
ОСНОВЫ НАУЧНЫХ ИССЛЕДОВАНИЙ

Тема №1:

«Общие сведения о науке, научных методах исследований, кадрах и учреждениях»

Наука — это непрерывно развивающаяся система знаний об объективных законах природы, общества и мышления, которая создается и превращается в непосредственную практическую силу общества в результате специальной деятельности людей и учреждений.

Наука представляет собой знания, приведенные в систему.

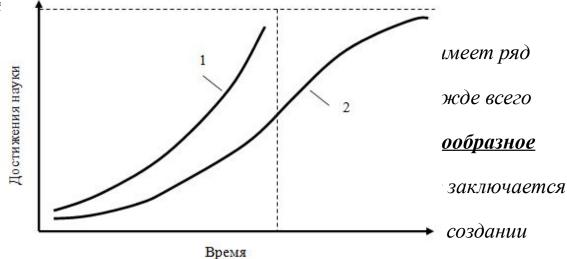


Рисунок 1.1 — Закономерности развития научных исследований `авлений", во времени: 1- экспонента, 2- вероятная кривая проблем.

Наука

Исследовательские (теоретические) науки занимаются поиском и открытием новых закономерностей.

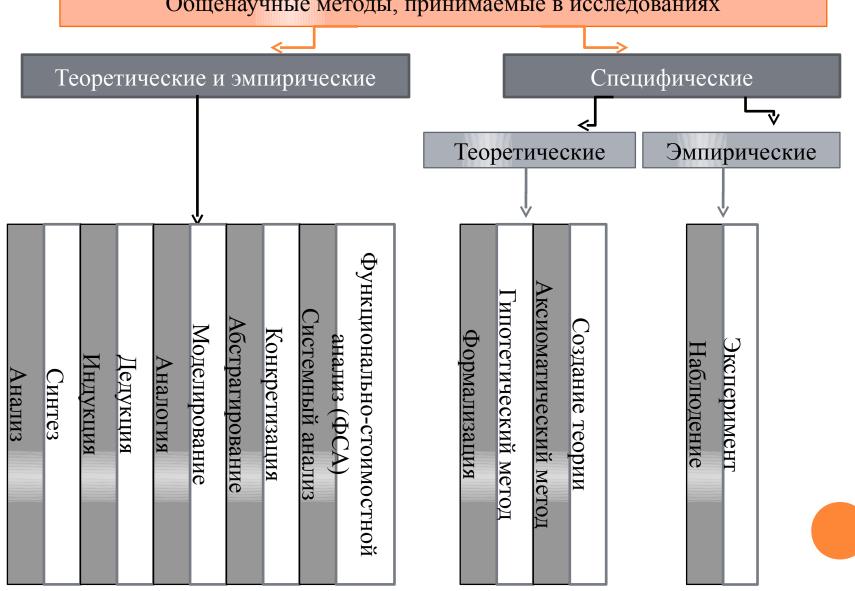
Прикладные науки

более тесно связаны с практической деятельностью людей, поскольку имеют своей целью разработку наиболее экономически рациональных способов внедрения открытий теоретической науки.

Гипотеза — научно обоснованные предположения, выдвигаемые для объяснения какого-либо процесса.

Научное исследование —изучение явлений и процессов, анализ влияния на них различных факторов, а также изучение взаимодействия явлений с целью получить убедительно доказанные и полезные для науки и практики решения с максимальным эффектом.

Цель научного исследования — определение конкретного объекта и всестороннее, достоверное изучение его структуры, характеристик, связей на основе разработанных в науке принципов и методов познания; получение полезных для деятельности человека результатов, внедрение в производство.


Метод исследования — это способ теоретического исследования или практического осуществления какого-либо явления или процесса. В настоящее время используется математический метод исследования.

Методология научных исследований включает 2 уровня познания

- Эмпирический наблюдение и эксперимент, а также группировка, классификация и описание результатов эксперимента
- **Теоретический** построение и развитие научных гипотез и теорий, формулировка законов и выведение из них логических следствий.

Классификация общенаучных методов исследования

Общенаучные методы, принимаемые в исследованиях

Теоретические и эмпирические методы

Анализ – включает в себя изучение предмета путем мысленного или практического расчленения его на составные элементы (например, анализ производительности труда рабочих производится по предприятию в целом и по каждому цеху)

Синтез – метод изучения объекта в его целостности, в единстве и взаимной связи его частей.

Индукция — метод исследования, при котором общий вывод о признаках множества элементов делается на основе изучения этих признаков у части элементов одного множества.

Дедукция — метод логического умозаключения от общего к частному, т.е. сначала исследуется состояние объекта в целом, а затем его составных частей.

Аналогия – метод научного умозаключения, посредством которого достигается познание одних предметов и явлений на основании их сходства с другими.

Моделирование – метод научного познания, основанный на замене изучаемого предмета, явления на его аналог, модель, содержащую существенные черты оригинала.

Абстрагирование — метод отвлечения, позволяющий переходить от конкретных предметов к общим понятиям и законам развития.

Конкретизация — метод исследования предметов во всей их разносторонности, в качественном многообразии реального существования в отличие от абстрактного, отвлеченного изучения предметов.

Системный анализ — изучение объекта исследования как совокупности элементов, образующих систему. В научных исследованиях он предусматривает оценку проведения объекта как системы со всеми факторами, влияющими на его функционирование.

Функционально-стоимостной анализ (ФСА) – метод исследования объекта (изделия, процесса, структуры) по его функции и стоимости, применяемый при изучении эффективности использования материальных и трудовых ресурсов. Целевой функцией ФСА является достижение оптимального соотношения между потребительской стоимостью объекта и затратами на его разработку, снижение себестоимости выпускаемой продукции и повышение ее качества, рост производительности труда.

Формализация — метод исследования объектов путем представления их элементов в виде специальной символики, например представление себестоимости перевозок формулой, в которой при помощи символов изображены статьи затрат.

$$S_{o \delta u u} = 3\Pi_{e} + O_{m u} + 3_{m} + 3_{c m} + 3_{u u} + 3_{m o.m p} + A_{n c} + OP,$$

где ЗПв – зарплата водителей;

Отч – отчисления в бюджет;

Зт – затраты на топливо;

Зсм – затраты на смазочные материалы;

Зш – затраты на шины;

Зто.тр – затраты на ТО и ТР;

Апс – амортизационные отчисления на восстановление подвижного состава;

ОР – общехозяйственные расходы

Гипотетический метод — основан на научном предположении, выдвигаемом для объяснения какого-либо явления и требующем проверки на опыте и теоретического обоснования, чтобы стать достоверной научной теорией.

Аксиоматический метод – предусматривает использование аксиом, являющихся доказанными научными знаниями, которые применяются в научных исследованиях в качестве исходных положений для обоснования новой теории.

Создание теории – обобщение результатов исследования, нахождение общих закономерностей в поведении изучаемых объектов, а также распространение результатов исследования на другие объекты и явления, что способствует повышению надежности проводимого экспериментального исследования.

Наблюдение — метод изучения предмета науки путем его количественного измерения и качественной характеристики. Применяется при изучении трудоемкости сборки, ремонта автомобилей путем хронометражных наблюдений, изучении спроса на двигатели, автомобили и т.д.

Эксперимент — научно поставленный опыт в соответствии с целью исследования для проверки результатов теоретических исследований. Проводится точно в учитываемых условиях, позволяющих следить за ходом явления и воссоздавать его повторно в заданных условиях.

Национальная Академия наук Украины

AMIOHAN **АКАДЕМІЯ** НАУК VKPAÏHN 1918

и президентом был выдающийся ировым именем В.И. Вернадский.

ус. Национальная академия наук гласно действующему является высшей научной организацией Украины, основана на государственной и пользуется правами

которая собственности самоуправления.

Органы управления. Президиум НАН Украины избирается сроком на 5 лет. В состав Президиума НАН Украины входят 35

Внешнеэкономическая деятельность учреждений НАН Украины

около 300 в 2012 году заключалась в выполнении контрактов с корпорациями, компаниями, предприятиями, центрами 36 стран мира. В 2012 году учреждениями Академии заключено 86 лицензионных соглашений в Украине и за рубежом, получено 722 патентов на изобретения и полезные выполнено 50 научно-технических инновационных модели. Успешно П

У

Η

2

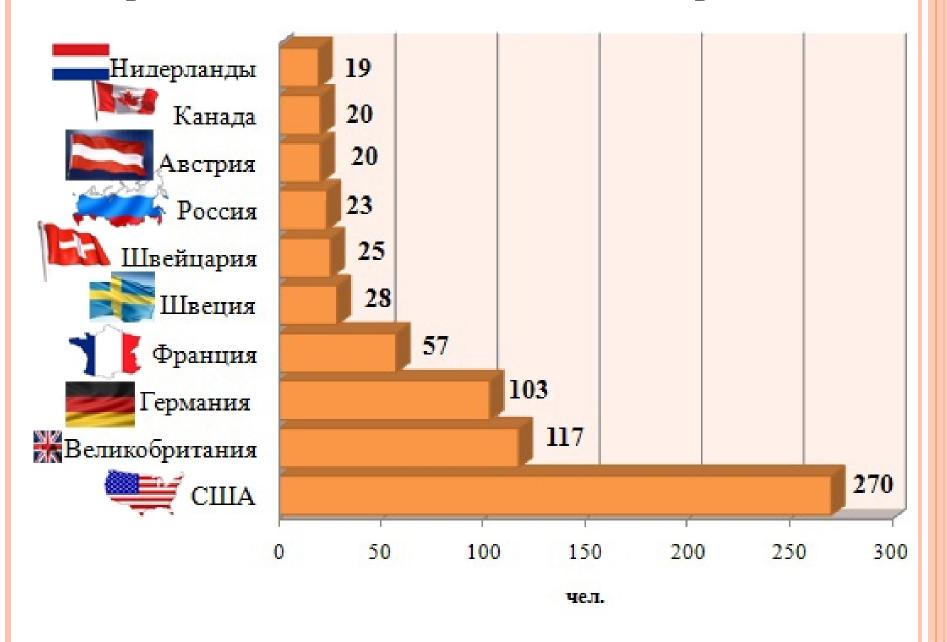
К

П

у в начале года.

пьская деятельность.

2012 г. учреждениями НАН научных монографий, 214 научных трудов, 178 учебных изданий и научно-популярных. Общее изданиях составляла XN000 (более 90%)


отечественных и зарубежных изданиях. За аковано 74 названия научных ческих изданиях.

Кадровое обеспечение. Общее количество работающих в НАН Украины по состоянию на 01.01.2013 составляла 40609 чел., В том числе 19337 научных работников.

Научные премии мира

Название премии	Учредитель/ Дата основания	Номинации	Размер премии
Премия по фундаментальной физике	Юрий Мильнер 2012 год	физика	3 млн \$
Нобелевская премия	Альфред Нобель 1900 год	Физика, химия, физиология и медицина, литература, премия мира, экономика	1,4 млн \$
Премия Шоу	Фонд премии Шоу 2002 год	Астрономия, науки о живом, медицина, математ. науки.	1 млн \$
Премия Кавли	Фред Кавли 2007 го д	Астрофизика, нанотехнологии и неврология	1 млн \$
Абелевская премия	Правительство Норвегии 2002 го д	метематика	990 тыс \$
Премия Чарльза Старка Дрейпера	Национальная инженерная академия США 1989 год	инженерия	500 тыс \$
Ласкеровская премия	Альберт Ласкер 1946 год	Медицинские науки	250 тыс \$
Государственная премия РФ	Совет при президенте РФ 1992 го д	Науки и технологии	115 тыс \$
Филдсовская премия	Международный математический союз 1936 го д	математика	15 тыс \$
Демидовская премия	Павел Демидов 1831 го д	Науки о Земле, физика, математика, экономика и предпринимательство, гуманитарные науки	15 тыс \$

Страны - обладатели Нобелевской премии

Тема №2:

«Выбор темы, формулирование задач научных исследований. Стадии исследований»

Научное направление – сфера научных исследований научного коллектива, посвященных решению каких-либо крупных фундаментальных теоретически-экспериментальных задач в определенной отрасли науки.

Проблема – сложная научная задача, которая охватывает значительную область исследования и имеет перспективное значение. Она состоит из ряда тем.

Тема – научная задача, которая охватывает определенную область научного исследования. Она базируется на многочисленных исследовательских вопросах.

Темы научных исследований подразделяются на:

• Теоретические

Модель научно-исследовательской работы по изучению организации производства

Общая цель и задание НИР по организации производства

Анализ литературы, нормативных, фактических, пояснительных материалов по теме исследований

Выявление отдельных социальноэкономических заданий Определение техникоэкономических категорий Формулирование понятий и обозначений

Научные основы качественной характеристики объектов

Характеристики производственно- хозяйственной деятельности структурных подразделений производств

Характеристики технических явлений (процессов)

Характеристики факторов, определяющих состояние объекта

Характеристики требований, которые определяют качество и уровень исследований

Схема формирования направлений аналитического раздела исследований

Выделение особенностей управления объектом в современных условиях

Анализ современного положения объектов исследования

Выделение методологических основ и приемов исследования

Критерии и показатели исследовательской работы

Анализ организации производственно-технических процессов и др.

Технические основы исследования

Рекомендации по теме: Разработка научных рекомендаций в экспериментальном варианте и механизма внедрения нововведений

Тема научного исследования должна:

- Иметь научную новизну
- Вносить вклад в науку

$$K_{9} = \frac{C_{r} \cdot \sqrt{T}}{3_{o}}$$

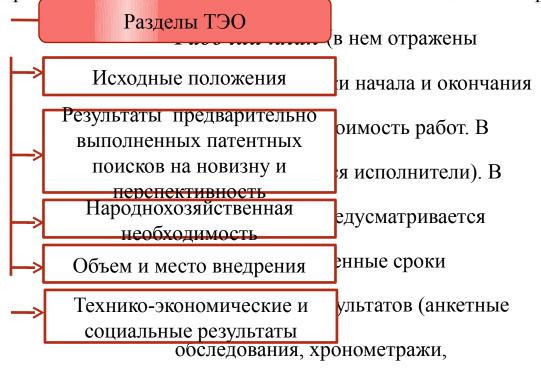
- Соответствовать профилю научного коллектива
- Иметь возможность быстрого внедрения в производство

Для оценки народнохозяйственной необходимости разработки тем необходимо определить коэффициент экономической эффективности:

Порядок построения, изложения и оформления научно-исследовательской работы (НИР)

Основанием для проведения НИР является договор.

Разделы технического задания


- 1. Основание для проведения работ
- **2.** Цель и исходные данные для проведения работ
- → 3. Этапы НИР
- 4. Основные требования к НИР
- 5. Способ реализации результатов НИР
- **6.** Перечень технической документации, предъявляемой по окончании работ
- > 7. Порядок рассмотрения и приема НИР
- **8.** Технико-экономическое обоснование (ТЭО)
- 9. Приложения

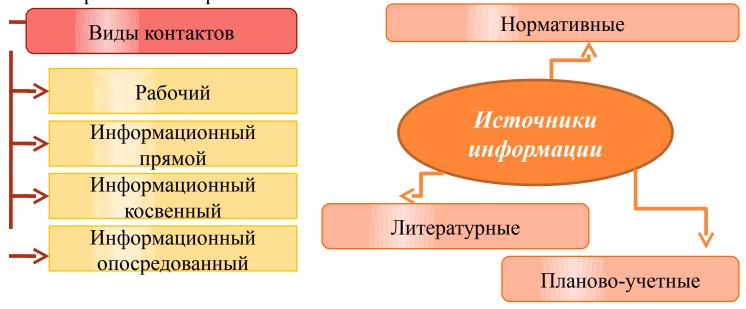
Составление технико-экономического обоснования (ТЭО) на проведение НИР

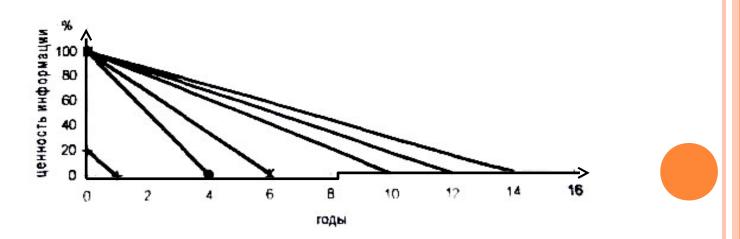
Высокая эффективность темы может быть достигнута при условии, что еще до ее разработки выполнено ТЭО.

Цель составления ТЭО – установить данные в новейших достижениях науки и техники по рассматриваемой теме на Украине и за рубежом.

В ТЭО обосновывается народнохозяйственная потребность, предполагаемые объекты внедрения, ожидаемые технико-экономические и социальные результаты.

измерения, расчеты)


Стадии исследований


Этапы выполнения исследований

- 1. Доказательство гипотез
- 2. Формулирование выводов и рекомендаций, выбор методов проверки достоверности результатов
 - 3. Научный эксперимент
 - 4. Корректировка результатов исследований
 - 5. Литературное изложение результатов исследований

Информационное обеспечение

Информация — это совокупность каких-либо сведений, данных о состоянии или изменении объектов реального мира.

Информационный поиск

После выбора и технико-экономического обоснования темы производят **информационный поиск** — совокупность операций, направленных на отыскание литературы по разрабатываемой теме.

Цель поиска – всесторонний анализ информации по теме, освещение состояния вопроса (составление аналитического обзора), уточнение при необходимости темы, обоснование целей и задач научных исследований.

Поиск может быть:

- Ручным
- Автоматизированным

Наибольшее распространение получили универсальная десятичная классификация документов информации (УДК), ББК. В настоящее время УДК чаще применяется в технических науках, ББК – в экономических.

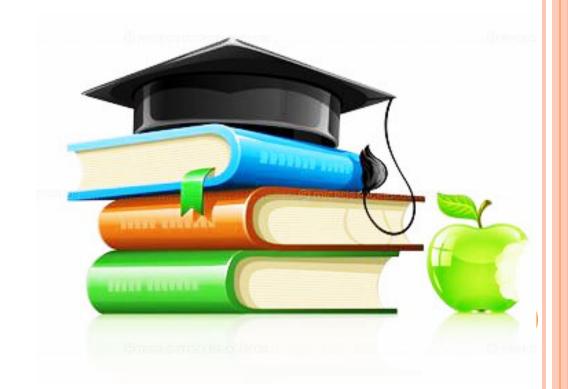
Анализ информации и формулирование задач научного исследования

Анализ информации – одна из важнейших задач. Всю информацию необходимо классифицировать и систематизировать.

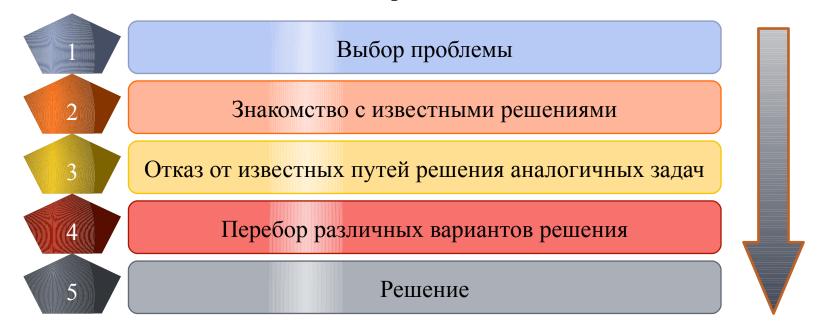
Для этого целесообразно в истории разработки данной темы выделить *научные* э*тапы*, которые характеризуются качественными скачками.

На каждом этапе литературные источники нужно подвергнуть тщательному критическому анализу. Анализ должен быть критичным, но корректным. В процессе активного анализа возникают следственные соображения и мнения, выявляющие наиболее актуальные вопросы. Все это постепенно формирует фундамент будущей гипотезы научного исследования. Весь объем информации систематизируют по вопросам разрабатываемой темы.

На основании результатов проработки информации делают методологические выводы, в которых проводят итог критического анализа. В выводах должны быть освещены следующие вопросы:


- Актуальность и новизна темы
- Последние достижения в области теоретических и экспериментальных исследований по теме (на Украине и за рубежом)
- Важнейшие, наиболее актуальные теоретические и экспериментальные задачи
- Производственные рекомендации

Нанотехнологии


Тема №3:

«Методы теоретических исследований»

Теоретические исследования должно быть творческими, их целью является получение новой, ценной информации.

Стадии теоретического исследования

Успешное выполнение теоретических исследований зависит не только от кругозора, настойчивости и целеустремленности, но и от того, в какой мере он владеет методами и способами научного исследования.

Модели исследований

Модель исследования - искусственная система, отражающая с определенной степенью точности основные свойства изучаемого объекта — оригинала. Модель находится в определенном соответствии с изучаемым объектом, может заменить его при исследовании и позволяет получить информацию об изучаемом объекте.

Метод моделирования – изучение явлений с помощью моделей.

Различают:

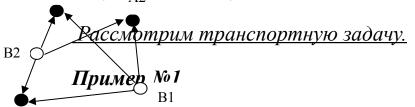
- Физическое моделирование
- Математическое моделирование

Модели могут быть:

- 1. **Физические** позволяют наглядно представить протекающие в действительности процессы. С помощью физических моделей можно изучать влияние отдельных параметров на течение физических процессов.
- 2. *Математические модели* позволяют количественно исследовать явления, порой трудно поддающиеся изучению на физических моделях.
- 3. **Натуральные модели** представляют собой масштабно изменяемые объекты, позволяющие наиболее исследовать процессы, протекающие в натуральных условиях.

Спектр математических моделей, применяемых при решении задач исследований

Модель должна:


- 1. Отображать существенные явления процесса
- 2. Быть оптимальной по своей сложности
- **3**. Наглядной

A3

4. Адекватной, т.е. описывать закономерности изучаемого явления с требуемой точностью.

При построении модели необходимо учитывать особенности исследуемого явления: линейность и нелинейность, детерминированность и случайность, непрерывность и дискретность и др.

B последнее время широкое распространение получили модели, обеспє $^{\mathrm{A1}}$ $^{\mathrm{DU}_{\mathrm{I}}}$ $^{\mathrm{A2}}$ $^{\mathrm{NUM}}$ имизацию технологических процессов и их управление.

Имеется A1, A2, A3 – объекты строительства,

Рисунок 3.1 – Схема транспортных связей:

енно *a1, a2, a3* щебня. В местах

В1 и **В2** есть

А - объекты строительства апасами щебня **b1** и

b2. При этом: a1 + a2 + a3 = b1

В - карьеры

Стоимость единицы продукции из карьера B1 на объект A1

$$\begin{cases} x_{11} + x_{21} = a_1 \\ x_{12} + x_{22} = a_2 \\ x_{13} + x_{23} = a_3 \end{cases}$$
$$\begin{cases} x_{11} + x_{12} + x_{13} = b_1 \\ x_{21} + x_{22} + x_{23} = b_2 \end{cases}$$

В системе первое уравнение означает количество щебня, транспортируемое из карьеров B1 и B2 на объект A1; второе – на объект A2.

Последнее уравнение – количество щебня, доставленное на объекты А1, А2, А3 из

карьера	Карьеры	Объекты			Запасы
		A 1	A2	A3	
	B1	c11 x11	c12 x12	c13 x13	b1
	B2	c21 x21	c22 x22	c23 x23	b2
·	Общая потребность	a1	a2	a3	-

Требуется определить наиболее выгодный (экономический) вариант перевозки щебня. В этом случае численными методами с помощью линейного программирования и ЭВМ находят функцию, которая удовлетворяет условию (3.2):

$$C = \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij} = \min$$

Уравнения 3.1 и 3.2 – *математическая модель*, позволяющая оптимизировать транспортный процесс. *Физическая модель* – рисунок 3.1.

Пример №2

Цех изготавливает 2 вида изделий А и В. На изготовление изделия А требуется

5 кг. стали и 9 кг. меди. Для изготовления изделия В требуется 10 кг. стали и 3 кг. меди. Реализация одного изделия А дает цеху доход в 200 грн, а изделия В — 150 грн.

	Ресурсы	Потре	бители	Суточный лимит расхода
которо		Количество изделий А (X1)	Количество изделий В (X2)	материалов
	Сталь	a11=5	a12=10	b1
	Медь	a21=9	a22=3	b2
	Доход от одного изделия	c1=200	c2=150	-

1. Составляем линейную форму (модель задачи):

$$\max L = C_1 X_1 + C_2 X_2 = 200 X_1 + 150 X_2$$

где X1 и X2 – количество изготавливаемых изделий A и B.

$$a_{11}x_1 + a_{12}x_2 \le b_1$$
 $5x_1 + 10x_2 \le 500$ переменным: $a_{21}x_1 + a_{22}x_2 \le b_2$ $9x_1 + 3x_2 \le 270$ $X^* |16;42|$

Для получения наибольшего дохода цех должен производить 16 деталей вида A и 42 детали вида B. $\max L = 200 \cdot 16 + 150 \cdot 42 = 9500 cph.$

Оптиральном у планту одослает следующее наибольшее значение линейной формы:

»Рисунок 3.2 – Схема «черного ящика

модель «черного

х1, х2, хп – управляемые факторы

у1, у2, ур – параметр оптимизации

z1, z2, zm – неуправляемые факторы

ощая систему,

структура которой неизвестна и

непоступна пла наблюления Известны

Пример №3

Модель принятия решения о покупке (маркетинг)

Статистическим путем можно построить модели исследуемого процесса. Во многих случаях для построения таких моделей целесообразно использовать метод математического планирования эксперимента.

Анализ многообразных физических моделей изучаемых процессов исследуется

Математические методы

Аналитические методы - элементарная математика, дифференциальные и интегральные уравнения и т.д.

Вероятностно-статистические методы - математическая статистика, дисперсионный и корреляционный анализ, метод Монте-Карло и другие, используемые для изучения случайных процессов – дискретных и непрерывных)

Методы математического анализа с использованием эксперимента – методы аналогий, подобия.

Методы системного анализа — исследование операций, теория массового обслуживания, теория управления и т.д. Они применяются для исследования сложных моделей — систем с многообразными и сложными взаимосвязями элементов.

Аналитические методы

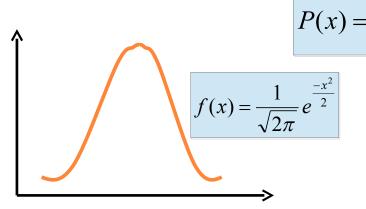
Эти методы позволяют установить математическую зависимость между параметрами изучаемого объекта, а также глубоко и всесторонне изучить исследуемые процессы, установить точные количественные связи между аргументами и функциями, глубоко проанализировать исследуемые явления. При этом применяются элементарные функции и уравнения.

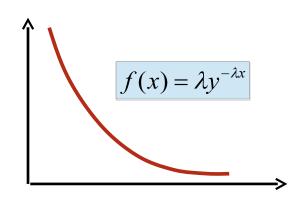
Пример № 4

Степень удовлетворения спроса на автомобили (джипы) и основные тенденции его развития.

1. Модель прогнозирован
$$y = a_0 + a_1 \cdot t$$

$$y = a_0 + \frac{a_1}{t}$$

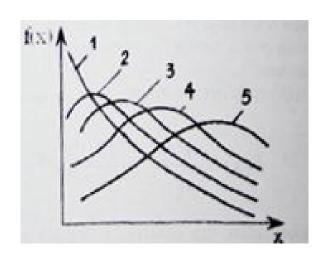

Спрос в основиом удовлетворяется и растет равномерно. Гипотеза развития рынков: при должном одновременном обновлении изделия тенденция роста сохраняется.

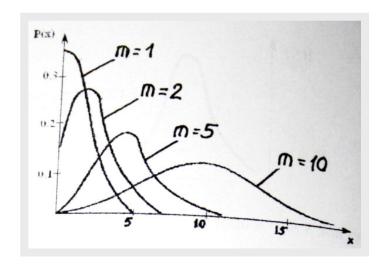

Вероятностно-статистические методы исследования

Теория вероятностей является математическим отражением законов, изучает случайные события и базируется на показателях:

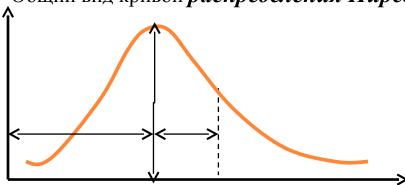
Совокупность — множество однородных событий. Совокупность случайной величины X составляет первичный статистический материал. Совокупность, содержащая самые различные варианты массового явления, называется генеральной совокупностью или большой выборкой N.

Вероятностью P(x) события X называют отношение числа случаев N(x), которые приводят к наступлению события $P(x) = \frac{N(x)}{N}$


Краткосрочные события описываются распределением Пуассона:


$$P(x) = \frac{m^{x}}{x!}e^{-m} = \frac{(\lambda t)^{x}}{x!}e^{-\lambda t}$$

где P(x) – вероятность того, что событие в период какого-то испытания произойдет x


раз при очень большом числе измерений т.

Закон гамма-распределения:
$$f(x) = \frac{\lambda^{\alpha}}{\alpha!} x^{\alpha-1} e^{-\lambda x}$$

Общий вид кривой распределения Пирсона:

$$f(x) = ae^{dx}(1 + \frac{x}{b})^{db}$$

Общий вид кривой распределения Пирсона
$$f(x) = \eta \mu^n x^{n-1} e^{-\mu^n x^n}$$

 $3a\mu = const$ **деления Вейбулла** имеет вид:

$$\eta = const$$

Методы системного анализа

Системный анализ — совокупность приемов и методов для изучения сложных объектов — систем, представляющих собой сложную совокупность взаимодействующих между собой элементов.

Системный анализ состоит из 4 этапов:

- 1. Постановка задачи
- 2. Очерчиваются границы изучения системы и определяют ее структуру
- 3. Составление математической модели
- 4. Анализируют математическую модель

Математические методы оптимизации исследуемых моделей:

- Аналитические
- Градиентные
- Математическое программирование
- Вероятностно-статистические и др.

Для оптимизации процессов используют *методы теории игр*, которая рассматривает развитие процессов как случайные ситуации. *Теория игр* — это математическая теория конфликтов. Конфликт заключается в том, что интересы двух сторон

Новые разработки науки и техники

