Проблемы инженерного образования

УДК 372.862

Е.В. Ошовская (канд. техн. наук, доц.), **В.А. Сидоров** (канд. техн. наук, доц.), **С.А. Бедарев** (канд. техн. наук, доц.)

ГВУЗ «Донецкий национальный технический университет»

КОНЦЕПЦИЯ ИНТЕРАКТИВНОГО КУРСА «МЕТАЛЛУРГИЧЕСКИЕ МАШИНЫ»

Рассмотрена концепция построения учебного интерактивного курса лекций «Металлургические машины», основанная на иерархическом подходе и структурировании материала по взаимосвязанным дисциплинам подготовки специалистов в области механического оборудования металлургического производства.

Ключевые слова: обучение, интерактивная лекция, мультимедийные средства, металлургическое оборудование.

Проблема и ее связь с научными и практическими задачами. В настоящее время в сфере высшего образования Украины происходит внедрение государственных образовательных стандартов, в основу которых положен компетентностный подход, обеспечивающий у выпускника высшего учебного заведения формирование интегрированных качеств для выполнения деятельности в определенной профессиональной предметной области. Составляющей успешного перехода на компетентностный подход при организации процесса обучения является применение в обучении информационных технологий. В связи с этим актуальным становится применение в процессе обучения новых образовательных технологий, в частности, интерактивных методов, использующих компьютерную технику и средства мультимедия.

Анализ исследований и публикаций. Среди современных интерактивных подходов можно выделить следующие: творческие задания; обучающие игры; использование общественных ресурсов (приглашение специалиста, экскурсии); интерактивные лекции, работа с наглядными пособиями, видео- и аудиоматериалами; тестирование; дистанционное обучение; тренинги. Формы интерактивных занятий могут быть различны – семинары с использованием метода мозгового штурма, презентации с использованием мультимедийных средств

© Е.В. Ошовская, В.А. Сидоров, С.А. Бедарев, 2013

(видео, слайды, компьютер и т.п.) и последующим обсуждением представленной информации, лекции с заранее объявленными ошибками и т.д. [1].

Рассматривая подготовку специалистов в вузе, следует особо выделить интерактивные лекции, позволяющие за ограниченное время максимально полно освоить теоретический материал, выработать определенные мнения в профессиональной сфере за счет активного взаимодействия студентов с преподавателем и друг другом, в отличии от традиционного подхода к проведению лекционных занятий, при котором студенту отводится лишь роль пассивного слушателя.

В общем случае, термин «интерактивный», происходящий от английского слова «interact», т.е. взаимодействовать, означает способность находиться в режиме диалога, общения с чем-либо (например, компьютером) или кем-либо (человеком). Поэтому, интерактивное обучение в вузе можно рассматривать как диалоговое обучение, в ходе которого осуществляется взаимодействие студентов с преподавателем и учебной средой, отражающей осваиваемую область профессиональных знания и опыта.

Постановка задачи. К настоящему времени в предметной области металлургического оборудования накоплено множество информации о конструкциях агрегатов, машин, устройств; методиках проектирования и расчета; режимах эксплуатации; методах и технологических приемах технического обслуживания, ремонта, монтажа. Постоянно к отечественному опыту добавляются новые сведения от зарубежных специалистов. Это требует четкого структурирования и упорядочивания информации при обучении молодых специалистов, выработки у них профессиональных знаний и навыков, определенного опыта действий в стандартных и нестандартных производственных ситуациях.

Кроме того, психологическое тестирование студентов, обучающихся по специальности «Металлургическое оборудование», выявило, что в соответствии с типологией Майерс-Бриггс 79% опрошенных являются экстравертами, т.е. личностями с ориентацией сознания на внешний мир, на объекты, общение с людьми; 58% ориентированы на конкретную информацию, факты, т.е. на то, что видят, слышат, ощущают; 67 % принимают решения на основе рационального взвешивания альтернатив и 82% предпочитают планировать и упорядочивать информацию для принятия решений, т.е. преобладающий тип личности среди студентов-механиков ESTJ.

Поэтому, для повышения эффективности подготовки специалистов в области металлургического оборудования механиков сотрудниками кафедры «Механическое оборудование заводов черной металлургии» Донецкого национального технического университета была поставлена задача разработки и внедрения в учебный процесс интерактивного курса «Металлургические машины». Дополнительным аргументом для создания данного курса выступила известная закономерность обучения, описанная американскими исследователями Р. Карникау и Ф. Макэлроу: человек помнит 10 % прочитанного; 20 % — услышанного; 30 % — увиденного; 50 % — увиденного и услышанного; 80 % — того, что говорит сам; 90 % — того, до чего дошел в деятельности [2] (Кагпікаи, МсЕІгоу, 1975). То есть использование при подготовке механиков интерактивных технологий обучения позволит развить у студентов необходимые профессиональные компетенции.

В статье изложены концепция построения учебного интерактивного курса «Металлургические машины» и продемонстрированы возможные способы его практической реализации.

Изложение материала и результаты. В основу создания интерактивного курса «Металлургические машины» положены следующие принципы:

- 1) мультидисциплинарность;
- 2) иерархичность;
- 3) модульность;
- 4) открытость.

Анализ учебных планов подготовки бакалавров по направлению «Машиностроение» с вариативной частью «Металлургическое оборудование» позволил выделить комплекс дисциплин: «Основы металлургии», «Технологические линии и комплексы металлургических цехов», «Металлургические подъемно-транспортные машины», «Механическое оборудование доменных цехов», «Механическое оборудование прокатных цехов». «Монтаж металлургических машин», «Техническая диагностика металлургического оборудования», объектом в которых выступают металлургические машины и агрегаты. Предмет, цель и задачи каждой дисциплины рассматривают определенный круг вопросов, связанный с оборудованием – принцип действия, проектирование и расчеты, техническое обслуживание и ремонт и т.д. Поэтому

разрабатываемый учебный курс должен учитывать потребности всех представленных дисциплин.

Для представления информации использована иерархическая структура:

цех – участок (отделение) – машина (агрегат) – механизм.

Данная структура в максимальной степени позволяет построить логическую последовательность запоминания материала: место расположения, назначение, выполняемая функция, устройство, технические характеристики. В дальнейшем данный материал используется для прикладного изучения в указанном комплексе дисциплин. Сведения об изучаемом объекте представляются в виде текстовой информации, схем, фотографий, видеороликов, таблиц.

На рисунке 1 приведена главная страница интерактивного курса лекций, на которой осуществляется выбор цеха, после чего происходит переход на страницу, на которой указываются назначение перечень выпускаемой продукции, грузопотоки в данном цехе (рисунок 2), схемы расположения оборудования, характеристики существующих цехов разных металлургических предприятий, запускаются видео ролики, демонстрирующие работу оборудования цеха или процесс выпуск продукции. Схема расположения оборудования выполнена в виде мнемо-схемы, т.е. при выборе любого объекта осуществляется переход на новую страницу с информацией о ней.

Пользователь курса имеет возможность выбрать любую машину цеха (рисунок 3) и получить по ней различную информацию: назначение машины; варианты конструкции с технической характеристикой (разных производителей, фирм-изготовителей), описание принципа работы, фотографии, чертежи, кинематические и принципиальные схемы, 3D модели, видеоролики, иллюстрирующие работу, а также технологию сборки и разборки, схемы расположения диагностических точек, перечень диагностических параметров, технологию монтажа, схемы строповки основных узлов, рекомендации по используемым приспособлениям, нормы и перечень смазочных материалов, схемы расположения точек смазывания; кинематические и расчетные схемы механизмов, основные зависимости для расчета параметров привода.

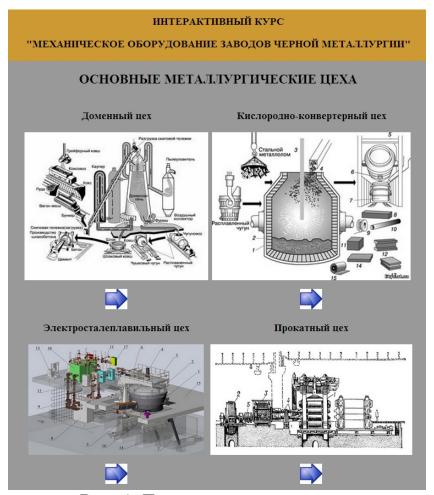


Рис. 1. Главная страница курса

Рис. 2 .Страница производственного цеха

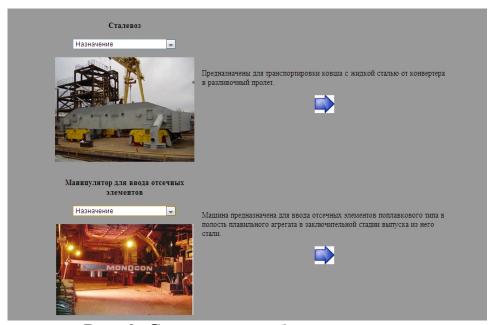


Рис. 3. Страница с выбором машины

Каждая тема заканчивается материалом для проверки знаний, сформулированным в виде вопросов, тестов, заданий, примеров решения задач и условий контрольных задач. Это позволяет при необходимости обеспечить контроль знаний при удаленном доступе и оценить глубину усвоения материала.

Принцип модульности реализован как разделением материала по основным направлениям технологического процесса производства металлопродукции, так и иерархической структурой последовательного изучения: цех — участок — машина — механизм. Любой из выбранных модулей может быть использован как самостоятельно, так и во взаимосвязи с последующими реализациями.

Безусловно, следует учитывать и особенности изложения материала при использовании интерактивного подхода. Многие вопросы остаются нерешенными — например, необходимость ведения конспекта, для задействования возможностей визуального повторения и моторного запоминания материала. Поэтому при разработке курса использован принцип открытости.

Отсутствие в настоящее время учебников и атласа современных конструкций металлургических машин позволяет включить обучаемых в процесс активного самостоятельного познания элементов изучаемого предмета. Обсуждение предоставленного студентом материала совместно с группой может принципиально изменить как способ изложения материала, так и методологию оценки знаний, реально приблизив процесс обучения к идеальной модели самостоятельного

познания при возможности контроля и порционной подачи материала.

Выводы и направления дальнейших исследований.

- 1. Начальный этап использования интерактивного курса «Металлургические машины», проведенный в период производственной практики, показал высокую заинтересованность и хорошее понимание студентами излагаемого материала.
- 2. Предполагается продолжение работы в направлении добавления материала, включения в процесс обучения новых курсов и расширения участников проекта путем совместной работы со специалистами родственных кафедр других ВУЗов.
- 3. Использование данного курса для дистанционного обучения предусмотрено предложенной концепцией и может быть реализовано вначале для проведения обучения в рамках курсов повышения квалификации инженеров-механиков металлургических предприятий.

Список литературы

- 1. Косолапова М.А. Положение о методах интерактивного обучения студентов по ФГОС 3 в техническом университете: для преподавателей ТУСУР [Текст] / М.А. Косолапова, В.И. Ефанов, В.А. Кормилин, Л.А. Боков. Томск: ТУСУР, 2012.
- 2. Karnikau R. Communication for the safety professional [Text] /R. Karnikau, F. McElroy Chicago, 1975.

Стаття надійшла до редакції 09.10.2013

О.В. Ошовська, В.А. Сидоров, С.О. Бедарєв. ДВНЗ «Донецький національний технічний університет»

Концепція інтерактивного курсу «Металургійні машини»

Розглянуто концепцію побудови навчального інтерактивного курсу лекцій «Металургійні машини», що заснована на ієрархічному підході і структуруванні матеріалу по взаємопов'язаним дисциплінам підготовки фахівців в області механічного обладнання металургійного виробництва.

Ключові слова: навчання, інтерактивна лекція, мультимедійні засоби, металургійне обладнання.

O. Oshovskaya, V. Sidorov, S. Bedarev. Donetsk National Technical University The Concept of the On-line Course "Metallurgical Machinery"

The concept of building an interactive training course "Metallurgical machinery" is considered. The course is based on a hierarchical approach and structuring of material about interconnected disciplines in the field of mechanical equipment for metallurgy.

Keywords: learning, interactive lectures, multimedia, metallurgical equipment.