given:
Q] = —jSOZz + 175Q2, l] = 0512 —]00025(_]2
The task is to work out an equivalent 7-scheme as well as to write down the
equations in H-form.
Answer: Z7=j300 Ohm,  Z,y=-200 Ohm,  Zyr= j400 Ohm;
ﬂ”:—leO Ohm, [;[]222, ﬂz] =—2, ﬂ22=—j0.005 S.
5-6 (5.6). Determine the ABCD-coefficients of the non-symmetric 4-terminal network
fig. 5.5,a, if x, =80 Ohm, xc=40 Ohm, ry=r,=40 Ohm.
With the aid of the principal equations of the 4-terminal network, compute a load current
I, if the load impedance is Z, = 60 + j30 Ohm, and the input voltage is U, =220 V.
Solution. Perform the coefficient calculation with the aid of the input impedances.

PXurs =Jxe) _ 4o J8U(40=J40) _ 4o 1 g0 = 120 Ohim,
g A1 — g 780 +40— j40
| |

I IXC

Li,=rst




rs(jx = Jxc) _ o, 40(j80- j40)

Zry=rst : _ : —Z =60 +,20 = 63.25-¢/"*** Ohm,
ry + jx; — jxc 40 + j80 — j40
— jxe -(@ +r4:x_L j - j40(40+j(?'f Z%J
Zos= M) LI — 20— j33.33 =38.87-¢ 7 Ohim.
_ . _ 40- 780
—jxe+rn+—"" —j40+40+ —F—
Iy + jXxp 40+ ;80
A= Lo _ 120 = +1.342.¢ 7557 = (1.2 - j0.6).
Zyy—Zys \ 60+ j20—20+ /33.33

We have two main values of the coefficient 4= ae’™:

A =1.342:77; 4, =1.342.¢/%

The sign of angle « is selected with the aid of the 4-terminal network phasor diagram
for no-load condition (fig. 5.5,b), which, on the ground of the principal equation
Uiy =A4-Up, = als, e’ follows by a0 <0,1.e. 4=1342-¢7%7" =1.2—-/0.6.

Further B = Zys-A=138.87-¢7°%.1.342-¢ 7" = 52.16-¢ ****""= 4 — j52 Ohm,

1 1.342¢/36-57

C=—— 4= =0.0112-¢ ”***”" =0.01 —0.005 S,
Zi, 120
j18.44 o o
D= Z20 A= 63,.25¢ 1.342:¢ 7" =0.707-¢ 7 = 0.7 — j0.1.
Z, 120
The first principal equationis U, =A-U, + B-I, = A-I,-Z, + B-I,, from here
_ b 220

L = =2.05-¢"% 4,
AZ,+B (1.2—0.6)(60+ j30)+4— j52

the effective current value is 1, =2.05 4.

5-7 (5.7). The investigation test of a 4-terminal network gives the following results:
Z\, = 10002 -¢ ™ Ohm, Zi5=500~2 ¢ ™ Ohm, 2, = 1000v2-¢’*" Ohm.
At the no-load condition, the oscillograms of the input and output voltages were
taken, they being presented in fig. 5.6,a. It is necessary to:
1. Determine ABCD-coefficients.
2. Calculate the parameters of the equivalent /7-scheme of the 4-terminal network
as well as analyze if the scheme can be physically realized.
3. Determine the source voltage as well as the consumer current and voltage, if
i1(t) = 20sin(wt + 90°) mA, and the consumer impedance is £, = 500 Ohm.
4. Determine the 4-terminal network efficiency.

a) | ¥ b)

/"-F'<\ Ulo

Udo

wt

-/4 0 4 72 3n/ rad

Fig. 5.6
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YARVARS '
Zors(Zi,—Zis)

Solution. Find the coefficient 4 = \/

The unknown impedance is

- — j45
Los = Lo Lis 1000+/2 -¢* 500v/2¢ .
Zlo 1000\/56_145
then the coefficient is

4o \/ 1000v/2¢™7*° - 5004/2¢7/%

500+/2¢’* (1000 — 71000 — 500 + j500)
We have two main values of the complex quantity
A =+26™7 Ay=—2.6 = 2.6/
An argument sign of the complex number is found with the aid of the oscillogram fig.
5.6,a, remembering that at the no-load condition there is

U,=AU, and 4 ==lo="lo ,ityulo-yu2)_ ,,jo
- Uy, Uy,

=500+/2 ¢’ Ohm,

= +/2 e = ge’®

From the given oscillogram, it is obvious y,1, =0, Wz, = +Z= +45°.

Thus, o= Yylo — Yo = 0 —45° =-45°
and a single coefficient value for the given 4-terminal network is 4 = +4/2.e =1- J.
Note, the absolute value of the coefficient |[4| =a could be also determined by an

oscillogram: a = U,, ,/U,, ,,. However, the accuracy of the value determination by plots
is low.

The rest of the coefficients are B=2725-4A= 500/2 - ™2 -/ = 1000 Ohm,
- j45
c=1 4= V2e —=0.001 S,
Zio  1000~2e /%
p-2_ 10 _pem_14

Zis  50042e/*%
The parameters of the equivalent //-scheme of the 4-terminal network under study

B 1000

are as follows: Zin= = =—71000 Ohm — capacitive reactance;
D-1 1+;-1
L= B __ 1000 _ j1000 Ohm — inductive reactance;
A-1 1-j-1

Zor =B =1000 Ohm - resistance.
All the equivalent scheme impedances of fig. 5.6,b are physically realized.

20

The input current complex is L =1-e"" :ﬁ e mA=1072-¢"" 4.

The iput impedance of the 4-terminal network together with the load is
7, = AZ,+B _(1-7)500+1000 _ 877.¢ 721% Ohm.
CZ,+D 0,001-500+1+ ;
The input voltage is U, =1,-Z, = 10242 07877 7213 = 12.4.778 .
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From the principal equation U, =A4-U, + B-I, = U,-(4 +Z£ ), we have
)

j37.87 o
U, = _124e =3.92.67631° .

&2 1000
A+/ 1— 7
Z, T 500

j56.31 o
Under Ohm’s law, the currentis [, = Uy 392 =7.84-10 27" 4,

Z, 500

Active powers are as follows:
- at the input of the 4-terminal network

Py =Re(U,-I]) =Re(12.4-¢”"°.10 242 - ) = 107.7-10 > w;
- at the output of the 4-terminal network
P, =L’r, = (7.84-10 °)*500 = 30.73-10 > W.

The efficiency is :&:%: 0.286.

a)
u

1!
o

5-8 (5.8). To pass from the overhead line into the cable one, the autotransformer
scheme presented in fig. 5.7,a is employed. The scheme parameters are:
xc=35 Ohm, x,=20 Ohm, x3=60 Ohm, x,,=10 Ohm.
Determine the ABCD-coefficients of the 4-terminal network.
At the load £, = =50 Ohm, its power is P, =450 W. Using the principal equations,
calculate the input active power.
Solution. Let’s eliminate the inductive connection and obtain an equivalent 7-scheme
of 4-terminal network (fig. 5.7,b), having
Zy=—jxc *jox+xy) =—j35+ (20 +10) = —j5 Ohm,
2, =—jxy=—j10 Ohm,
Zo=j(xy+ xp) =j(60 + 10) = j70 Ohm.
For T-scheme of a 4-terminal network, there is a strict relationship between the
coefficients and impedances:

A=1 +%= 1+ (5)/(770) = 0.928:
£0

B=z +z+2 22 s 0+ =S2 N0 s 90 opm:
Zy j70

c=4 =1 __jooma3s. p=1+Z2-1+219
Zy Jj10 Zy j70

=0.857.
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The load current 1s 1, =1{& =1/ﬂ =3 A.
r 50

Assume L, =3 A, under Ohm’slaw U, =1-Z, =3-50=150 V.
Further U, =A4-U,+ B-L=0.928-150 + (- j15.7)-3=147-¢ /*7" 1,
I, =CU,+ DI, =—j0.0143-150 + 0.857-3 = 3.35.¢ 7*% 4,
P, =Re(U;-1;) =Re(147-¢7'%7".3.35.e”%) = 459 W~ P, = 450 W.
Pay attention, the 4-termional network scheme under study is a lossless scheme
(without resistances), correspondingly, P; = P,. Inaccuracy of 9 W is explained by the

result round up to three significant digits. Furthermore, the relative inaccuracy was as

much as €% =£-100 _ 9 100 = 2%, which is allowable
P 450

[ ]
L

r

while calculating.

*3

5-9 (5.9). Determine A-coefficients of X-scheme (a bridge

scheme) of a 4-terminal network presented in fig. 5.8, if
r=x;=xc=10 Ohm.

Direction. While selecting the single meaning of the

coefficient 4, it is recommended to construct a phasor diagram

of the complex potentials of the 4-terminal network at the no- Fig. 5.8

load condition, assuming ¢ =0.

Answers: 4=0.6+;0.8, B=,200hm, C=0.1+;0.1S, D=1+;2.

5-10 (5.10). a) A load Z,=7r,=9 Ohm is connected to the terminals of the A-C voltage
source with emf £ =100 V' and inner impedance Z; =r;= 1 Ohm (fig. 5.9,a). Determine
the consumer active power P,.

Fig. 5.9

b) In order to increase the active power delivered from the generator into the load (to
match the generator with the load), a 4-terminal network is placed between the
generator and the load (fig. 5.9,b). Determine the parameters of this 4-terminal network
to produce the maximum possible power transmission P,,,,, from the generator into the
load.

Solution of the task a). The circuit current in fig. 5.9,ais [=——=——-=104,

ri+rn 1+9
the consumer active power being P;=1 25=10%9 =900 W.
Solution of the task b). The generator in scheme fig. 5.9,b is loaded with the 4-terminal
network which is in its turn loaded with a consumer possessing the impedance
Z;=r;=9 Ohm. We’ll solve the problem of the maximum power transmission from the
generator through the 4-terminal network into the consumer in two steps:
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1. Find such a load impedance for a generator Z;, which guarantees the maximum
possible power Py, delivered to the input of the 4-terminal network.

On the ground of the principal equation of the 4-terminal network at the load Z, =,
A-Z,+B
C-Z,+D

Because the 4-terminal network has not been found yet, it is possible to take any
values for its coefficients, changing in such a way the generator load.

Note, the device allowing to change (transform) the load impedance is termed an
impedance transformer, while the problem of the searching of a scheme with the
required properties (in the problem under study, this is a 4-terminal network) is termed a
synthesis problem of the electric circuit.

In the course parts “Linear DC-circuits”, “Linear AC-circuits” the problem of the
conditions of the maximum possible power transmission from active two-pole network
to the passive one is studied in details. When the reactive power is fully compensated in
the generator inner circuit (this is the case of the task a) of the problem under study), the
above requirement is expressed by the equality »; = ;.

Thus, the first equation to synthesize a 4-terminal network takes a view:

R (5.1)
C-Z,+D

2. Considering the left part of the scheme fig. 5.9,b with regard to the output
terminals 2-2' of the 4-terminal network as the equivalent generator with the inner
impedance Z,, we write down the condition of the maximum power transmission from
the equivalent generator into the consumer 7; as follows:

_D-n+B_ - (5.2)
Cri+d
To determine four coefficients 4, B, C, D, the system of four linear independent
equations is required. The third necessary equation is set by the essential property of the
4-terminal network coefficients AD - BC=1. (5.3)
The fact that the fourth equation is missing gives us the freedom to choose a
coefficient, even to take any complex number instead of it. So, the problem of 4-
terminal network synthesis has infinite number of solutions.
The fourth equation can be found in one of the two ways:
1. Synthesize a symmetrical 4-terminal network where 4 =D and take the
simplest scheme for the realization: 7-scheme or //-scheme (fig. 5.10);

g e g g eV e g zlle]|o

3 3 3
a) —_—3 b) ”T—3 3”"— © d)

its input impedance is Z; =

4

Fig. 5.10

2. Assume D = 1, and then both 7- and //-scheme turn into the non-symmetric /-
scheme of form fig. 5.11,a or b.
Let’s present the solution of both variants.
1. Synthesis of the symmetric 4-terminal network.
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Coefficients are set by the following equation system:
AntB_,. BurP_ . up-pc=1; 4=D.
Cn+D Cr+d
The detailed solution of the system is as follows:
{4'1”1 +B=C-ryqr;+ Dry, take into account that 4 = D and then subtract
D-ri+B=C-ryr+ A, the second equation from the first one. We obtain:
A-(rj—r)=A4-(ri—r), fromhere 4=0=D.
In order to determine the other two equations, we solve an equation system where

A =D =0 is taken into account:

B=Crrr; —-BC=1, fromhere B=41jrrn, Q=ij\/1_,
hiTy

furthermore, as — BC =1, the signs of B and C are to be identical.
There are two variants of the solution:

a) A=D=0; b) 4=D=0;
B=+j\Jrn=jV1-9=;3 Ohm; ~ B=—jrn,=—jJ1-9=—j3 Ohm;
c=+-1 -ilg c=——L -_;lg

NERE SRS TR

Calculate the parameters of the 7- and //-schemes by the known coefficients:
- T-scheme ZIT: ZZT:%: i]3 Ohm, Z()T:é: ]3 Ohm.

B
- [I-scheme ZIIY = Zzn Zﬁ = ]3 Ohm, Zon = E = ij3 Ohm.

In the answers, the top signs belong to the variant a), the bottom ones — to the variant
b). The corresponding schemes with impedances given in Ohm are presented in

fig. 5.10.
In any scheme Z; =r;=1 Owm,
the generator currents is [ :L:ﬂ: 50 4,
r+Z; 1+1

the active power at the 4-terminal network input is Py, =1 %.7,=50%1=2500 W.

Since the 4-terminal network has no loss, the consumer active power is

PZmax: leax: 2500 w

instead of P, =900 W in the initial scheme fig. 5.9,a.

2. Synthesis of the [ -scheme.

The required coefficients are determined from the following equation system:

Cn+D Cr+4d
And again there are two variants of the solution:
a) A=1: B=j242 Omm; Q=j¥ s.  D-1;

242

b) A4=—; B=-,22 Ohm; C=-j==8 D=1
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g_fW\_.—g
242 9 b 2¥2 9

a) - —=

242 242

& ® g Fig 511 &

Only two [-schemes presented in fig. 5.11 correspond to these solutions. The

impedances of the inductive and capacitive elements in fig. 5.11 are again shown in
Ohm. Here, as in case of fig. 5.10, there are

leax=P2max: 2500 W, ll =—=—-=504.

Cr+D

For instance, in a scheme fig. 5.11,aitis L =—+———="—-¢
s P20

5-11 (5.11). The impedances of all the elements in schemes fig. 5.12 are in Ohm.

Prove that the given 4-terminal
networks are equivalent. |_¢
Directions. As the 4-terminal 100 100 200 100
networks are reversible, it is quite
enough to compare the impedances 200 200 400
Z10, 215 of both networks. & 1] o

Answer: Z;, =100+ ;200 Ohm, .

Zis = 100 — 200 Ohm. Fig. 5.12

Z,,=j100 Ohm, Z,s =80 — j 60 Ohm.
The impedances as regards the secondary terminals are presented but for the check.

5.2. Transfer functions of 4-terminal networks

5-12 (5.37). For I'-scheme of the 4-terminal network fig. 5.13,a, calculate and plot the
frequency characteristics of the voltage transfer function at the no-load condition, if
r=150 Ohm, C =40 uF.

Solution. The required transfer function may be found with the aid of the principal
equations with coefficients of any form as well as with the aid of the principal equations
with characteristic parameters. However, in case of simple schemes of a 4-terminal
network, it is better to use Kirchhoff’s laws, having written in a complex form the

expressions for current /;, and voltage U,, in function of w:

onzllo';, but [, ZQ—IOI, then
joC e
joC
Wy =2 =t L
Ub 4 joC 1+ jorC 1+ jot
joC

where 7=rC=25040-10 °=2-10" s — is termed the time constant of the section under
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study (see paragraph «Transient processes in the linear electric circuits»), while a

transfer function of the view W(w) = is a transfer function of one of the

I+ jot
standard sections of the automatic control system, such a section being called “aperiodic
section”.

a) Iy, I b) 0 1 Y 1+l
1 ﬂ—D—:lrﬁz o= ;

lUlo C U20l
l,g g2!

The Nyquist’s plot of this transfer function is presented in fig. 5.13,b and represents a
semicircle of radius R ='. The image point M sets the position of the phasor end
W(®) on the complex plane at the fixed frequencies:

at zero frequency o =0, the coordinates of point M are (1, 0);
0 0.5
at the frequency w=0.5-7 = =250 %

2.1073
1 1

1+ 050t 1+j0.5

W(w) =+0.82 +0,4> = 0.894, ¢(w)= arctg_OL;= ~26.56°,

this point M is shown in fig. 5.13.b.

Position of point M; corresponds to frequency w=17"'=500s", while at ®= o
W(w) =0, p(w) =—90° =— Y2 point M occurs in the coordinate origin.

Note, at the frequency variation @(0 ... ), the image point moves in the clockwise
direction and the phase angle in a scheme with a single energy storage element varies by
90°. This 1s general property of Nyquist’s plots, however, the phase angle varies up to
(—n-Y2m), where n — number of different storage elements.

1
1/1+(a)r)2

tion, while the phase frequency characteristic @(w) =— arctg(wt) is an odd function,
the unit of ¢(w) being radian.

Real and imaginary frequency characteristics are termed in accordance with the
following relationship

Wiw) =

Amplitude frequency characteristic W(w) = is an even frequency func-

Wiia) = 1. _1—].(01': 1 _ ot -
I+ jot 1-jot 1+(wt) 1+ (0wt)
where B(w) =—————— —areal frequency characteristic, even frequency function,
1+ (w7 )
M(w) =— el > — an imaginary frequency characteristic, odd function.
1+ (ot )

121



Note, it is possible to obtain the phase frequency characteristic by the formula

M(w)

w) = arct as well.
o(w) 85 (o)

The decibel-log frequency response is

L(w) = 20IgW(w) = — 20Ig/1+ (01 > =— 10lg|1 + (01 )2 ].

Tabulate the calculation results of the transfer function characteristics in the table 5.1.

The brace in the table 5.1 marks the frequency span corresponding to decade, in
which the frequency w varies by 10 times and, correspondingly, the logarithm /g(w)
difference by 1.

The characteristics W(w), B(w), -M(®), ¢(®) are presented in fig. 5.14.

Decibel-log frequency responses are presented in fig. 5.15,a (solid lines), while their
asymptotic characteristics are performed by the line segments (dash lines). The coupling
frequency of the line segments is @, =7 '; the maximum deviation of the amplitude
frequency asymptotic characteristic from the real one is 3.01 dB, the slope angle of the
straight line is 20 dB/decade, it being usually marked as (-1) (accordingly, at 40
dB/decade it is (-2), at 60 dB/decade — (-3) and so on). The phase-frequency decibel-
log response is presented in fig. 5.15,b.

Table 5.1
w,s" ot | 1+ (w1)? | W(w) | o(w), rad | L(w), dB | Ig(w) | B(w) |- M(w)
0 0 1 1 0 0 o | 1 0
vat '=125 1025 1.063 | 0.97 | —0245 | —0.264 | 2.09 | 0.94 | 0.235
vt '=250 | 05 | 125 [ 0894 | —0464 | —0973 | 24 | 0.8 | 0.4
177'=500 1 2 0.707 | —0.785 | —-3.01 | 27 [ 05| 05
1,5t =750 | 1.5 | 325 [0555| —0983 | —5.12 | 2.88 [ 031 | 0.462
277'=100 2 5 0.447 | —1.11 ~6.99 3 102 04
377'=1500 | 3 10 |0316 | —-125 ~10 [3.18] 01| 03
477'=2000 | 4 17 | 0243 | —133 —123 | 3.3 [0.06] 0235
57'=2500 | 5 26 | 0.196 | —137 —14.1 | 3.4 ]0.04] 0.192
1077'=5000 | 10 101 | 0.01 | —147 | —20.04 | 3.7 | 0.0l | 0.09

Owing to the rapid development of the computer engineering, the wide application of
the transfer functions and characteristics to compute the circuit response by known
effect of the arbitrary form becomes extremely actual. Problems 5.13 and 5.14 illustrate
the application of the transfer functions using a simple 4-terminal network as an
example. While computing, the computer mathematical program MathCAD was
intensively employed. Unfortunately, there are some differences between the way how
quantities, functions and numbers are labeled and symbolized in MathCAD-program
and generally accepted labeling and symbolizing. Thus, for example, the complex
quantities are not underlined, the powers of number 10 in the answers are presented in
different way, application of the subscripts symbolizes the data array. That’s why, when
solving the problems, both the formulae in a generally accepted view and MathCAD-
program segments are presented. In our opinion, these differences are not principal ones
and the solution comprehension is not adversely affected. This paragraph is dedicated to
the questions of the getting and usage of the transfer functions at the harmonic influence
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(problems 5.13-5.14). Application of the characteristics obtained now in case of the
influences of the other forms will be considered in the next sections «The non-
sinusoidal current circuits (at the non-harmonic influence)» and «Transient processes in
the linear electric circuits» (problems 6.3, 7.33-7.34).

Different quantities in the combined circuit of 4-terminal network supplied from the
source with emf £ and inner impedance Z, and loaded with the impedance Z, may be
determined through the A-coefficients:

- input voltage U =E(A12, + A1))/Hy;
- input current 1y =E(A4,2, + A»)/Hy;
- output voltage U,=EA,/H,;

- output current L=—FE/H,.

Here Hy=AiZy+ A Zi + Ain + Ao Z1°Z, 1s an auxiliary frequency characteristic
expressed through the 4-coefficients of the 4-terminal network. Note, the elements £-Z,
connected in series can be substituted by the elements J-Z; connected in parallel, which
means the influence can be both in the form of a voltage £ and in the form of a current
J=FE/Z,. In this case, the given formulae
are corrected in a corresponding way.

5-13 (5.42). A source presented by an @ R l .
equivalent scheme j(?)-R, supplies the load ) o] t
R, with energy through /-shaped /)
noninductive low-pass filter being a passive Fio 5.16
4-terminal network (fig. 5.16). Numerical g 2
data are: R, =5000 Ohm, R, =2000 Ohm, R =1000 Ohm, C=10 puF.

Carry out the following: 1) calculate 4-terminal network coefficients of form A;
2) work out complex transfer impedances of the link; 3) plot the amplitude and phase
frequency characteristics; 4) construct the Nyquist plot; 5) with the aid of the complex
transfer impedance, determine the output voltage u, for the following cases —

Jj()=0.05 4, Jj(t) =0.05-sin(100¢ + 45°) A4,
Jj() =0.05-5in(10007 — 100°) A4, Jj(t) = 0.05-sin(10000¢ + 100°) A.
Solution. 1. Mark the branch impedances of the 4-terminal network under study as

Z,=R and ZzzL. Determine A-coefficients by the known formulae of /-shaped

joC
: Z, 1
4-terminal network: An=1+=—; An=Z2Z;; A»=—; A»n=1.
A Z
Coefficients are presented as the frequency functions:
Z1(jo) =R Z2(jw) :=— !
jo-C
: moli
All (o) = 1+ 2202) A1Ge) P 1 4 1000e-1 7o
Z2(jow) float,4
: . . |simplify
Al2(jo) =Z1(jw) Al2(jw) — 1000
float,4
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: 1 . \simplify .
A2l (jo) = - A21(jw) —.1000e-4j
Z2(jo) float,4
: . |simplify
A22(w) =1 A22(w) -1
float,4
I . , . . [simplify
Verification: A11(jw) A22(jw) — A12(jw) A21(jw) ‘4 — 1.
oat,

Finally, the coefficients are as follows:

A1 =140,01j0; A;,=1000 Ohm; A =10"jw S; Ayp=1.

2. The input quantity (influence) in the present problem is j(z), the output one
(reaction or responce) is the load voltage u,(?). That’s why, this time, the complex
transfer function H(j®w) = X,up(j®)/Xinp(jw) 1s the complex transfer impedance which is
presented as Z(iw) = Uy(jo)lJ(jw).

Compute Z(jw) in two ways. The first manner involves the application of the A-
coefficients which have been received. Initially we calculate the auxiliary frequency

function HA(jow) = A11(jw) R2 + A22(jw):R1 + A12(jw) + A21(jw) R1-R2
. |simplify .
HA(jow) — 8000. + 120."j,
oat 4
The required impedance is
. simpli 2
HA(jo) float 4  200.+3.: jo

Perform the checking calculation by the second manner, having assumed the output
voltage to be equal to U, = 1 and having determined the input current J with the aid of
Ohm’s and Kirchhoff’s laws:

nge) 1=$+jw-c Ulfew) =1+ R1ljw)  Jjo) =11 jo) +2 112

Rl

1 _|simplify .2500e6
Z(jw) - >
J(jo) float4  200.4+3.- jo
Thus, the answer for the complex transfer impedance is as follows:
Z(o) _bl-jo+b0 _ 2.50000 _ 83333
jo+a0 3jo+200 jo+66.67
Values of the coefficients in this problem are:
by =0, by=283333, az=066.67.
3. Amplitude and phase frequency characteristics of the link are plotted in
accordance with the following formulae:

(b -©)* +b :\/ 83333>

Z(w) = |Z(jw)| = ;
w* +ad w* +66.67

Z(jw) =

o(w) =arg(Z(jo)) = arctgbl—w - arctgﬂz arctg(0 — arctg 9
by a, 66.67

The plots of the amplitude and phase frequency characteristics are presented in
fig. 5.17,a and b, respectively.
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4. The Nyquist plot is a dependence Z(w) = f(p(w)) in a polar coordinate system. The
calculations for plotting are tabulated in table 5.2. The plot itself is presented in fig.
5.18.

Table 5.2
@, s 0 10 50 100 150 200 500 1000 o0
o, deg 0 -85 | -369|-563|-660|-71.6|—-824|-86.2| —90
Z, Ohm 1250 | 1236 | 1000 690 | 507.7 | 395 165.2 | 83.1 0
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5. The values of the complex transfer impedance at the given frequencies are as
follows:  Z(0) = 1250 Ohm, Z(100) = 693.4-¢ 7" Ohm,
Z(i1000) = 83.15-¢ **"" Ohm,  Z(j10000) = 8.33-¢ ***** Ohm.
The influence complex amplitudes J(jw)
and thoset of response U,(jw) = Z(jw)-J(jw) at the same frequencies are:

J(0)=0.05 4, J(100) = 0.05-¢’*" 4,
J(j1000) = 0.05-¢ 7' 4, J(710000) = 0.05-¢’""" 4,
Uy(0)=62.57V, Us(j100) =34.7-¢ 721 p,
Us(j1000) = 4.16-¢’' 731" Us(710000) = 0.42-¢”'%°% .
The instantaneous values of the output voltage are:
u(t) =62.5V, ur(t) = 34.7-sin(100¢ — 11.31°) 7,

uy(t) = 4.16-sin(1000¢ + 173.81°) V, uy(t) = 0.42-sin(10000¢ + 10.38°) V.
Pay attention, the amplitudes of the output voltage u, decrease sharply at the
frequency increase while the influence amplitude remains invariable 0.05 A. Here the
features of the 4-terminal network as a filter are clearly seen.

5-14 (5.43). Solve problem 5.13 after the
substitution of resistor R by inductance
L=10H (fig.5.19). A capacitance is
taken equal to C =1 ufF.

Solution. The order of the solution is very
the same as that of the problem 5.13.

That’s why, only the answers are given. Fig.5.19 e '
1. Z1(jw) =jo-L Z22(jw) :=— !
jo-C
: moli
All o) = 1+ 210@) A1) P 1 100004y
Z2(jw) float 4
: : . |simplify :
A12(w) =Zl(jo) Al12(w) —10.j0
float,4
—
A21 (o) = — 21G0) ™" 5 1000657
Z2(jo) float,4
: . |simplify
A22(jw) =1 A22(jow) — 1
float,4
- : : . ' _ |simplify
Verification: Al11(jw)-A22(jw) — A12(jw) A21(jw) float 4
oat,

Finally, the coefficients are as follows:
An=1+ 1075'(/'@)2; A1n=10j0 Om; 4= 1076’]'00 Cm;  Apn=1.
2. The first way to calculate Z(jw).
HA(jow) = All1(jow) R2 + A22(jw) R1 + A12(jw) + A21(jw) R1-R2
simplify

HA(o) a " 7000. + .2000e-1-(jw)* + 20.jo,
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R1-R2
HA(jo)

The second way to calculate Z(jw).

.5000e9

simplify
—> .
:3500e6 + (jw )* +1000- jo

ZGe) = float,4

Z(jo)

N(jo) :=$+jw'C Ulfjo) =1+ Z1(o) (o) Jjo) =I11(jo) +%flw)
—
Z(jw) = 1 Z(jw) simplify — '5000269 .
J(jw) float 4 .3500e6 + (jw )" +1000- jo

Thus, the answer for the complex transfer impedance is as follows:
5-10°
(jo)* +1000- jo +3,5-10°

Ljw) = Owm.

3. Amplitude and phase frequency characteristics of the link are plotted in
accordance with the following formulae:

.:| 5.108 |
e |(j-a))2+1000-j-co+3.5-105|’

() = ar 5.10°
B @) 41000 j-0+3.5-10°
The pots of the amplitude and phase frequency characteristics are presented in
fig. 5.20,a and b, respectively.
4. The calculations necessary for constructing the Nyquist plot are tabulated in table
5.3. The plot itself is presented in fig. 5.21.

Table 5.3
o, ¢ 0 50 100 200 500 1000 | 2000 | 5000 o0
o, deg 0 |—8.19|-16.39 | -32.83 | -78.69 | —123.0 | -151.3 | -168.5 | —180
Z,0Ohm | 1429 | 1424 | 1411 1355 981 419 120 19.9 0

5. The values of the complex transfer impedance at the given frequencies are as
follows:
Z(0) = 1429 Ohm, Z(100) = 1411-¢ 7' Ohm,
Z(1000) = 419.2-¢7'#%% Ohm,  Z(j10000) = 4.99-¢ 7" Ohm.
The influence complex amplitudes J(jw)
and those of response U,(jw) = Z(jw)-J(jow) at the same frequencies are:

J(0)=0.05 4,

J(j1000) = 0.05-¢ /' 4,
Us(0)=71.43 7,

Us(71000) = 20.96-¢’7°°%
The instantaneous values of the output voltage are:
uyt)=71.43 1,

U (t) = 20.96-sin(1000¢ + 136.98°) V,

J(100) = 0.05-¢’*" 4,
J(10000) = 0.05-¢’'%" 4,
Us(j100) = 70.54-¢72%°"
Us(710000) = 0.25-¢7"**" V.

us(t) = 70.54-sin(100¢ + 28.61°) 7,
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us(t) = 0.25-sin(10000¢ — 74.27°) V.



Pay attention, the amplitudes of the output voltage u, decrease sharply at the
frequency increase starting from 500 rad/s. Here the features of the 4-terminal network

as a filter are clearly seen.
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