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Abstract. Two masses vibrating machine with inertial exciter and polynomial characteristic 
of elastic ties is considered. Its mathematical model is constructed and the stationary motions 

in frequency zone located between two natural ones are studied. With use of complex form of 
harmonic balance method the analysis of its dynamics is reduced to the solving of complex 

system of algebraic equations. Its subsequent numerical solution under changing parameters 
of the system gives an opportunity to build the bifurcation curves and discover pure combina-
tion resonances of different orders. One of the most suitable among them from the practical 

point of view is the resonance of the order 2:1 which, by this reason, is the focus of the art icle. 
With the help of original software the oscillations of vibrating machine are analyzed, bifurca-

tion curves and spectral properties are studied. There are established certain correlations 
between parameters, which are necessary for designing of such machines, one approach for 
projecting of nonlinear elastic ties is discussed. 
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1 INTRODUCTION 

To date a great number of investigations concerning the use of combination resonances 

was fulfilled for one masses vibrating machines [1, 2]. These investigations are being contin-
ued till now [3, 4]. Here we consider two-masses vibrating machine and study its oscillations 
in frequency range located between the natural ones that is in, so-called, “antiresonance” zone. 

Our previous investigations show [5] that one of the most suitable for practical realization is 
the resonance of the order 2:1. Our purpose here is to get some instructions for choosing pa-

rameters of the machine and discuss approaches to designing of its elastic ties. By our opinion 
this is one of the main problems in creation of such machines. 

2 MODEL, METHOD OF INVESTIGATION 

The principal scheme of vibromachine is represented in Figure 1. There 
1m  is mass of a 

frame, 
2m  – of a box, 

0m  – of unbalance masses, characteristics of the main and supported 

elastic ties are 2 3( ) 1 2 3f x = k x+k x +k x
m

 and 2 3

0 0 0( ) 1 2 3f x = k x+k x +k x
s

 correspondently, re-

sistance forces are 2

.
( ) ( ). 1 2 3f x = k +k x+k x xr m      and 

2

0 0 0( ) ( )
. . 1 2 3f x = k +k x+k x x

s m
    ,   – 

rotation speed of the exciter, r  is its eccentricity. 
 

 
Figure 1: Principal scheme of the vibromachine. 

 
In dimensionless form the motion of the machine is described by the following equations 
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Using harmonic balance method we find the periodic solutions in the form 
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where N is the number of considered harmonics. After substitution (2) into (1) and equating 

coefficients we get the system of polynomial equations with respect to nc  
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Supposing the trigonometric view of the solutions in the form 



N
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jj jA
0
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jjj ccA  2  and its initial phase 
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Analysis of oscillations below is realized with the help of original software [6] in which 

construction of the bifurcation curves is based on solving of system (3). The points of bifurca-
tion in it are found by the control of change of sign of the Jacobian of the system (3), stability 
of the solutions in the first approximation is being analyzed with use of Floquet theory. 

The effectiveness of vibrational processes, such as, moving and packing of granular mate-
rial, depends upon asymmetry of laws of motion. For quasi harmonic regimes sometimes it is 

described as the ratio of peak values of acceleration. But for more complex types of the mo-
tion it is reasonable to use and more integrated approaches. By analogy with probability theo-
ry [7] and considering the law of motion or acceleration as a continuous random variable you 

can also enter for it an asymmetry coefficient 3

3 /sA    as the ratio of the third central 

moment to the third power of standard deviation where 

 3

3

0

( ( ( ) ) ) /

T

x t m dt T   , 2 2

0

( ( ( ) ) ) /

T

x t m dt T   , 
0

( ) /

T

m x t dt T  , (4) 

here ( )x t  is the law of motion or acceleration of period T . Impact of this factor for the effec-

tiveness of the vibration process can be discovered in the subsequent experiments. 

3 RESULTS, ITS ANALYSIS 

Taking in mind here experimental machine values of some parameters were taken as fol-

lows 1 98m  kg , 0 2m  kg , 452 m kg , 4

01 104.2 k  mN / , 6

1 106.0 k  mN / , 

)5.005.0(0  rm mkg  then 1 =12.8 1secrad  . Presumable ranges of the others are 

2k , [ 2  , 3

10] 10 k  ; 3k , [0 , 6

13] 10 k  , where 2k  and 3k  characterize the level of nonline-

arity of the main elastic ties. The similar correlations were taken for parameters 02k , 03k  of 

the supported elastic ties. Angular velocity of the exciter   is supposed to be variable, pa-

rameters ik   and ik0
  of resistance forces are dependent on the design of elastic ties, coefficient 

of dissipation in material of elastic ties is equal to 4108   .sec  Keeping below in mind 

the elastic ties of magnetic type we suppose ik = ik0
 =0. Then in accordance to (1) the dimen-

sionless values of the parameters are 101 0.015b  , 102 103 0b b  , 11 0.375b   , 12 13 0b b  , 

101 1.465k  , 102 103 0k k  , 11 36.621k   , 12 11/ [ 2,0]k k   , 13 11/ [0,3]k k  , 1 [0.5,5.0]P  , 

201 101b b  , 202 203 0b b  , 21 1.208b  , 22 23 0b b  , 201 101k k  , 202 203 0k k  , 

21 118.001k  , 22 21 12 11/ /k k k k , 23 21 13 11/ /k k k k , 2 1P P  . 

Firstly we’ll demonstrate the influence of each of free parameters upon behavior of the 

machine in the zone of the 2:1 resonance. Calculations and the solving of the system (3) have 

been done for five harmonics in the solutions (2), that is 5N  , but for simplification only 
three of them are shown in the presented figures. 
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3.1 The influence of the external force 

It is demonstrated in Figure 2, where amplitude and phase-frequency characteristics (AFC 

and PFC) of the frame and the box and diagrams of acceleration of the box in certain points  
are given. Thin lines correspond there to unstable regimes. 

It may be noted that under small values of exciting forces there exists only one superhar-

monic regime and it is globally stable (Figure 2a). But after increasing of it the number of su-

perharmonic regimes may also increase (Figures 2b, 2c). In particular, for 
1 5P   the number 

of such regimes is equal already to three (Figure 2c), two of them are stable and opposite (this 

fact is characterized by the shift of initial phases of even harmonics which is equal to pi), but 
the third one is unstable. Superharmonic oscillations become more intensive and take place 
for the higher frequencies of the exciting force. The ratio of the peak values of acceleration 

may be equal to 2 and even more, its asymmetry coefficient in indicated points 

sA  0.95 1.56. From the practical point of view it is important to note that the spectral and 

phase composition of oscillations on the upward curve section is close to the recommend-

ed [7]. 

3.2 The influence of the nonlinearity of elastic ties 

It is demonstrated in Figure 3. In this case the value of 
13 11/k k  equals consequently 0, 1.5, 

3.0 the values of other parameters are 
12 11/ 1.0k k    and 1 2.5P  . The marked peculiarities, 

in main, remain valid here too. The only difference is that the intensity of oscillations does not 

practically change. 

3.3 The influence of the asymmetry of elastic ties 

It is shown in Figure 4. Here the value of 12 11/k k  equals sequentially 0.0, -1.0, -2.0 and 

13 11/ 1.5k k  , 1 2.5P  . Intensity of oscillations remains practically the same, but the frequen-

cy range of superharmonic oscillations becomes broader. 

3.4 Recommendations 

The desire to decrease energy consumption and ensure “natural” conditions of the starting 

causes the intention to reduce exciting forces and choose parameters of the machine which 
guarantee the global stability of the operating regime.  The analysis which has been done 
above shows the expediency of choice of the parameters of the elastic ties close to their e x-

treme values. Such opportunities are demonstrated in Figure 5. For values 1 1.5P   the oppo-

site regimes may already appear. So, for 1 01k k , at least for 1 01(10 50)k k  , the ranges 
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k m

k m m
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
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3
k

k


 , 

may be considered as the preliminary intervals for choosing parameters of the machine. 

4 DESIGN OF ELASTIC TIES 

Requirements for elastic elements of vibromachines often have quite opposite character.  
Thus, vibration isolators should be of less stiffness in order to minimize dynamic loads on the 
foundation. On the contrary the main elastic elements need to have relatively big stiffness in 

order to ensure operation of the machine in the resonant or antiresonant mode or close to it. 
And usually it is quite difficult to provide these requirements simultaneously. Partially this  
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Figure 2: The effect of the external force for 0.1/ 12 kk , 5.1/ 13 kk . 
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Figure 3: The effect of the nonlinearity of elastic ties for 5.21 P , 1/ 12 kk . 
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Figure 4: The effect of the asymmetry of elastic ties for 5.21 P , 5.1/ 13 kk . 
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Figure 5: Superresonance for extreme values of parameters of elastic ties 2/ 12 kk , 3/ 13 kk . 

 
problem is the restraining factor in development of effective many-masses vibrating machines 
having resonant or antiresonant regimes and polyharmonic oscillations. 

At present for main elastic ties there are usually used metal springs, rubber elements of dif-
ferent forms, buffer elements, torsions, leaf springs made of steel or other special material and 

so on. But the analysis of literature sources gives the opportunity to pay attention to the use of 
permanent magnets [9]. In the last years different types of magnetic supports, shock absorbers 
and muffs are getting more and more applications in the connection with the deve lopment of 

technology of high-energy permanent magnets. 
Figure 6 shows the design of the proposed nonlinear elastic element of magnetic type, cur-

rently it passes the state examination of the invention. The element consists of a body 1, rigid-

ly connected with the frame of vibromachine by means of the supports 2. Working organ of 
the machine is connected with the elastic element by means of trunnion 3. Rubber elements 4 

with linear elastic characteristic work on a shift. Nonlinearity of elastic element is formed by 
means of permanent magnets 5 and 6 that are set the same poles to each other. The size of gap 
δ between the magnets is regulated with the help of bolts 7. Accordingly to this the form of 

elastic characteristic of the magnetic element changes (Figure 6b) and we get a vibrating ma-
chine with adjusting nonlinearity. 

5 CONCLUSION 

The fulfilled investigations gave an opportunity to get certain information for designing of 
experimental sample of nonlinear super harmonic vibrating machines. At present some ele-

ments of its construction have been already produced, experimental studies are ahead. 
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Figure 6: Magnetic elastic element a) A scheme and sample: 1 – body; 2 – support; 3 – trunnion; 4 – rubber ele-

ment; 5, 6 – magnets; 7 – adjusting bolt; b) View of elastic characteristics for different gaps δ. 
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