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Summary. The mathematical model of aerodisperse flow movement in bend is offered. The solution of this model is received under the conditions
approached to the real ones. The experimental results are compared according to the given model and some simplifying hypotheses.
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THE MATHEMATICAL MODEL FOR THE MOVEMENT OF TRANSPORTED MATERIAL AT THE FLOW
TURN

The main aim in the investigation of aerodisperse flow of solids is the mathematical description of their
regularities depending on the characteristics of the particles and conditions of flow formation. Lack of knowledge about
tension generation mechanisms being the difficult function of particles velocity puts obstacles in the way of working out
of the adequate analytical description of regularities in pneumotransport flows. Besides, the high heterogeneity in solid
phase concentration is typical for high velocities of pneumatic conveying of solids. All these problems worsen the
experimental and analytical investigations of pneumatic conveying processes.

Additional difficulties arise at the mathematical modelling of pneumatic transportation in bend. This is due to the
fact that centrifugal force influences the transported material in the perpendicular direction at the flow turn. The
centrifugal force is many times more than the material weight [1]. The forces which cause hovering of the particles
during the horizontal movement are in many times less than the centrifugal force. Therefore the overwhelming majority
of fractions does not come back from an external bend wall into the flow of transporting gas, but settles on it.

The present bend calculation methods are based on the empirical dependences used for uniform flows [2, 3, 4, 5,
6]. Naturally, the calculations by these techniques give considerable errors because of ignoring the difficult physical
nature of two-component flows transportation [7, 8]. Besides, in many scientific publications on this theme [4, 7, 9], the
offer about the invariability of the cross-section area of deposited solids was accepted. However, the last experimental
investigations with a transparent bend exposed the other structure of particles flow in a pipeline bend (Fig. 1) [10, 8].

According to these sources the sliding speed of particles settled in the bend gradually decreases, and the

thickness of a layer increases on the exit from the bend. This process is illustrated in Fig. 1 and 2.
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Fig. 1. Aerodisperse flow in a bend [10] Fig. 2. The scheme of an aerodisperse flow in a bend according to

(8]

The purpose of the work is to create the mathematical theory for the calculation of kinematic characteristics of
the transported mass in a pipeline bend and to get formulas for the solids speed u7 on an exit from a bend.



The given mathematical model of the solids movement at the flow turn is based on the suggestion that the all
material settles at the origin of a bend and changes the speed during the movement. It allows passing the law of mass
change along a motion pass in a bend in the following form:

m(@)=my +m (¢), (1)

where ¢ — the polar angle counted from the beginning of flow turn for a square-wave bend; "0 — mass of

T
material at the origin of a bend 0< ¢ < 5 m (‘P) — the function defined further and considered the change of material

mass along a motion path.
It is necessary to consider that the friction force operates against the movement of material:

T=f-N’ )

where N — constraint force; f— the coefficient of material friction against a bend wall.
The scheme for the interaction of forces influencing material fractions in a bend is presented further. Gravitation
G, centrifugal force C, constraint force N and friction force 7 belong to these forces (Fig. 3).
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Fig. 3. The calculated scheme of a bend
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THE ANALYSIS OF FORCE INTERACTION IN THE LAYER OF THE DEPOSITED PARTICLES

Let us project the vector equation of particles motion of the transported material of variable mass on an axis of
Euler’s coordinate system (Fig. 3). We have

d .
— =-T-G
7 (mug) sin@
2 3)

ur
m——= N —Gcos
R )

We determine reaction N from the second equation of system (3) and substitute in the first one. Further, taking
into account the connection between a turning angle ¢ and velocity uz, we can reduce system (3) to the differential
equation relative to function uz (@):

dd_(p(muT)z_m£f.uT+g£(fcosq)+sin(p)J. 4)

For the correct solution of this equation it is necessary to define dependence (1) and from physical reasons to

determine function 774 ((P) .
Let us assume that the area occupied with a material at movement along a bend, occupies area D in bend
longitudinal section represented in Fig. 4.
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Fig. 4. The scheme of the deposited particles layer in a bend

Let us allow polar system of coordinates (P'P) with a pole O and a polar axis /. In this system of coordinates the

equation of an external rim of bend AmB looks like p'=R , and the equation of internal border of area D — curve AnC —
p '=R- ao,
2hmax

a=—"m%
where p (5)

We find by means of double integral the area of domain AnOA defined by current value of an angle ¢. Then
required area S(¢) of a domain AmnA will be equal

2
S(0)="0-(3R~a0). ©

Designating through p mass of a layer of the transported material, corresponding to the fixed value S(¢), we will

define the change of its mass at a motion along a bend — function 7% ((P) in formula (1):

m; (¢) =pS(e) = épa(pz (3R-ag) . %

For parameter definition a in formula (8) we will consider that relative volume Cy of a material in a bend, as well
as concentration of a flow, is defined as the proportion:

VT(hm x)
CV=Ta, (®)

where V7 (h max) — the volume occupied with a material at a motion in a bend of the pipeline; Vr — volume of
the whole bend representing a part of a toroidal cover.

If it is possible to define the connection Ve By ) equation (8) can be considered as the equation for the

definition /max , and consequently the parameter a.

THE DETERMINATION OF THE MATERIAL VOLUME IN A BEND

Let us consider the fourth part of a toroidal cover and assume that the material at transportation along a bend
occupies a part of its volume ABCNA (Fig. 5).



Fig. 5. To the determination of the deposited particles volume in a pipeline bend

Let us allow the Cartesian system of coordinates Oyy; where the section equation tore in a plane x0y will register
as

2
x° +(y—(R—r)) = r2.
Then the surface equation tore as surfaces of rotation round axis Ox, will be [11]:

x2+(m—(R—r))2=r2.

Let us designate through D a longitudinal projection of an investigated surface to a plane y0z (it is represented in
Fig. 4). Then the required volume will be

VT(hmax) = 2 .U dde I dx |
(D)

0

We pass in a plane y0z to polar coordinates (P',®) and use tabular integrals [12]. With their help find primitive
function in internal integral and after some transformations we will receive
T

202 (R 3
o= 2 - -
0

—(R—r)(r—a(p)m—(R—r)rzarcsin(r_a(pjjd(p..

7

)

The first and the third items under integral in formula (9) are integrated elementary, for integration of the fourth
item we apply an integration method in parts, and to the second — trigonometrical substitution. Collecting the received
results, we will receive definitively:
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Thus, taking into account this expression and the expression for a quarter of torus volume with characteristics »
and R [11]

1 55
=—nr"(R-r
VT 2 ( )

it is possible to consider the transcendental equation (8) completely formed for the definition of /max . It should be
mentioned that the roots of this equation are to be searched in limits 0< 4,,,< r as experimental data show.



THE ANALYSIS OF THE TRANSPORTED MATERIAL VELOCITY IN A PIPELINE BEND

The problem of this subsection is to define the velocity of the material particles for any value of a polar angle ¢
(Fig. 3). For this purpose we have a problem of Koshi: differential equation (4) with the initial condition

uT|(p:O=uTO, (11)
where uzo — initial velocity of the transported flow particles on the entrance of a bend.

We substitute the law of mass change (1) considering dependence (7) in differential equation (4) and reduce it to
the nonlinear differential equation of Bernoulli [13] of the following form

d 1
dL(;JfP(‘P)“T =;Q(‘P)’ (12)
where
(6R—3a0)¢ . my
P(¢)= : __ Mo
O i ot 2(0) =R Usososina)s My =22 13

We find the solution of equation (12) in a standard way
—2 fo-2P|
(o) =1f =u(p)-e ), (14)

where P((p) - .[

(6R—-3a9) ¢
6M +(3R— a(p)(p2

do (15)

To find a primitive function in formula (15) it is necessary to determine denominator roots of the subintegral
function, i.e. to solve the equation

(p3+a1(p2 +bp+c=0,

where a = —3Ra!= —3R5;b=0;c= —6M0a_1 ;Rs=R/a .

Discriminant expressions are calculated [14, 15]

2 3
Go 3% _R % _2a-9ab+2Tc_ 1[4 am
9 a* 54 a p

. Lo =2 =3 . . .
and inequality R > Q is obtained. So, equation (16) has one real root and two complex conjugate ones, evaluated

using Cardano formulae (16)
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The subintegral expression in (15) is decomposed into a sum of simple fractions and the method of undetermined

coefficients is used. After integration we obtain the function P ((P) in explicit form

= 1 2F - F 2
P(q))=—3(Dln|(p—(p1|+EEln((p2+p(p+q)+ D arctg( ¢rp D.(m)

2q—0,5p2 2q—0,5p2

Here
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Thus, we have the equation for the function (‘P) in (14)

du  _5fo-2p .
G g2 e-2Pe) _ —2gR( f cosp+sing),
do

solved elementary. After determining the integration constant from the starting condition(11) we obtain the desired
dependence of the velocity on the angle ¢ as following

i (0) =g g 2O g ), a7
where
¢ 2fq)—3{Dlnq)—q)1 +0,5Eln((p2+p(p)+217_l%arctg2m—pz}
¥ (p)= j(fcosq) +sing)e 24=0.5p 24-0.5p do-(18)
0

If we put in (17), (18) Mo = m; My (‘P) =0 then expression (17) becomes

uy ((p) _ \/u%oe_zfq’ _%((1—2f2)e_2f“’ —(I—Zfz)cosq)+3fsin (p), (19)

that is identical to the formula, obtained in [9] for the constancy of the material mass in the bend, located in vertical
plane of «horizontal-vertical» type.

COMPARISON OF THE PRESSURE LOSS CALCULATION RESULTS IN THE PIPELINE BEND USING
DIFFERENT METHODS

According to the given methods comparative calculations of the pressure loss in the pipeline bend with the
rotation of the pipe at an angle ¢ = 90°, bending radius R = 0,3 m, pipe diameter d = 0,05 m, located in the vertical
plane with the material consumption 0,8; 1,7 u 3,3 kg/s are carried out. The velocity of the bulk material uzx at the
outlet of the bend fot the case of uniform distribution of deposited particles is detemined by formulae (17) and (18).

According to the calculation results we have graphs presented in Fig. 6. Here the solid line indicates the

experimental graphs obtained on the experimental stand of the Automobile and Highway Institute of the Donetsk State
Technical University.
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Fig. 6. Graphs of the pressure loss dependence in the pipeline bend

According to the graphs calculation accuracy by the method providing for the mass change of particles layer
along the bend greatly improves the calculation accuracy on a simplified version.
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CONCLUSION

1. It is shown that in the bend of the pneumotransport pipeline solids by centrifugal force are deposited on
the wall of the bend, forming a layer of transported material, thickness of which is not constant, but
changes along the bend according to the law, depending on the particle size, density of carrying and
transported medium, bending radius.

2. A new analytical model of the bend, taking into account the variable height of deposited particles layer
is developed; a nonlinear differential equation of the layer motion is composed; the law of the velocity
change of the particle layer motion and the change of its specific gravity along the bend is obtained.

3. A design procedure of the pressure loss in the pipeline bend, consistent with the accepted analytical
model is developed. The comparison of calculated and experimental data shows that their divergence
does not exceed 15 %.
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AHAJIMTUYECKOE UCCIIEJOBAHUE UBMEHEHUS CKOPOCTHU TPAHCIIOPTUPYEMOI'O MATEPUAJIA B

KOJIEHE TPYBOIIPOBO/JIA

Muxauna Yaabues, Jleonua Bosk

Anzotanusi. OG0CHOBBIBASTCS U MPEJIAraeTCsl MaTeMaTHYECKask MOZE/b JBHIKCHHS adpOIHCIIEPCHOrO IOTOKAa B KOJeHe TpyoOomnposoaa. [lomydeno
pElIEHHEe 3TOH MOJENN NpPU YCIOBHUSAX, NPUOIMKEHHBIX K pealbHbIM. [IpUBEIEHO CpaBHEHHE PE3YJIbTATOB, MOJYYEHHBIX 3KCIIEPUMEHTAIBHO, MO
JIAHHOM MOJIENHN U ISl HEKOTOPBIX YIPOILAOIIUX MHIIOTE3.

KiioueBble c/10Ba: THEBMATHYECKOE TPAHCIOPTHPOBAHUE CHITYYHX MAaTEPUAIOB, CKOPOCTB MTOTOKA, AU HepeHHAIbHBIC YPABHCHUS



