Кужелев А.В. $(T \ni C - 06)^*$ Донецкий национальный технический университет

Источником образования оксидов азота NO_x может быть молекулярный используемый в качестве окислителя при горении, или азотсодержащие компоненты топлива. Безусловно, что механизм образования NO_x зависит от температурного уровня в зоне горения, а также от некоторых параметров топочного процесса. Рассматривая, механизм образования оксидов серы и углерода, можно отметить, что они возникают при неполном горении твердого топлива. Это связано с разным размером частиц полидисперсной пыли, которые неравномерно прогреваются, воспламеняются и сгорают, а нехваткой окислителя ДЛЯ более полного процесса горения. также Наиболее простым и точным методом определения расхода дымовых газов является расчет удельного объема дымовых газов при нормальных условиях при сжигании 1 кг твердого топлива, при известном коэффициенте избытка воздуха а. Также необходимо учесть, что значения стехиометрических коэффициентов при расчете объема дымовых газов, должны скорректированы согласно международным нормам по выбросам азота, серы и углекислоты и приводится к 6% содержанию кислорода в дымовых газах. В таблице приведены значения оксидов серы, азота и углерода для основных марок украинских углей при $\alpha = 1,4$.

Таблица - значения оксидов серы, азота и углерода

Параметр	Единицы	АШ	T	Γ	ДП	Львовско-волынский
$n(_{SO2})_{6\%}$	мг/м ³	4083	6373	8773	11977	6629
$n(_{NO})_{6\%}$	мг/м ³	1543	2193	3030	3294	2457
$V_{\rm CO2}$	$M^3/K\Gamma$	1,13	0,99	0,74	0,69	0,74
C^p	$M^3/K\Gamma$	60,45	52,84	39,49	37,21	39,53

По данным таблицы построены графики зависимости $n(_{SO2})_{6\%}$ (C^p), $n(_{NO})_{6\%}$ (C^p):

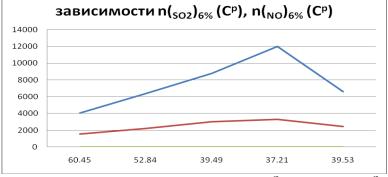


Рисунок – зависимость $n(_{SO2})_{6\%}$ (C^p), $n(_{NO})_{6\%}$ (C^p)

^{*} Руководитель – к.т.н., доцент кафедры ПТ Илющенко В.И.;